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Abstract

Background COVID-19 is a virus which has lead to a global pandemic.
Worldwide, more than 100 countries have imposed severe restrictions regard-
ing freedom of movement amongst their citizens in a bid to slow the spread of
the virus. These restrictions, which are part of a set of non-pharmaceutical
interventions, have recently been classified by the Oxford COVID-19 Gov-
ernment Response Tracker (OxCGRT) team and a nominal index measure
has been defined for use by the wider international community. We address
the use of this index measure to establish the degree and characteristics of
control of the transmission rate of the virus within a representative sample
of countries in the World and states in the United States of America.
Methods Country specific, Susceptible-Infected-Recovered-Deaths (SIRD)
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models with latent dynamics were constructed using publicly available data
for 23 countries and 25 states of the United States of America. Each of the
models were linearised and classical frequentist error propagation was ap-
plied to them individually. The time varying, observable model parameters
were extracted for each day that data was made available. The OxCGRT
stringency index, p, was used to regress against these model parameters.
The regression of the transmission rate as a function of p in each locale was
through a linear parameter αs. In addition, macroscopic indices from the
World Bank were used to explore inter-country variation in the measured
parameters.
Results The world average was αs = 0.01 (95% CI 0.0102 - 0.0112) with an
ensemble standard deviation of 0.0017 (95% C.I. 0.0014 - 0.0021), strongly
indicating a universal behavior. While lockdown measures have been suc-
cessful in curbing the spread, our study indicates that removing them too
swiftly will result in the resurgence of the spread within one to two months.
Reducing the stringency index by 10 will delay reaching the apex by about
6 months, where reducing it by 20 will delay by only four months. During
the post-lockdown period it is essential to increase αs. For the system to
remain sub-critical, the rate with which αs increases should outpace that of
the decrease of the stringency index. The spread of the virus is found to be
insensitive to the Gini index and other socio-economic indexes. The typical
adjustment time to see the effects of control, b−1

r varied between 1.49 days
for Peru and 38.09 days for Sweden. In the United States, the typical ad-
justment time to see the effects of control, b−1

r varied between 1.41 days for
Colorado to 15.91 days for Ohio.
Interpretation Given the measured characterisations of each locale, the ef-
fects of any change in non-pharmaceutical intervention may be anticipated
and predictions can be made regarding the possible case load which is spe-
cific to that environment. This is accomplished by specifying an acceptable
level of transmission, βf , given the prevailing economic and social constraints
which uniquely determines an overall stringency of intervention level p. As
a policy maker, there are possible intervention combinations to choose from
and a combination must be selected that achieves p or greater.
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1. Introduction1

A novel corona virus, named COVID-19, was detected in the Hubei2

province of China in late December 2019 and rapidly spread resulting in3

a confirmed global pandemic by 11 March 20201. As at 26 April 2020, the4

total number of infections has exceeded 3.1 million confirmed cases with more5

than 210 thousand deaths worldwide attributable to the effects of the virus2.6

A large, worldwide modeling effort is currently underway to improve health7

policy decision making with regards to the COVID-19 pandemic3–7. Many8

research groups and national response teams have looked into country spe-9

cific intervention strategies4,6–10.10

The insight our research offers is a worldwide survey of the dynamics and11

characteristics various countries possess with regards to the control of the12

pandemic, through non-pharmaceutical interventions (NPI)s. We have used13

sufficient statistics and a mechanistic model with latent dynamics and er-14

ror propagation to classify the dynamic behaviour of each country for which15

data is available. This means that characteristic variations between (and16

within) countries are comparable for the first time. The purpose is to allow17

policy makers to gradually control their local epidemic within their contex-18

tual situation without having to rely on the parameters derived from other19

country-specific intervention studies.20

2. Method21

For a fair comparison of the effect of interventions, carefully curated,22

comprehensive and frequently updated data is a requirement. Data was,23

therefore, sourced from the John’s Hopkins COVID-19 data repository be-24

cause it fulfilled both the due diligence and frequency of updating needed for25

this research11.26

Using this existing data up to and including 26 April 2020, multiple SIRD27

with latent dynamics and error propagation models were employed to cap-28

ture the salient features of the present pandemic within each country for29

which reliable information was available. The chosen modeling method is far30

simpler than some of the most comprehensive models employed during this31

pandemic7,8. Its simplicity is its strength and the model is ’mind-sized’; it32

has a number of sufficient statistics which entirely capture the models be-33

haviour and allow for measurement of the efficacy of control measures on34

the key variables of interest for policy makers and public health authorities.35
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Moreover, these parameters may be compared between and within countries.36

Individual based models cannot do this at a global scale without being prop-37

erly calibrated and sufficient statistics being defined.38

An initial cohort of 23 countries and 25 states within the United States of39

America were chosen to be as representative and diverse as possible. These40

countries and states have implemented a wide variety of non-pharmaceutical41

intervention strategies. Both timing and level of interventions were fairly42

represented in this cohort.43

Levels of control were measured by the Oxford COVID-19 Government Re-44

sponse Tracker (OxCGRT) stringency index12. This index, denoted p in our45

work, takes values from 0 to 100 and is indicative of the severity and num-46

ber of discrete measures that have been taken to try to curb the spread of47

COVID-19. It is sensitive enough to differentiate between situations where48

an intervention measure is suggested by government but not enforced12.49

At the time of writing; America did not have a stringency index published. A50

best fit, using the methodology in Hale et al. 12 and publicly available coarse51

grained intervention information, was employed to align the results. This is52

described fully in Appendix A.53

Daily parameter estimates of the models were extracted from the data using54

a least-squares framework and candidate kernel functions were regressed on55

the daily parameter estimates. These kernel functions represent the time56

domain response of a model parameter to a given level of control and are57

based on dynamic hypotheses regarding the time evolution of the parame-58

ters in response to the NPI changes which are measured with the OxCGRT59

stringency index.60

Given the large scale, the dynamic hypotheses were generated by the recogni-61

tion that additive effects of random variables contribute to the time domain62

behaviour of the effects of intervention; this is the reason for the prominence63

of the exponential approach a hypothesised steady state (for constant NPI64

level)13.65

This sort of exponential behaviour will cease to be representative if there is a66

systematic breakdown in roll-out of the interventions; i.e. there exist delays67

which should be modeled with random variables that have poorly defined68

variance (so called ’fat tails’)14. If such a systematic breakdown in roll-out69

were to happen, our proposed control model would cease to be valid.70
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2.1. Model71

