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Abstract 

There are currently no disease modifying treatments for Alzheimer’s Disease (AD). 

Epidemiological studies have highlighted blood metabolites as potential biomarkers, 

but possible confounding and reverse causation prevent causal conclusions. Here, 

we investigated whether nineteen metabolites previously associated with midlife 

cognitive function, are on the causal pathway to AD.  

 

Summary statistics from the largest Genome-Wide Association Studies (GWAS) for 

AD and for metabolites were used to perform bi-directional univariable Mendelian 

Randomisation (MR). Bayesian model averaging MR (MR-BMA) was additionally 

performed to address high correlation between metabolites and to identify metabolite 

combinations which may be on the AD causal pathway.  

 

Univariable MR indicated three Extra-Large High-Density Lipoproteins (XL.HDL) to 

be on the causal pathway to AD: Free Cholesterol (XL.HDL.FC: OR=0.86, 95% 

CI=0.78-0.94), Total Lipids (XL.HDL.L: OR=0.88, 95% CI=0.80-0.97), and 

Phospholipids (XL.HDL.PL: OR=0.87, 95% CI=0.81-0.97); significant at an adjusted 

threshold of p<0.009. MR-BMA corroborated XL.HDL.FC to be amongst the top 

three causal metabolites, additionally to Total Cholesterol in XL.HDL (XL.HDL.C) and 

Glycoprotein Acetyls (GP) (posterior probabilities=0.112, 0.113, 0.287 respectively). 

Both XL.HDL.C and GP also demonstrated suggestive evidence of univariable 

causal associations (XL.HDL.C:OR=0.88, 95% CI=0.79-0.99; GP:OR=1.2, 95% 

CI=1.05-1.38); significant at the 5% level. 
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This study offers insight into the causal relationship between metabolites previously 

demonstrating association with mid-life cognition, and AD. It highlights GP in addition 

to several XL.HDLs as causal candidates which warrant further investigation. As the 

pathological changes underpinning AD are thought to develop decades prior to 

symptom onset, progressing these findings could hold special value in informing 

future risk reduction strategies.  
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1. Introduction 

More than 50 million people worldwide currently live with dementia, and with an 

aging world population this figure is expected to increase to more than 152 million by 

2050 (World Alzheimer Report 2018). The most common dementia type is 

Alzheimer’s Disease (AD), characterised by impaired everyday function, severe 

cognitive decline - particularly working, episodic, and declarative memory(1) - and a 

range of neuropsychiatric symptoms(2). It represents a major source of global 

morbidity and mortality and poses significant human and economic costs(3).  

 

Disappointingly, AD drug development has proven difficult, with a 99.6% failure 

rate in the decade of 2002 to 2012, and this rate continues at the same low level 

today (4). Numerous reasons have been proposed as to why such clinical trials 

have failed, including incomplete understanding of true causal mechanisms. It is 

therefore necessary to discover biomarkers that can identify individuals at high risk 

of developing AD. Moreover, it is important for these to be potentially modifiable so 

as to offer targets for preventative or therapeutic strategies. 

 

Metabolomics represents one avenue that may give a deeper insight into AD 

aetiology. Metabolites are small molecules (<1500 atomic mass units) with a role 

in metabolism(5). As the products of many biological processes, they sit at the end 

of the systems biology pathway and therefore represent effective intermediate 

phenotypes to a given disease due to their proximity to the clinical endpoint(6,7). 

Due to 1) their non-invasive nature of measurement, 2) the fact that they are 

potentially modifiable through diet and lifestyle, and 3) the ability of many to cross 
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the blood brain barrier, blood metabolites are both practical and valuable markers 

of biological processes and disease states in dementia(8).  

 

Markers of lipid metabolism have received particular attention in this context, as the 

impairment of lipid metabolism has been associated with Alzheimer’s disease (5,9-

11) and beta-amyloid (A) burden (12,13). Relevant to early intervention, they have 

also been associated with cognitive performance and brain function during normal 

ageing(14,15). Recently, using a large British population-based birth cohort, we 

investigated associations between 233 blood metabolites and both memory and 

processing speed at 60–64 years of age, as well as changes in these cognitive 

domains from 60–64 to 69 years old. Associations with several metabolite classes 

were observed, including fatty acids (FAs), various compositions of high-density 

lipoproteins (HDLs) and glycoprotein acetyls (GP)(16).  

 

However, it is not yet established whether these metabolites are causally associated 

with dementia and AD. This study therefore aims to expand our observational 

findings and assess whether nineteen blood metabolites previously associated with 

late midlife cognition are causally associated with AD, using several univariable and 

multivariable Mendelian Randomization (MR) approaches. A deeper knowledge of 

blood metabolites on the causal pathway for AD will allow for a better understanding 

of the aetiology of AD and thus facilitate more targeted development and application 

of future therapeutics. 
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2. Methods 

A flow diagram summarising the methodology is detailed in Figure 1.  

2.1. Metabolite Selection  

Metabolites were selected based on our previously published observational study, 

which investigated associations between blood metabolites and lifetime cognition 

using data from the MRC National Survey of Health and Development (1946 British 

birth cohort)(16). Briefly, levels of 233 blood metabolites in 798 participants were 

measured via nuclear magnetic resonance (NMR) spectroscopy, between ages 60-

64(17)(18). At the time of blood-extraction, three domains of cognition were also 

measured; short-term memory, delayed verbal memory and processing speed(19). 

These measures were then repeated at age 69 for 663 of the 798 participants(17). 

Twenty metabolites were significantly associated with at least one measure of 

cognition after adjusting for multiple testing (p<= 0.002) and these were selected for 

causal investigation within the present study(Supplementary Table S1). 

 

2.2. Data sources 

For metabolites, summary statistics from the latest and largest metabolite GWAS 

were used(20) (data: http://computationalmedicine.fi/data#NMR_GWAS). This 

GWAS investigated the genetic component of 123 blood metabolites on nearly 

25,000 individuals using NMR spectroscopy. This platform provides a detailed 

characterisation of metabolite measures and ratios representing a broad molecular 

signature of systemic metabolism. Multiple metabolic pathways were covered, 

including: lipoprotein lipids and lipid sub-classes, FAs and FA compositions, and 
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amino acids and glycolysis precursors. Specific details are described elsewhere(21-

23). 

 

Of the twenty metabolites previously associated with cognition, all had at least one 

single nucleotide polymorphism (SNP) association at genome wide significance 

(GWS)(p<5*10-8).  However, as only two GWS SNPs were available for Pyruvate, 

this metabolite was removed due to power concerns, leaving nineteen metabolites 

for MR. To avoid weak instrument bias, a computed F-statistic of at least 10 was also 

required for all SNP instruments. 

 

For AD, summary statistics from the latest GWAS of clinically diagnosed late-onset 

AD (LOAD) by Kunkle and colleagues were utilised(24). This study consisted of 

three stages; 1) a discovery phase of 63,926 samples, 2) a replication phase of 

18,845 samples, and 3) a post replication phase of 11,666 samples. For MR with AD 

as an outcome, stage 1 summary data were utilised, and for MR with AD as an 

exposure, stage 1&2 data were employed.  