The characteristics of the present pandemic are atypical, a key fact that72

is difficult to capture directly with the classic deterministic differential equa-73

tions of epidemiology is that infected individuals may be asymptomatic and74

infectious15.75

An SIRD (with latent dynamics) is one of the simplest models which cap-76

tures the essential features of the present COVID-19 outbreak and allows for77

clear interpretation with regards to control and decision making. This model78

is depicted in Figure 1 and has several key parameters which summarise the79

evolution of the disease, in sympathy with situations which admit the exis-80

tence of sufficient statistics which completely characterise the behaviour of a81

random variable13.82

The latent dynamics are essential to capture the following clinical properties83

of COVID-19:84

1. Asymptomatic cases are infectious16,17.85

2. It is possible for deaths to be overstated since positive tests are not a86

requirement in some locales for establishing the basic underlying cause87

of death in this pandemic; reasonable clinical judgement is18. In addi-88

tion, overstatements in clinical cases may be due to the highly infectious89

nature of the virus; patients with severe co-morbidites may not neces-90

sarily die with the virus as the basic underlying cause even though it91

is likely to be present in the patient if they are admitted to a facility92

with many active COVID-19 cases.93

3. There are early reports that the latent prevalence (using a seropreva-94

lence study) may be as high as 14% of one of the most densely populated95

cities in the World19.96

4. There have been serious calls for protection of front-line health care97

workers as a result of early experiences with the epidemic20,21. The98

nosocomial infections within hospital care providers as a group may be99

non-negligible, though for the large scale model we are considering, this100

group has not been partitioned separately.101

The observable (directly measurable) dynamics capture the standard features102

of susceptible portions of the population becoming infected and then either103

recovering with perpetual immunity or dying.104

There is evidence that relapse is possible, where recovered patients would105

become susceptible again22. This model variation has not been explicitly106
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considered because do not know the significance of this yet; it is possible107

that these are people who were not fully cured22, they may have been rein-108

fected with a different strain17, the reverse transcription polymerase chain109

reaction (RT-PCR) test can give a positive result due to extracellular RNA,110

shedding of non-viable virions etc.111

112

Of note is that the implicit assumption with this approach is that there113

is a single viral strain which is being modelled. If there are multiple strains,114

each of which is observable and differentiable through specialised testing then115

refinements on the labelling and parameters are possible.116

117

Figure 1: SIRD model with Unobserved Latent Dynamics.

2.2. Observable Dynamics118

Under the stated clinical conditions which limit nosocomial infections119

through effective monitoring and personal protective equipment use; the120

transmissions between known infected patients and susceptible individuals121

(in the broadest sense possible) should be rare. The typical disease progres-122

sion time frame15,23 implies that latent infections leading to deaths should be123

rare, it is presumed that patients with severe symptoms are brought in for124

treatment. Under these conditions the latent dynamics in the model simplify125
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with δL ≈ 0 and β ≈ 0 and this mode simplification is used throughout.126

What is observed then, in terms of increase in measured infections I, is127

achieved strictly through φIL. These are the detected infections and depen-128

dent on the detection rate, φ, and test efficiency. The modeling assumption129

of effective known positive patient quarantining means that new infections130

must be latent, initially. Said another way, susceptible patients, S, are in-131

fected through interaction with latent infected individuals, IL and these new132

latent infections are detected, I in a way which is dependent on the daily133

observed infection rate φ.134

135

2.3. Daily observed infection rate, φ136

The daily observed infection rate is related to the efficiency of the testing137

procedure, the number of tests which are conducted, the fraction of those138

carrying the virus who present with symptoms (in order for them to be con-139

sidered for testing) and a few other factors besides.140

The units of φ are observed infections per latent infection per day.141

An important component for estimating φ is the number of positive individ-142

uals who do not know their status and are asymptomatic. Random testing143

has proven useful in this regard in Iceland17 and New York19. Exhaustive144

testing was possible in the small populations in the municipality of Vo, Italy145

and on the Diamond Princess cruise ship with each study including more146

than 3,000 individuals.147

Reliable estimates of asymptomatic cases due to either extensive randomised148

testing or exhaustive testing in closed populations are presented in Table 1.149

Unfortunately, the number of asymptomatic cases are approximately 50%150

of all positive COVID-19 patients. The fraction of asymptomatic cases in151

enclosed populations, the number of patients with antibodies present (due to152

randomised population seroprevalence studies) and patients with symptoms153

who are subclinical and do not warrant admission and formal testing will154

also all influence the rate measured by φ.155

2.4. Kernel functions156

The roll-out of any country-wide control measure is subject to random157

variations in timing and levels of civil compliance dependent on the execution158

plan and the populace’s disposition. To capture these stylised facts, there is159

a typical adjustment time associated with a country-wide lock-down which160

is unique to that country.161
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Study Asympt. positive tests
Diamond Princess15[n=4,062] 55% (95% CI 52%-59%)
Vo Italy24[n=3,300] 50% - 75%
Japanese nationals evacuated25 [n=565] 31% (95% CI: 7.7% - 54%)
Nursing home, Washington26 [n=23] 43% (95% CI 26% - 63%)
Iceland (Open Invite)17 [n=10,797] 41% (95% CI 32% - 52%)
Iceland (Random)17 [n=2,283] 54% (95% CI 30% - 77%)

Northern Italy blood donors27 [n=60] 66% (95% CI 54% - 77%)

Table 1: Results from various studies regarding the number of asymptomatic cases amongst
those testing positive for COVID-19.

This was modeled with the kernel function, conditioned on the control mea-162

sure p:163

βp(t) =
(
1 + b0e

−br∆t
)
βf (p), (1)

where βf (p) is the asymptotic value of the observed daily transmission rate, br164

is the typical adjustment rate and b0 is used to model the initial transmission165

rate before the control p is applied. A characteristic plot is depicted in Figure166

2.167

As a starting point, it is hypothesised that the typical adjustment rate br is168

characteristic of a nation and that βf (p) is dependent on the stringency of169

control p through:170

βf (p) = β0(1− αsp), (2)

where αs is the effect of stringency on transmission rate.171

The kernel function for γ(t) is:172

γp(t) = γ0, (3)

regardless of control. The clinical and physical justification for this model173

is that the inherent properties of the recovery process do not change with174

non-pharmaceutical control, assuming the hospital system has not been over-175

whelmed yet.176

177

The kernel function for δ(t) is:178

δp(t) = d0t
d1e−dr∆t, (4)
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Figure 2: The transmission rate kernel function depicting the typical adjustment rate,
br and final transmission rate βf . The control index p affects the total reduction in
transmission.

which is the result that would be theoretically expected from a cascade of179

first order processes28. The temporary increase in this parameter is due to180

the reduced number of severe infections which will artificially raise it since181