 

 

2.3. Mendelian Randomisation 

2.3.1.   Univariable analyses investigating metabolites as causal risk factors for 

AD 

SNP Selection 

All data extraction, pre-processing, and analyses were performed within R.3.6.1. and 

using the MRBase package(25). For each metabolite, summary statistics consisting 
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of effect sizes, standard errors and p-values for all GWS SNPs were extracted from 

each of the GWAS datasets(20). SNPs associated with AD at GWS were excluded 

due to potential violation of the MR exchangeability assumption(26), which assumes 

SNP instruments are not associated with confounding risk factors. Any SNPs within 

the ApoE genomic region (chromosome 19, base-pairs 4500000-4580000) were also 

excluded for this reason, as ApoE is an established risk factor for traits additional to 

AD, such as coronary artery disease(27). This resulted in SNP exclusions from large 

HDL subclasses only (supplementary table S1). Data were harmonised between AD 

and metabolite datasets, and SNPs with MAF<0.01 were excluded. All GWAS were 

assumed to be coded on the forward strand, thus no palindromic SNPs were 

excluded from analyses. However, Additional sensitivity analyses were performed 

excluding non-inferable palindromic SNPs (MAF>0.40), with metabolite MAFs used 

to infer AD allele frequencies, due to MAF non-availability within the AD dataset.  

 

Mendelian Randomisation analyses 

Total causal estimates were computed using inverse variance weighted (IVW) two-

sample MR, setting each metabolite as the exposure in turn and AD as the outcome. 

Briefly, IVW-MR uses a univariable model to regress SNP-instrument associations 

with an outcome on SNP-instrument associations with an exposure, weighted by the 

inverse of the variance in SNP-outcome associations(26). To reflect MR’s ‘exclusion 

restriction assumption’, which states that SNP instrument(s) must only be associated 

with the outcome via the exposure(26), the IVW intercept is constrained to zero. 

Results are presented in OR per 1-SD unit to enable a comparison of the magnitude 

of effect across all exposures.  
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Robust Methods 

Two robust methods – MR-egger and weighted median – were utilised to re-estimate 

casual associations with IVW assumptions relaxed. Briefly, MR-egger re-estimates 

IVW causal estimates whilst removing the intercept constraint. Large deviations from 

0 are taken as evidence of violation to MR’s exclusion restriction and exchangeability 

assumptions(28); and large discrepancies between egger and IVW estimates are 

indicative of pleiotropy. Weighted median provided an alternative estimate which 

remains valid provided 50% of instruments are valid(26). Briefly, causal estimates for 

each instrument are ordered and weighted by their association strength. The final 

estimate is then taken as the 50th weighted percentile of the ordered estimate.  

 

Sensitivity analyses 

Additionally to re-calculating causal estimates with palindromic SNPs excluded (see, 

SNP selection), several sensitivity analyses were performed to scrutinise the validity 

of IVW estimates. Influential points were investigated using leave-one-out analyses, 

and Cochran’s Q was calculated to test for heterogeneity amongst instruments (Q-

p<0.05 indicating significant heterogeneity). MR Pleiotropy RESidual Sum and 

Outlier(MR-PRESSO) test was further utilised to identify and correct for potential 

bias in estimates due to pleiotropy(29). Briefly, this test consists of up to three parts, 

with 1) the “global test” providing an estimate for the degree of horizontal pleiotropy 

(significant pleiotropy indicated by p<0.05), 2) the “outlier corrected causal estimate” 

providing a corrected estimate for any significant pleiotropy detected, and 3) the 

“distortion test” providing an estimate for the degree to which the original and 

corrected estimates differ (p<0.05 indicating a significant difference following 

corrections for pleiotropy). Tests 2 and 3 are implemented only in cases where 

p<0.05 for global test estimates. 
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2.3.2.   Univariable analyses investigating AD as a causal risk factor for 

metabolite levels 

To explore causality in the opposite direction, AD was set as the exposure with each 

metabolite in turn set as the outcome. The same analysis pipeline followed as above, 

testing the association of GWS SNPs from Stages 1&2 of Kunkle et al.(24). 

Following clumping and the removal of SNPs with MAF<0.01, 24 SNPs were utilised 

as instrumental variables in causal analyses (Supplementary Table S2). 

 
2.3.3.   Multivariable analyses  

To account for uncaptured pleiotropy within univariable models and to allow models 

which capture potential groups of causally associated metabolites, Bayesian model 

average MR (BMA-MR) was employed(30). This allows for the measurement and 

selection of multiple, potentially highly correlated exposures in a single model and is 

particularly well-equipped to scale to high-throughput datasets. 

 

Data preparation 

BMA-MR adopts a multivariable framework, whereby multiple exposures can be 

included within the model, provided a) they are each robustly associated with a least 

one SNP-instrument used within the model, and b) they do not induce multi-

collinearity(30). As with univariable models, criterion a) was met through inclusion of 

only GWS instruments which also had a computed F-statistic of >=10. To meet 

criterion b), pairwise genetic correlations (rg) across metabolites were computed 

using linkage-disequilibrium score regression (LDSC)(31). Any metabolites with 

rg>0.95 were assumed non-independent and pruned according to the stepwise 
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criteria outlined in Supplementary Information(N1). 

 

Bayesian Model Averaging  

Following LDSC pruning, nine metabolites were taken forward to MR-BMA 

(Supplementary Table S3). Instruments were extracted and clumped from each of 

the metabolite GWASs. Following LD-clumping, removal of ApoE SNPs and removal 

of a SNP for which a suitable proxy (R2>0.8) could not be obtained, 21 instruments 

remained. As with univariable analyses, all SNPs were assumed to be on the 

positive strand and sensitivity analyses were performed excluding palindromic SNPs. 

 

Details of the BMA-MR methodology can be found elsewhere(30). Briefly, marginal 

inclusion probabilities (MIP) for each exposure were computed, representing the 

posterior probability (pp) of metabolite x appearing within the true causal model 

given z iterations. Metabolites with highest MIP were interpreted as being the 

strongest “true causal” candidates of all those provided within the model. A model 

averaged causal effect (MACE) was also estimated, representing the estimated 

direct effect of metabolite x on outcome y, averaged across each pp. Here, we set z 

to 10,000, the pp to 0.1, and prior variance (σ2) to 0.25. 

 

Q-statistics quantified potential instrument outliers, and Cook’s distance (Cd) was 

used to identify influential points in models with pp>0.02. Diagnostic plots were 

generated to investigate the predicted versus observed associations for each of the 

top 4 models. Any SNPs with Q-statistic >10 or Cd>0.19 (4/total SNP N), were 

flagged and MR-BMA repeated with the SNP(s) omitted. Metabolite-AD associations 
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remaining after the removal of potential outliers were considered to be more reliably 

associated with AD. 
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3. Results  

 

3.1.   Univariable bidirectional MR 

For strong evidence of causality, estimates were required to demonstrate association 

below an adjusted significance threshold of p<0.009 (Supplementary Information 

N2). By this criterion three metabolites retained strong evidence of an IVW causal 

association with AD: Free Cholesterol in Very Large HDLs (XL.HDL.FC)(OR=0.86, 

95% CI=0.78-0.94, p=0.001), Total Lipids in Very Large HDLs (XL.HDL.L)(OR=0.88, 

95% CI=0.80-0.97, p=0.008), and Phospholipids in Very Large HDLs 

(XL.HDL.PL)(OR=0.89, 95% CI=0.81-0.97, p=0.008). GP also demonstrated 

evidence of suggestive causal association, with IVW estimates indicating increased 

odds of AD given higher GP levels (OR=1.20 95% CI=1.05-1.38); though p-values 

did not reach adjusted significance (p>0.009)(Table 1, Figure 1 and Supplementary 

Information F1a-Fs).  

 

Overall, directionality of MR-Egger and Weighted-Median results were in agreement 

with IVW-MR, though confidence intervals were wider, resulting in a failure to retain 

significance at the adjusted level. There was no evidence of horizontal pleiotropy as 

measured with the Egger intercept(Table 1). Funnel plots demonstrated symmetrical 

distribution of SNP effects around the effect estimate for most tests, suggesting 

balanced pleiotropy, although this was not the case for metabolites with small SNP N 

(Supplementary Information F2a-F2s).  