δ ∝ I−1, see (B.7). This function captures the transients inherent in the182

daily death count as a result of intervention only. The steady state value183

which is asymptotically approached as the epidemic reaches steady state.184

2.5. Control185

The capacity of countries to properly address the risk that COVID-19186

poses is varied; with less than half being fully positioned to prevent, detect,187

and respond appropriately29. The World Health Organisation identifies as a188

key strategic objective within the current global pandemic, the need to reduce189

human-to-human transmission of the virus2. Further, the WHO recommends190

combinations of public health measures which would jointly work to achieve191

this such as rapid identification of infections, contact tracing, infection pre-192

vention and control at healthcare facilities, additional health measures for193

traveling to name a few2.194

A feasibility study of contact tracking and tracing in the UK was established195

using the known basic reproductive number, various initial conditions and196

various successful traces6. The results were that a prolific disease with a high197

R0 required a large percent of traces to be found6.198

199
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Of note is that the basic reproductive number depends on the conditions200

under which it is measured; it has been proven that various interventions201

bring down the basic reproductive number and these would make the fea-202

sibility of tracking and tracing more attractive. In addition, tracking and203

tracing is known to reduce the basic reproductive number further (see Sin-204

gapore and Taiwan).205

These results are well known in non-linear feedback system theory; interven-206

tions taken all contribute to make the control of the disease easier since they207

change the system parameters30. In a very real sense, COVID-19 under inter-208

vention is not the same (from a systems perspective) as COVID-19 without209

intervention; they each have their own dynamics and this makes control of210

one fundamentally easier than the other.211

In terms of the proposed latent dynamics model, the effect of various control212

policies are depicted in Figure 3. This Figure clearly demonstrates the value213

of the proposed methodology; one may holistically view the epidemic and214

various policy actions in a single framework and be able to anticipate the215

consequences.216

Figure 3: The Effects of Various Interventions on the Model

217

2.6. NPIs and the OxCGRT Stringency Index218

The OxCGRT has developed a valuable database for comparing countries219

response strategies.31 The database contains the following levels of control220

(coded using ordinal numbers) and timing for 139 countries:221

10
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1. S1 - School closure222

2. S2 - Workplace closure223

3. S3 - Cancel public events224

4. S4 - Close public transport225

5. S5 - Public information campaign226

6. S6 - Domestic travel bans227

7. S7 - International travel bans228

Also included in this data set is a Stringency Index, p in our notation,229

which provides a single number that captures the overall level of interven-230

tion implied by combinations of the ordinal numbers S1-S7. The Oxford231

stringency index is calculated using a weighted average of the above seven232

non-pharmaceutical interventions32.233

234

These interventions were rolled-out at different times for different levels235

depending on the number of days since the first reported case.236

Figure 4: Timing and Severity of NPIs in the set of representative countries and US

Recovery rate237

The kernel in (3) is effectively stating that the daily recovery rate is constant,238

in the absence of improved clinical treatment regimes or viral physiology239

(the virus has not sufficiently mutated so that its resolution time has been240

substantially altered within the population under consideration). Since the241

control measures considered, p are all non-pharmaceutical, the recovery rate242
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dynamics are dictated by γ(t) = γ0 = const., whatever the value of p. This is243

true provided that the health care system has not been overwhelmed; which244

is the purpose of the control system.245

In the absence of data on the population dynamics during withdrawal of246

some NPI’s, our model is conservative and uses the same typical adjustment247

rate for the withdrawal of NPI’s as for the addition of NPIs.248

3. Results249

The research output, using the foregoing methodology are shown in Ta-250

ble 2 for various countries and in Table 3 for various States of the US. Results251

are expressed in terms of γ0, d0, β0, b−1
r , pmax and αs in Table 2. Table 3252

does not display γ0, as the data for the number of recoveries has not been253

reported since late March.254

The first salient feature of Tables 2 and 3 is that the evolution of the255

pandemic in different countries share strong similarities. Some variations are256

observed in the parameters γ0, d0, β0, where b−1
r is subjected to features of257

the data most likely to specifics in the reporting.258

The most important result from Tables 2 and 3 revolves around the obser-259

vation that the bulk of countries and US States display values of αs ≈ 0.01.260

It is remarkable that this occurs whilst other parameters are measured to261

have a great variety, especially β0. This striking result also speaks to the262

universal character of the stringency index used here to quantify NPIs. This263

observation will be reinforced by results reported in Section 4.3, where the264

rate of spread does not seem to depend on socio-economic factors but rather265

on the fraction of the population in large cities.266

The results of αs display some deviations from the average value, espe-267

cially in some States of the US. Section 4.4 will touch upon an analysis of268

these outliers and how these appear to be related to population sparsity.269

4. Discussion270

4.1. Predictive capabilities of the model271

The primary intent of this paper is to provide a framework with which272

to issue country-specific predictions for the temporal evolution of the spread273

and other outcomes in the post-lockdown period (for a variety of control274

policies). A few weeks of containment measures have yielded valuable data275

across the World to understand the observable dynamics, where the latent276
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Country γ0 d0 β0 b−1
r [days] pmax αs

Austria 0.045 0.00342 0.26 7.15 95 0.010
Belgium 0.019 0.00070 0.24 19.12 86 0.012
Brazil 0.034 0.01670 0.39 2.97 76 0.009
Canada 0.026 0.00333 0.31 13.53 86 0.010
Chile 0.036 0.00150 0.30 5.74 81 0.009
Ecuador 0.006 0.00004 0.42 2.89 100 0.009
Egypt 0.027 0.00058 0.15 9.18 100 0.005
France 0.019 0.00012 0.33 0.07 95 0.011
Germany 0.042 0.00258 0.28 10.50 86 0.011
Ireland 0.015 0.00372 0.34 23.46 86 0.012
Israel 0.018 0.00003 0.27 8.89 100 0.009
Italy 0.020 0.00107 0.24 10.26 95 0.010
Morocco 0.011 0.0021 0.25 16.58 86 0.010
Netherlands 0.001 0.00050 0.22 16.21 86 0.012
Peru 0.051 0.00163 0.33 1.49 86 0.007
Portugal 0.002 0.00045 0.31 8.28 100 0.009
South Africa 0.018 0.00050 0.28 2.19 100 0.008
South Korea 0.032 0.00031 0.07 16.24 81 0.012
Spain 0.037 0.00006 0.34 11.96 95 0.010
Sweden 0.003 0.00002 0.12 38.09 52 0.019
Switzerland 0.036 0.00045 0.46 8.12 81 0.012
Turkey 0.012 0.00047 0.64 14.41 95 0.011
UK 0.001 0.00027 0.23 14.37 71 0.013

Table 2: Results for various representative countries around the World. Results are given
in terms of γ0, d0, β0, b−1

r , pmax and αs (see text). Parameters have been obtained with
data up until April 26 2020.