 

Leave-one-out indicated two influential SNPs (rs1532085, rs261291) for most HDL 

sub-fractions, particularly large HDL, and one SNP for GP (rs77303550) 
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(Supplementary Information F3a-F3S). Removal of these SNPs resulted in wider 

confidence intervals, with only XL-HDL.FC retaining significance at p<0.05. 

Exclusion of non-inferable palindromic SNPs produced almost identical results 

across IVW, MR-Egger, and weighted median results (Supplementary Table S7). 

 

There was no evidence of a causal relationship in the opposite direction, with AD set 

as the exposure and each metabolite as the outcome. In addition, there was 

heterogeneity observed, particularly for very large HDLs, as well evidence of 

horizontal pleiotropy (Supplementary Table S4, Supplementary Information F4-F7). 

 

3.3.    Multivariable Bayesian Model Averaging MR 

Metabolites ranked by their marginal posterior probabilities (MIP) together with the 

corresponding average effect are presented in Table 2a, and Table 2b presents the 

“best” five models based on pp rankings. The top risk factor with respect to its MIP 

was GP (MIP=0.465), followed by three XL.HDL particles (XL.HDL.C: MIP=0.179; 

XL.HDL.FC: MIP=0.178; XL-HDL-CE MIP=0.164). This was corroborated by pp 

rankings, which placed the same four metabolites within the highest ranked causal 

models, with pps of 0.287, 0.113, 0.112, and 0.102 for GP, XL.HDL.C, XL.HDL.FC, 

and XL.HDL.CE respectively. 

 

Q-statistics indicated no outliers (Supplementary Information F8a-F8d). The genetic 

variant with the largest Cd was rs1532085, near the LIPC gene, which had a 

Cd>0.19 in all three XL-HDL models (XL.HDL.C: Cd=1.095; XL.HDL.FC: Cd=1.25; 

XL.HDL.CE: Cd=1.168). rs2575876 on the ABCA1 gene, also demonstrated a high 

Cd in all three XL-HDL models (XL.HDL.C: Cd =0.392, XL.HDL.FC: Cd=0.247; 
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XL.HDL.CE: Cd=0.302), and variant rs247617, near the CETP gene had high Cd in 

XL.HDL.C (Cd=0.229) and XL.HDL.FC(Cd=0.265). Finally, variant rs77303550 on 

the TXNL4B gene, had a high Cd in the GP model (Cd=0.518), though was <0.19 in 

all other models (Supplementary Information F9a-Fd). A full overview of Q-statistics 

and Cds for models with pp>0.1 are presented in supplementary tables (S5a-

S5b).Removal of influential points reduced MIPs, particularly for HDLs, but did not 

substantially change results (Supplementary Tables S6a-S6b). All MR-BMA results 

remained consistent when re-ran with non-inferable palindromic SNPs removed 

(Supplementary Table S8). 
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4. Discussion 

This study sought to investigate whether nineteen metabolites previously found to be 

associated with late mid-life cognition in a British cohort, are on the causal pathway 

to Alzheimer’s disease (AD). Using summary data from the largest metabolomics 

and AD GWASs to date, this was interrogated using a combination of both 

bidirectional univariable and Bayesian multivariable MR. Univariable and 

multivariable MR highlighted an inverse causal relationship between sub-fractions of 

extra-large HDL molecules and AD, indicating a protective effect. On the other hand, 

Glycoprotein Acetyls(GP) – a marker of inflammation – demonstrated evidence of a 

casual association in the positive direction, indicating that this metabolite may 

increase AD risk. To our knowledge, this is the first study which uses blood 

metabolites previously associated with midlife cognition to systematically investigate 

causal associations with AD.  