dynamics are significantly less understood. The framework proposed here277

allows for the modeller to factorise latent and observable dynamics, with the278

intent to address the evolution of the latter without major hindrance from279

limited knowledge of the former. In this setup the temporal evolution of280

observable dynamics are weakly coupled to that that of the latent dynamics281

through the term φIL (see Figure 1). In practice, the presence of this term282

implies that the total population of observed infections will be bound by283

the parameter φ, which can be viewed as the fraction of true infections that284
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Figure 5: Implications of the model on observed transmission rate and stringency index
for representative countries.

become symptomatic enough to warrant testing and, therefore, become clas-285

sified as an observed infection upon a positive result. Provided that γ ≤ γL286

the maximum number of observed infections will be limited to φN .287

The temporal evolution will depend on the initial parameters relevant288

to the spread and the parameters that are chosen to depend on time. For289

illustration purposes, we chose to freeze d to the last values measured, or d0,290

as reported in Tables 2 and 3.291

From Eqs. 1 and 2 one gets for the post-lockdown period:292

β(t, p) = βf − (1 + e−brt)β0αs∆p, (5)

where t = 0 corresponds to the end of the lockdown period and the enacting293

of new interventions, such that p < pmax. The implementation of new less294

restrictive measures will yield ∆p = p − pmax < 0, where β(t, p) > βf . It is295

reasonable to infer that the typical adjustment time leading to the asymptotic296

value of βf may also apply here.297

For illustration purposes, we choose the configuration of parameters ob-298

tained with Italian data, where φ = 0.1 is used (see Section 2.2. The scenario299
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Figure 6: Effect of NPIs on the transmission rate parameter in the set of representative
countries (ordered by βf )

considered here assumes that variations of the index occur after the last avail-300

able data with ∆p = −10,−30. Figure 9 the time dependence of the num-301

ber of symptomatic population, the active cases and the cumulative number302

of cases and fatalities. One can appreciate that going from ∆p = −10 to303

∆p = −30 has serious consequences in terms of the time it takes to achieve304

the peak in active case as well as the amplitude of the peak. This is further305

illustrated in Figure 10, where the number of active cases and daily fatalities306

are shown as a function of time for different ∆p ranging from -10 to -50.307

One can appreciate the swift change in the in the dynamics when going form308

∆p = −10 to ∆p = −20, where the time required for the peak to occur would309

go from over six months to about four and where the amplitude of the peak310

would increase by a factor of two.311

Two main sources of uncertainty are considered here. The leading source312

stems from the variation of the parameter αs. The statistical error of αs313

are of order of few % depending on the country. Here a more conservative314

approach is adopted. The country-to-country variation, which is of order of315

10%, as discussed in Section 4.5, is considered to be a more realistic estimate316

of the potential deviation from the linear behavior assumed in Eq. (2). A317
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Figure 7: Effect of NPIs on the transmission rate parameter in the US (ordered by βf )

sub-leading source of uncertainty is related to the uncertainty in the deter-318

mination of γ0, the daily recovery rate. This second source is much smaller319

in the Italian case compared to that assumed for αs. Graphs in Figure 9320

display the bands that incorporate the uncertainties described here.321

Results shown in Figures 9 and 10 speak to the importance of a phased322

approach during the post-lockdown period. Swiftly releasing containment323

measures would lead to the resurgence of very large peaks of symptomatic324

infections within a month or two, leading to even worse outcomes compared325

to those observed so far.326

4.2. Inequality for Sub-critical Behavior of the System327

It will be argued that one of strategies for the post-lockdown period is328

to increase αs as p decreases in order to sustain quasi-linear behavior in the329

time evolution of the number of active cases, as seen in Figures 9 and 10330

for ∆p = −10. In practice, all relevant parameters that enter the temporal331

evolution described above need to be tuned such that the expected peak of332

the number of cases and ICU usage falls below the thresholds characteristic333

to each country. One can denote a vector of critical parameters for which a334
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Country d0 β0 b−1
r [days] pmax αs

Alabama 0.00074 0.40 9.01 90 0.011
Arizona 0.00009 0.34 5.88 62 0.014
California 0.00093 0.23 10.56 90 0.010
Colorado 0.00011 0.30 1.41 90 0.011
Connecticut 0.00057 0.54 12.19 76 0.013
Georgia 0.00015 0.35 15.53 76 0.013
Illinois 0.00036 0.39 9.20 90 0.010
Indiana 0.00127 0.33 5.99 90 0.010
Louisiana 0.00044 0.63 5.59 90 0.011
Maryland 0.00282 0.34 10.66 90 0.010
Massachusetts 0.00251 0.25 8.98 76 0.011
Michigan 0.00102 0.97 8.11 90 0.011
Missouri 0.00003 0.58 3.45 76 0.012
Nebraska 0.00079 0.23 3.12 62 0.013
New Jersey 0.00002 0.50 8.20 90 0.011
New York 0.00006 0.45 10.71 90 0.011
North Carolina 0.00131 0.39 9.49 90 0.010
North Dakota 0.00022 0.44 10.04 48 0.018
Ohio 0.00066 0.48 15.91 90 0.011
Oklahoma 0.00025 0.44 4.75 76 0.012
Pennsylvania 0.00005 0.38 6.81 90 0.010
Texas 0.00009 0.35 8.17 76 0.012
Utah 0.00049 0.46 4.86 62 0.015
Virginia 0.00135 0.34 5.38 76 0.011
Washington 0.00035 0.19 5.50 90 0.010

Table 3: Same as Table 2 for various States of the United States.

country’s healthcare system is not overwhelmed:335

~vc(t) = (γc, dc, βc, α
c
s). (6)

One can assume that γc and dc display a weak time dependence in that336

they primarily depend on medical advances, rather than on policy interven-337

tions. In this setup the condition for the system to remain sub-critical can338

17

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20085316doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20085316


Figure 8: Implications of the model on observed transmission rate and stringency index
for selected states in the US.

be expressed as follows:339

∂αs
∂t

∣∣∣∣
c

≥ − ∂p

∂t

∣∣∣∣
c

, (7)

where the temporal partial derivatives are evaluated at the point of critical-340

ity defined by ~vc(t). The inequality 7, while seemingly straightforward from341

the mathematical standpoint, it has serious consequences for policy makers.342

While lockdown measures have been successful in bringing the reproductive343

factor down to one and below, it is evident that these are having devastating344

effects on the economic landscape. In African countries, lockdown measures345

necessary to control the epidemic are leading to widespread malnutrition in346

vast sections of the population. On the other hand, the illustrative exam-347

ple shown in Section 4.1, indicates that for fixed αs, reducing p significantly348

would lead to the advent of an epidemic of unprecedented proportions. Un-349

der these conditions, the inequality 7 speaks to the need to ensure that the350

rate with which αs grows should outpace that of easing non-pharmaceutical351

interventions. Governments, policy makers and society as a whole need to352

embark in a titanic effort to increase αs by all means. Strict adherence to353

social distancing and other advisories is paramount for this endeavor to suc-354
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Figure 9: Post-lockdown scenarios for Italy for p = 85 (upper plot), p = 65 (lower plot).
Results are given using φ = 0.1 of the susceptible population population, or vulnerable
population, active cases and the cumulative distribution of total cases and fatalities. The
bands correspond to the uncertainties in the model (see text).

ceed. Careful monitoring will also pivotal as ever during the post-lockdown355

phase. Particular attention needs to be given to the temporal evolution of356

αs.357

4.3. Correlation with Macroscopic Indexes358

The phases of the spread and its parameters bear strong similarities in a359

wide range of countries considered here. However, non-trivial differences in360

terms of parameters can be observed when scrutinising country by country361

variations. It is relevant to correlate variances with respect to macroscopic362
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Figure 10: Number of active cases and new fatalities as a function for time for Italy
by assuming different values of ∆p ranging from -10 to -50. Results are computed with
φ = 0.1.

indexes. For this purpose the number positive cases is analysed as a function363

of time using the parametric expression:364

I(t) =
Itot

1 + e−ξI(t−C)
, (8)

where Itot denotes the total expected number of positive cases for t → ∞,365

ξI is the slope of the exponential growth that characterises the first phase366

of the spread, and C can be interpreted as a measure of the time needed to367

deviate from the initial exponential growth leading to containment. Time is368

expressed in number of days. A total number of 67 countries are selected,369
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where containment measures have proven effective in curbing the spread.370

These include countries in all continents and with a wide span in terms of371

socio-economic development, inequality and population density.372

Macroscopic indicators are organised according to relevant themes: socio-373

economic vulnerabilities, demographics, social expenditures and aggregate374

economic indicators. A total of 34 indicators from the World Bank data base375

are selected and are correlated with the parameter ξI from each country.376

The Gini index quantifies the extent to which the distribution of income377

among individuals or households deviates from perfect equality. The selected378

sample of countries displays a minimum and a maximum Gini index of 24379

and 50, respectively. It is found that the parameter ξI is almost insensitive to380

the Gini index. This is illustrated in Figure 11 where the red line correspond381

to a first order polynomial that is consistent with zero slope. In order to382

exclude statistical fluctuations in the sample a similar study is performed383

using the percentage share of income held by the lowest 10% and 20% of the384

income bracket. No significant correlation is found for either of the indexes.385

This indicates that social inequality is not strongly correlated with the rate386

of spread of the virus.387
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Figure 11: Correlation of ξI (see text) with the Gini index (left) and the population
in urban agglomerations of more than one million to the country’s population living in
metropolitan areas (right). The red lines correspond to first order polynomials that illus-
trate the degree of correlation.

This observation is further strengthened by evaluating the correlation388

with the proportion of the urban population living in slum households. Ac-389

cording to the World Bank, a slum household is defined as a group of in-390

dividuals living under the same roof lacking one or more of the following391

conditions: access to improved water, access to improved sanitation, suffi-392
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cient living area, and durability of housing. Out of the 67 countries under393

scrutiny, 18 report a significant fraction of urban population living in slums.394

In this sample of countries the fraction ranges from 8% to 53%. No signifi-395

cant correlation is found between this index and ξI . In addition, the average396

value of ξI for these 18 countries is compatible with that of the rest of the397

ensemble studied.398

As per the physical picture underlying the model used to describe the399

spread, it is expected that population density should play a significant role.400

No significant correlation is found with the average population density. This401

can be explained by the fact that the average population density is not neces-402

sarily a good metric for population density in urban areas, where the spread403

is most likely to occur. It should be noted that the correlation with the frac-404

tion of the population in urban areas is not statistically significant. In order405

to scrutinise the relevance of localised population density, the index made406

of the population in urban agglomerations of more than one million to the407

country’s population living in metropolitan areas in percentiles is used, as408

illustrated in Figure 11. It is found that the correlation can be parametrised409

with a first order polynomial with a slope of (1 ± 0.3) · 10−3 per day. The410

significance of the correlation greater than a 3σ Confidence Level. This the411

most significant correlation out of all the indexes considered here.412

4.4. Insights from Outliers413

It is appropriate to comment on some of outliers identified in the estima-414

tion of αs in the US. This refers to North Dakota and to a less extent Utah,415

where pmax = 48, 62, respectively, are among the lowest in the US. For North416

Dakota αs = 0.018 and it is the highest in the country. As indicated in Sec-417

tion 4.3, the slope of the exponential growth is sensitive to the fraction of the418

population living in large cities. None of the above mentioned States have419

cities with population greater than one million residents. Therefore, these420

States have been able to keep the rate of growth of positive cases at low421

enough levels without the implementation of more stringent interventions.422

This is in contrast to other States where significant portions of their popu-423

lation reside in large cities. In these cases αs is consistent with the World424

average from Table 2. A similar picture emerges in South Africa, where two425

thirds of positive cases are concentrated in the Western Cape and Gauteng426

Provinces, which host the largest and most densely populated cities in the427

country.428
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Some countries, such as Switzerland and most prominently Sweden, have429

achieved containment without the application of stringent lockdown mea-430

sures. In these countries citizens are allowed to go out for walks while re-431

specting social distancing. The value of αs for Sweden is particularly high.432

Similar reasoning used for the above mentioned US States can be applied433

here, in that this country lacks large urban agglomerations. It can also be434

argued that the level of social awareness and observance of social distanc-435

ing in these countries may play a significant role in the management of the436

epidemic. It need not be ignored that the prolonged spread of the virus dur-437

ing the early stages of the pandemic in Italy and Spain were driven by lack438

homogeneity in the adherence to advisories. This prompted governments to439

introduce severe restrictions to movement, where law enforcement agencies440

became heavily involved in ensuring compliance. This speaks to the impor-441

tance of awareness and compliance to increase αs and with which to reduce442

the severity of interventions (see Section 4.2).443

One is tempted to speculate about the possibility of non-linear behavior444

in Eq. 2, where could data would favor αs to increase as p decreases. This445

would be good news in terms of the effort required to manage the pandemic in446

that the effectiveness of containment measures could increase as p decreases.447

This argumentation is hindered by the fact that the lapse of time between448

changes in the observed non-pharmaceutical interventions was not significant.449

Measuring the effect of each individual intervention is therefore difficult. As450

a result of swift action by Governments, we observe the effect of an ensemble451

of more or less stringent measures, as opposed to their sequential application.452