 

Sub-fractions of large and extra-large HDLs – in particular their cholesterol content – 

demonstrated evidence for a causally protective association with AD, supported by 

both univariable and multivariable results. These results are consistent with our 

previous observational study which demonstrated positive associations of XL-HDLs 

and cognition in late mid-life(16). HDLs have also been implicated more widely in 

age-related cognitive decline and AD(14), with evidence from human studies, animal 

models, and bioengineered arteries of a cerebrovascular protective effect, which 

commonly show dysfunction in AD (32). As there is currently no evidence that HDL 

can enter the brain parenchyma, it is proposed that HDLs circulating in the lumen of 

cerebral vessels impact brain health through effects on vessel health(32). AD 

GWASs have further highlighted associations with lipoprotein metabolism, with 
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associations found for SNPs near genes that encode HDL protein components and 

biogenesis proteins such as APOE, ABCA1, APOA1 &2, CLU, LCAT and CETPI(32). 

Previous MR studies, including ours (33,34) have failed however, to show a causal 

link between HDL-C levels and AD, potentially due to insufficiently capturing HDL 

composition complexity. To our knowledge, this study represents the first to provide 

deeper granularity through inclusion of specific sub-fractions and sizes of HDL.  

 
GPs also demonstrated evidence of positive causal association with AD, particularly 

in multivariable analyses. This corroborates our previous study, which observed an 

association between GP and lower cognitive ability in late midlife; consistent with 

findings from a large independent cohort (14). Additionally, A1-acid glycoprotein has 

been shown to be a strong predictor of 10-year mortality(35) as well as all-cause 

mortality in a recent large meta-analysis of >40K individuals(36). Changes in the 

level of several glycoproteins have also been observed in the hippocampus and 

inferior parietal lobe in human AD (37). Some of these glycoproteins interact with 

neurofibrillary tangles, leading to speculation that changes in their glycosylation may 

be associated with the pathogenesis of this disease (37).  

 

Interestingly, while our previous observational study found the strongest associations 

to be between fatty acids and late midlife cognition, the present study found no 

evidence for causal associations between these and AD. This may in part be due to 

only a low number of instruments available for fatty acids (five SNPs available for 

both omega-3 and DHA, and six available for MUFA), resulting in a lack of statistical 

power to detect a causal relationship between these metabolites and AD. 

Alternatively, this inconsistency could be attributable to the different phenotypes 

studied (cognition verses AD), with fatty acids potentially being associated with non-
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AD related cognitive decline, but not AD specifically. Finally, previously observed 

associations may simply reflect confounding, whereby spurious associations arose 

as a result of an alternative, non-measured causal component – hence highlighting 

the importance of methods such as MR for disentangling such scenarios.  

 

Strengths of this study include the use of the largest and most up to date GWASs 

available for both NMR metabolomics and AD. Moreover, through use of 

bidirectional MR, relationships were interrogated in both directions as opposed to 

relying on a-priori (potentially erroneous) assumptions about directionality. 

Employment of Bayesian model averaging also allowed for correlations between 

metabolites to be accounted for and for multivariable models of combined 

metabolites to be proposed. Further, the inclusion of robust and sensitivity 

analyses across univariable and multivariable models allowed for further 

interrogation of MR assumptions, ensuring that any notable changes in results 

could be investigated.  

 

There remain, however, some limitations. First, for several metabolites, less than 

ten genetic variants were available at genome-wide significance, with two having 

only five variants available at this level. Whilst steps were taken to ensure 

individual SNPs did not suffer from weak instrument bias through calculation of 

per-instrument F-statistics, we cannot exclude the possibility of false negative 

errors due to insufficient statistical power. Second, due to the absence of available 

stratified GWA data, the present study was unable to stratify on key variables such 

as sex – something which our previous observational study indicated may modify 

many metabolite-cognition associations, and may plausibly too, modify metabolite-
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AD associations (38). Finally, whilst several IVW causal associations were 

observed, 95% confidence intervals for robust method estimates were larger, 

resulting in a loss of significance. Both MR-Egger and weighted median were 

introduced as a means for re-estimating causal estimates in the presence of 

potential pleiotropy. Failure of these to detect a causal effect could therefore 

indicate violation to MR’s core exchangeability and exclusion restriction 

assumptions. MR-Egger does however, provide an additional test of pleiotropy via 

its intercept; this indicated no significant pleiotropy across any of our IVW 

estimates. Moreover, no significant heterogeneity was observed, and consistent 

directionality for point estimates were maintained across different univariable 

methodologies. Additionally, BMA-MR – a method able to account for pleiotropy 

across included exposures – largely corroborated with univariable findings, 

ranking XL.HDLs and GP as the most likely causal metabolites of those included. 

Taken together, the weight of evidence supports IVW conclusions, with no 

indication that wider CIs presented by robust-methods reflect violations to core 

model assumptions. Instead, it is likely that these reflect low statistical power due 

to small instrument numbers.  

 

As the pathological changes underpinning AD are thought to develop at least a 

decade prior to the onset of symptoms, it is important to identify modifiable targets 

for intervention at an early stage, before AD pathology has caused major irreversible 

damage. This study suggests that some XL-HDLs associated with late mid-life 

cognitive ability are potentially causally related to AD, and that GP may too play a 

role. Progressing these findings could hold special value in informing future risk 

reduction strategies. 
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Table 1.  Results of univariable MR analyses investigating the causal association of 19 metabolites with AD. 

 IV-analyses are presented for IVW, MR-Egger and Weighted Median MR. The Egger intercept Pvalue tests for horizontal pleiotropy 

and Cochrans Q tests for heterogeneity. The corrected P-value of MR-PRESSO test is used when both global and distortion tests 

were significant.*2 SNPs were highlighted as outliers 

IV 
Metho 

Metabolite 
Sub-
category 

N 
SNPs 

IV analyses Egger 
intercept 

Pval 

Cochran's 
Q            

Pval 

MR-PRESSO 

OR 
95% CI 
Lower 

95% CI 
Upper 

P-val 
Uncorrected 

Pval 
Global 
Pval 

Distortion 
Pval 

Corrected 
Pval 

IVW 
22:6, 
Docosahexaenoic 
acid 

Fatty Acids 
and 
Saturation 

5 

0.985 0.860 1.128 0.825 NA 0.67 

0.787 0.653 NA NA 
MR-
EGGER 

0.848 0.380 1.892 0.714 0.74 0.53 

WM 0.961 0.812 1.137 0.641 NA NA 

IVW 

Omega-3 fatty 
acids 

Fatty Acids 
and 
Saturation 

5 

1.061 0.936 1.203 0.354 NA 0.74 

0.258 0.77 NA NA 
MR-
EGGER 

0.874 0.544 1.406 0.619 0.47 0.73 

WM 1.085 0.934 1.261 0.286 NA NA 

IVW 

Glycoprotein 
acetyls 

Inflammation 6 

1.199 1.045 1.375 0.010 NA 0.75 

0.017 0.692 NA NA 
MR-
EGGER 

1.491 0.935 2.379 0.169 0.39 0.78 

WM 1.208 1.018 1.433 0.031 NA NA 

IVW 

Mean diameter 
for HDL particles 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

9 

0.887 0.797 0.987 0.027 NA 0.06 

0.219 <0.001 0.641 0.058* 
MR-
EGGER 

0.968 0.716 1.308 0.838 0.56 0.04 

WM 0.924 0.830 1.029 0.150 NA NA 

IVW 

Total cholesterol 
in large HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

10 

0.891 0.803 0.988 0.029 NA 0.15 

0.056 0.095 NA NA 
MR-
EGGER 

0.967 0.739 1.265 0.812 0.54 0.12 

WM 0.956 0.846 1.080 0.467 NA NA 

IVW Cholesterol 
esters in large 
HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 

9 
0.913 0.833 1.001 0.052 NA 0.32 

0.088 0.215 NA NA MR-
EGGER 

0.884 0.679 1.151 0.391 0.81 0.24 
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WM 
mean HDL 
diameter 