To this end, we lack the evidence that would support the above mentioned453

non-linear behavior. As pointed out in Section 4.2, it is paramount to closely454

monitor the evolution of αs as NPIs are released.455

4.5. Semi-Empirical Analysis of αs456

It is remarkable that αs has such a stable value across locales and over457

these different scales; from states in the US to entire countries αs ≈ 0.01.458

As proof of this assertion, Figure 12 is a depiction of the histogram of αs459

values found during our study. There are 2 outliers in the right tail of the460

plot which have been removed for the remainder of the analysis.461

Using N = 46 locales and Jeffrey’s prior probability13 for the ensemble462

variance of αs, the posterior probability for the ensemble variance, v = σ2
αs

,463
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Figure 12: Ensemble of measurements of αs from Tables 2 and 3.

is given by:464

Pr (v|αs[1], αs[2], ..., αs[N ]) =
v−N/2−1e−

Q
v

Z
, (9)

where465

Q =
N∑
i=1

(αs[i]− µ̂αs)
2

2
, (10)

µ̂αs is the empirical mean and Z is a normalisation constant. Equation (9)466

is an inverse gamma distribution and it may be used to calculate the range467

of probable ensemble variances of αs across the world, given the sample of468

locales used in this study.469

The results are that the standard deviation of the ensemble σαs is 0.0017470

(95% CI 0.0014 - 0.0021).471

472

Hence, across 46 countries and states of a wide variety, the sensitivity473

of these locales to control of the epidemic through NPIs is remarkably well474

captured by:475

αs = 0.01± 0.0017, (11)
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and, therefore, almost all locales will (in the limit as p → 100) eventually476

extinguish the epidemic under tight enough control. The outliers which were477

removed from the analysis show an even greater sensitivity and our models478

predict that these locales are more easily controlled with softer NPIs.479

4.6. Recommendations480

There is large existing body of theory on control which may be brought481

to bare on the present pandemic situation30,33. The control engineering lit-482

erature includes methods to balance the economic effects of various public483

health initiatives with their likely effect on the epidemic under control and fa-484

cilitate decision making which is optimal, in a well established mathematical485

framework30. In addition, there are known timing constraints on the rate of486

control required to keep the epidemic from running away34. A metric known487

as the ’stability margin’ is calculable from the known timing constraints and488

it has implications for how much one can expect to reduce the transmission489

characteristics when random events disturb the control loop34. This calcu-490

lation and its implications are recommended for another paper to follow the491

present one.492

While lockdown measures have been successful in curbing the spread, our493

study indicates that removing them too swiftly will result in the resurgence494

of the spread within one to two months. Reducing the stringency index by495

10 will delay reaching the apex by about 6 months, where reducing it by496

20 will delay by only four. The amplitude of the apex increases by about a497

factor of two by moving from ∆p = −10 to ∆p = −20. This indicates that498

post-lockdown measures should be staged and the reduction of the stringency499

index should be slow.500

Assuming constant γ and d it is essential to increase αs. For the system501

to remain sub-critical, the rate with which αs increases should outpace that502

of the decrease of the stringency index. Monitoring of αs becomes essential503

to controlling the post-lockdown phase.504
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Appendix A. Stringency Index for United States of America511

For each policy response measure S1-S7, OxCGRT use the ordinal value512

(and add one if the policy is general rather than targeted). This creates a513

score between 0 and 2 and for S5, and 0 and 3 for the other six responses31.514

515

The OxCGRT stringency index is given by:516

p =
1

7

7∑
J=1

pJ , (A.1)

where pJ is defined by:517

pJ =
SJ +GJ

NJ + 1
, (A.2)

with GJ = 1 if the effect is general (and 0 otherwise), and NJ is the cardinal-518

ity of the intervention measure31,32. In the case where there is no requirement519

of general vs. targeted (S7), the +1 in the denominator and the GJ in the520

numerator are omitted from the equation to form:521

p7 =
S7

N7

, (A.3)

The OxCGRT database contains data for 133 countries however it does522

not contain specific data for US states. It is important to be able to compare523

the US states non-pharmaceutical interventions (NPIs) with those of other524

countries around the World in a unified framework.525

526

To this end, we coded the known levels of intervention in America to527

match as nearly as possible, the OxCGRT system. We used the Institute528

for Health Metrics and Evaluation (IHME) dashboard to obtain six dates at529

which specific states imposed different NPIs35.530

531

In order to compare the US intervention data it was necessary to make532

a stringency index for the US states that mimics that of the index that was533

made for the World data by OxCGRT.534

535

The following decisions were made during the process of mapping the re-536

ported US NPIs to the OxCGRT index:537

26

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20085316doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20085316


Label NPI
U1: Stay at Home Order
U2: Educational Facilities Closed
U3: Non-essential Services Closed
U4: Travel Severely Limited
U5: Initial Workplace Closure
U6: Banned Mass Gatherings

Table A.4: Table Showing US Interventions Acquired from the IHME.

• The US Mass Gatherings Banned U5 can be mapped directly to the538

Oxford Cancel Public Events S3.539

• The US Initial Business Closure U6 can be mapped to the Oxford540

Work Place Closure S2541

• The US Travel Severely Limited U4 can be mapped to the Oxford Do-542

mestic Travel Bans S6 and International Travel Bans S7 combined.543

Label Interventions Not Directly Interchangeable
US NPIs:
U1: Stay at Home Order
U3: Non-essential Services Closed

OxCGRT NPIs:
S4: Close Public Transport
S5: Public Information Campaign

Table A.5: Table Showing Unmapped NPIs.

Although some of the above US interventions were not directly compa-544

rable to the OxCGRT indicators, their individual impact on the stringency545

index is still valid and should be included in the index. By including U1 and546

U3 with the appropriate weight into the same calculation OxCGRT used for547

their index, an equivalent US index is created. The following equation was548

developed:549

p =
1

7
(1(v1) + 1(v2) + 1(v3) + 2(v4) + 1(v5) + 1(v6)), (A.4)
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where vi is a number out of 100 indicating the extent each of the inter-550

ventions are imposed.551

552

Due to lack of data on the Travel Severely Limited intervention in the553

IHME database. It was necessary to source US travel restrictions information554

from other US news sources. There have been a number of travel interven-555

tions that have been implemented however there have not been widespread556

travel bans between states.36 The first significant travel restriction was a557

US-Europe travel ban to 26 European countries, which was announced on558

11 March 2020.37 On 19 March 2020 the US issued a level 4 ”Do not travel”559

advisory which is the highest travel restriction in the US. US citizens were560

informed that they can travel back to the US if they were out of the country561

when the ban was announced but if they do not do so timely they might find562

themselves having to stay abroad for an extended period of time. Foreign563

nationals who have been to the 26 EU countries or the UK, China, Iran or564

Ireland are not allowed entrance to the US.38 In terms of the interstate travel565

restrictions. There have been no full travel bans but in some states you are566

required to quarantine for 14 days after arrival.36 Therefore, it was necessary567

to introduce a leveled implementation of the U4 Travel Severely Restricted568

measure. Using the same logic used by the Oxford COVID-19 Government569

Response Tracker (OxCGRT) the following equation for vi was introduced:570

vi = 100
Ui
Ni

, (A.5)

where Ui is ordinal and can vary from 0 to the cardinality of the inter-571

vention measure, Ni. This is for the purpose of incorporating levels of imple-572

mentation of specific interventions into the stringency calculation. Based on573

the data the only intervention that requires levels of implementation is the574

U4 intervention.575

576

The following ordinal levels were employed for U4:577

0. No travel restrictions (US before the 11 March 2020)578

579

1. US preliminary travel ban to 26 EU Countries (Commenced 11 March580

2020)581

582

2. Level 4 “Do not travel” advisory issued (19 March 2020)583

584
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3. Interstate Travel bans (No interstate travel bans are currently imposed)585

The specification for comparable p among countries within the OxCGRT586

database and the United States of America is completed with the above587

definitions.588

Appendix B. Model Details589

An explanation of the model is warranted. It has a causal structure and590

may be clinically interpreted as well, both of which are desirable properties591

for a model which needs to be controlled39. The causal structure gives insight592

into what to control and the clinical interpretation gives insights into how.593

594

Susceptible individuals, S : These are the unexposed and suscepti-595

ble individuals within the population and include healthcare workers as well596

general members of the public.597

598

Observed infections, I : These infections represent patients who have599

tested positive for COVID-19 and are actively reported on11. Any contacts of600

these patients who subsequently test positive, any nosocomial infections due601

to these patients (for example, healthcare workers who contract the disease)602

or any other individuals who knowingly interact with COVID-19 positive603

patients are modeled by β, the transmission rate of COVID-19 amongst ob-604

served infections. Well prepared countries with strict healthcare protocols for605

known positive patients, for example quarantining, effective use of personal606

protective equipment for healthcare providers, and physically separate care607

pathways for positive patients all essentially work to ensure that β is kept as608

small as possible.609

Asymtpomatic also transmissable Some of these observed infections, I are610

due to some mild or asymptomatic cases which become severe enough to611

warrant testing or cause patients to seek medical attention. These cases are612

modeled by φIL, where φ is dependent on the probability that a latent in-613

fection IL becomes a known positive case, I. Latent infections are addressed614

next.615

616

Latent infections, IL : There is evidence of a non-trivial fraction of617

cases going undetected as a result of presenting with mild symptoms or be-618

ing asymptomatic40–42. This is the reason for including the latent variable619
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dynamics within our modification of the standard SIRD model.620

Table 1 in the main text has good estimates of asymptomatic cases; together621

with the patients who have subclinical manifestations of Covid-19, these cases622

are all included in the latent infection group, IL.623

It is the susceptible group’s interaction with these asymptomatic and mild624

cases which produce new latent infections and this is modeled through βL,625

the non-negligible latent transmission rate.626

627

Latent recoveries, RL : A majority of these asymptomatic and mild628

symptom patients resolve the virus using their natural immunity without ever629

being tested. Early reports indicate that this may be a substantial number of630

latent infections17,19. These cases eventually form part of the latent recovered631

group, RL. The rate of recovery of the latent infected group is captured by γL.632

633

Latent infections dying, δLIL : These counts are considered weakly ob-634

servable and rare. The weak observability is present with the revised, erratic635

death counts by some officials when home visits uncover additional cases11.636

It is unclear that these may be directly attributable to the virus in that con-637

firmation would be required via post-mortem COVID-19 testing? . Given638

the existing testing burden posed on most countries, this sort of testing is639

rare and, therefore, the uncertainty in this parameter will remain high19.640

641

Known recoveries, R : These are patients who are known to test pos-642

itive for COVID-19 and are known to have recovered fully from the virus.643

The recovery rate, γ, models how quickly known infections are resolved and644

discharged out of the healthcare system. This rate is physically dependent645

on treatment regime and the patient’s own physical condition.646

647

Deceased patients, D : The number of deceased individuals is denoted648

by D; and it is mostly affected by the known individuals who have tested649

positive and are currently being treated in the prevailing healthcare system.650

The implications for the model are that δ � δL i.e. under normal treatment651

and monitoring situations, the implied probability of fatality for a known652

infection is much larger than the implied probability of fatality for a latent653

infection.654

Under the above conditions, the model explicitly caters explicitly for the655

situation that the latent infections are asymptomatic or mild.656

It is trivial to show that S + I + IL +RL +R +D = N at every instant657
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in time. Furthermore, the model in Figure 1 implies that:658

dS

dt
= −βL

S IL
N

, (B.1)

dIL
dt

= βL
S IL
N
− φ IL − γL IL, (B.2)

dI

dt
= φIL − δ I − γ I, (B.3)

dR

dt
= γ I, (B.4)

dD

dt
= δ I. (B.5)

Appendix B.1. Linearisation659

Each of the equations in (B.1) - (B.5) were linearised using the approx-660

imation that S = N − ε, which gives equivalent results to the Jacobian661

method28. This operating point corresponds to the case where the epidemic662

is still in the early/controllable phase and the number of infected individuals663

is small compared with the size of the total population N .664

The derivatives with respect to time were approximated using first order665

backward difference approximations at a daily level. Classical frequentist er-666

ror propagation was applied to this linear approximation using the Gaussian667

process assumption.668

Theoretically, these approximations are valid provided that:669

1. the number of infected are a small fraction of the susceptible popula-670

tion.671

672

2. the dynamics of the disease process are slow compared with a single673

day. This is justified by the work from Weiss and Murdoch 42 .674

675

The final form, used for analysis of the time variation of the parameters676

as various forms of control are applied is:677

γ(t) =
∆R

I[t− 1]
± σγ(t), (B.6)
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δ(t) =
∆D

I[t− 1]
± σδ(t), (B.7)

β(t) =
∆R + ∆D + ∆I

I[t− 1]
± σβ(t), (B.8)

where σx(t) is the noise estimate at day t, ∆x := x[t]− x[t− 1] and x is678

either R, D or I.679

Appendix B.2. Error propagation680

Using the coefficient of variation and propagating the error in the linear681

approximation, assuming that the errors in the daily counts are within 10%43,682

the probable noise levels in the daily time variations are calculated by:683

σγ(t) = γ(t)

√
1

∆R
+

1

I[t− 1]
, (B.9)

σβ(t) = β(t)

√
1

∆R + ∆I + ∆D
+

1

I[t− 1]
, (B.10)

and684

σδ(t) = δ(t)

√
1

∆D
+

1

I[t− 1]
. (B.11)

These results depend on the count data being Poisson processes and the fact685

that the coefficient of variation of a Poisson process is λ−1/2. Recall that the686

general coefficient of variation of a division of two random variables is the687

quadrature sum of the numerator and denominator coefficients of variation;688

the results follow43.689

Appendix C. Details of Linearisation690

If dt is taken as one day, t is the day index and ∆x = x[t]−x[t− 1], then691

with the modeling assumptions the differential equations simplify to:692

∆S = −βL IL[t− 1], (C.1)

∆IL = (βL − γL − φ) IL[t− 1], (C.2)
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∆I = φ IL[t− 1]− γ I[t− 1]− δ I[t− 1], (C.3)

∆R = γ I[t− 1], (C.4)

∆D = δ I[t− 1]. (C.5)

Use of (C.4) and (C.5) yield the daily estimates of the observable recov-693

ery rate, γ and fatality rate δ. Combining (C.4), (C.5) and (C.3) give the694

daily estimate of the transmission rate, as observed through the detection695

efficiency.696

Appendix C.1. Control Dynamics697

Efforts to control the pandemic do not happen everywhere, all at once and698

this is the reason that the control efforts can be said to be dynamic. Indeed,699

the form of the kernel functions in equations (1) - (4) state this implicitly.700

Each of the observed parameters will be looked at it in this section and their701

dynamics described. These forms have non-trivial implications for control of702

the pandemic and will be expounded upon in a follow up paper.703

Transmission rate704

The beta kernel in (1) and the steady state behaviour modeled by (2) imply705

that the transmission dynamics, under stringency of control p, behave as a706

first order control system28:707

br
dβ

dt
= β0 − β(t)− β0αsp, (C.6)

where br is the typical adjustment time for a control measure to take full708

effect, αs is the societal sensitivity (estimated for each country in our work)709

to control measures p ∈ [0, 100], and β0 is the uncontrolled transmission rate710

within a society.711

As a sense check; when p = 0 then the equilibrium condition of (C.6) is found712

by solving (C.6) with β(t) = βf = const. The non-trivial solution is βf = β0713

and shows that, without control, the transmission rate becomes β0. This is714

defined as the uncontrolled transmission rate and is as it should be.715

If p 6= 0, then the equilibrium condition is βf = β0 − β0αsp which is exactly716

equation (2). The general analytic solution to (C.6) is precisely the kernel717

function in (1).718

719
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It is this form which allows for the use of classic and modern control720

methods to shape β(t) to a form that is acceptable for the desired goals of721

the pandemic control system eg. minimise total deaths, minimise the peak722

load on the health care system, maximise the economic activity etc. These723

aspects will be dealt with in detail in a follow up paper.724
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G. Masson, I. Jonsdottir, A. D. Möller, T. Gudnason, K. G. Kristins-811

son, U. Thorsteinsdottir, K. Stefansson, Spread of SARS-CoV-2 in the812

icelandic population, New England Journal of Medicine (2020).813

[18] Cdc guidance for certifying covid-19 deaths, online814

https://www.cdc.gov/nchs/data/nvss/coronavirus/Alert-1-Guidance-815

for-Certifying-COVID-19-Deaths.pdf, accessed 27 April, 2020.816

[19] New york releases antibody testing data: 14% of817

population may be infected with coronavirus, online818

https://eu.usatoday.com/story/news/nation/2020/04/23/coronavirus-819

new-york-millions-residents-may-have-been-infected-antibody-820

test/3012920001/, accessed 27 April, 2020.821

36

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20085316doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20085316


[20] T. Lancet, COVID-19: protecting health-care workers, The Lancet 395822

(2020) 922.823

[21] S.-Y. Wong, R.-S. Kwong, T. Wu, J. Chan, M. Chu, S. Lee, H. Wong,824

D. Lung, Risk of nosocomial transmission of coronavirus disease 2019:825

an experience in a general ward setting in hong kong, Journal of Hospital826

Infection (2020).827

[22] Y. Shi, Y. Wang, C. Shao, J. Huang, J. Gan, X. Huang, E. Bucci, M. Pi-828

acentini, G. Ippolito, G. Melino, COVID-19 infection: the perspectives829

on immune responses, Cell Death & Differentiation 27 (2020) 1451–1454.830

[23] Y. Liu, L.-M. Yan, L. Wan, T.-X. Xiang, A. Le, J.-M. Liu, M. Peiris,831

L. L. M. Poon, W. Zhang, Viral dynamics in mild and severe cases of832

COVID-19, The Lancet Infectious Diseases (2020).833

[24] M. Day, Covid-19: identifying and isolating asymptomatic people helped834

eliminate virus in italian village, BMJ (2020) m1165.835

[25] H. Nishiura, T. Kobayashi, A. Suzuki, S.-M. Jung, K. Hayashi, R. Ki-836

noshita, Y. Yang, B. Yuan, A. R. Akhmetzhanov, N. M. Linton,837

T. Miyama, Estimation of the asymptomatic ratio of novel coronavirus838

infections (COVID-19), International Journal of Infectious Diseases839

(2020).840

[26] A. Kimball, K. M. Hatfield, M. Arons, A. James, J. Taylor, K. Spicer,841

A. C. Bardossy, L. P. Oakley, S. Tanwar, Z. Chisty, J. M. Bell, M. Meth-842

ner, J. Harney, J. R. Jacobs, C. M. Carlson, H. P. McLaughlin, N. Stone,843

S. Clark, C. Brostrom-Smith, L. C. Page, M. Kay, J. Lewis, D. Russell,844

B. Hiatt, J. Gant, J. S. Duchin, T. A. Clark, M. A. Honein, S. C.845

Reddy, J. A. Jernigan, A. Baer, L. M. Barnard, E. Benoliel, M. S. Fa-846

galde, J. Ferro, H. G. Smith, E. Gonzales, N. Hatley, G. Hatt, M. Hope,847

M. Huntington-Frazier, V. Kawakami, J. L. Lenahan, M. D. Lukoff,848

E. B. Maier, S. McKeirnan, P. Montgomery, J. L. Morgan, L. A. Mum-849

mert, S. Pogosjans, F. X. Riedo, L. Schwarcz, D. Smith, S. Stearns, K. J.850

Sykes, H. Whitney, H. Ali, M. Banks, A. Balajee, E. J. Chow, B. Cooper,851

D. W. Currie, J. Dyal, J. Healy, M. Hughes, T. M. McMichael, L. Nolen,852

C. Olson, A. K. Rao, K. Schmit, N. G. Schwartz, F. Tobolowsky, R. Za-853

cks, S. Zane, , , and, Asymptomatic and presymptomatic SARS-CoV-2854

infections in residents of a long-term care skilled nursing facility — king855

37

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 5, 2020. ; https://doi.org/10.1101/2020.04.30.20085316doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.30.20085316


county, washington, march 2020, MMWR. Morbidity and Mortality856

Weekly Report 69 (2020) 377–381.857
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