0.958 0.846 1.084 0.494 NA NA 

IVW 

Free cholesterol 
in large HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

11 

0.891 0.808 0.983 0.021 NA 0.21 

0.044 0.14 NA NA 
MR-
EGGER 

0.945 0.726 1.231 0.686 0.65 0.16 

WM 0.955 0.843 1.083 0.475 NA NA 

IVW 

Total lipids in 
large HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

8 

0.914 0.839 0.996 0.040 NA 0.52 

0.065 0.276 NA NA 
MR-
EGGER 

0.811 0.632 1.040 0.150 0.35 0.53 

WM 0.964 0.855 1.087 0.552 NA NA 

IVW 
Concentration of 
large HDL 
particles 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

8 

0.913 0.838 0.995 0.038 NA 0.53 

0.061 0.268 NA NA 
MR-
EGGER 

0.806 0.628 1.033 0.139 0.33 0.55 

WM 0.961 0.850 1.086 0.524 NA NA 

IVW 

Phospholipids in 
large HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

9 

0.912 0.836 0.995 0.039 NA 0.62 

0.048 0.33 NA NA 
MR-
EGGER 

0.845 0.674 1.059 0.187 0.49 0.57 

WM 0.964 0.851 1.092 0.563 NA NA 

IVW 
Mono-
unsaturated fatty 
acids 

Fatty Acids 
and 
Saturation 

6 

1.086 0.962 1.226 0.182 NA 0.52 

0.206 0.582 NA NA 
MR-
EGGER 

1.436 0.733 2.815 0.351 0.45 0.47 

WM 1.068 0.922 1.237 0.381 NA NA 

IVW 
Other 
polyunsaturated 
fatty acids than 
18:2 

Fatty Acids 
and 
Saturation 

6 

1.030 0.964 1.101 0.381 NA 0.78 

0.266 0.906 NA NA 
MR-
EGGER 

1.000 0.892 1.121 1.000 0.57 0.73 

WM 1.032 0.961 1.108 0.388 NA NA 

IVW 

Triglycerides in 
small HDL 

Lipoprotein 
subclasses- 
S/L.HDL & 
mean HDL 
diameter 

8 

1.047 0.945 1.159 0.381 NA 0.99 

0.147 0.976 NA NA 
MR-
EGGER 

0.987 0.734 1.328 0.933 0.69 0.98 

WM 1.031 0.908 1.171 0.640 NA NA 

IVW 

Total cholesterol 
in very large HDL 

Lipoprotein 
subclasses- 
XL.HDL 

10 

0.883 0.790 0.988 0.029 NA 0.18 

0.057 0.108 NA NA 
MR-
EGGER 

0.911 0.670 1.239 0.570 0.83 0.12 

WM 0.917 0.791 1.063 0.252 NA NA 

IVW 9 0.907 0.794 1.036 0.149 NA 0.05 0.187 0.044 NA NA 
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MR-
EGGER 

Cholesterol 
esters in very 
large HDL 

Lipoprotein 
subclasses - 
XL.HDL 

0.886 0.610 1.287 0.546 0.90 0.03 

WM 0.961 0.832 1.109 0.583 NA NA 

IVW 

Free cholesterol 
in very large HDL 

Lipoprotein 
subclasses - 
XL.HDL 

11 

0.859 0.783 0.943 0.001 NA 0.37 

0.009 0.3 NA NA 
MR-
EGGER 

0.839 0.625 1.125 0.270 0.87 0.29 

WM 0.884 0.774 1.010 0.070 NA NA 

IVW 

Total lipids in 
very large HDL 

Lipoprotein 
subclasses - 
XL.HDL 

10 

0.881 0.801 0.968 0.008 NA 0.28 

0.027 0.23 NA NA 
MR-
EGGER 

0.784 0.584 1.052 0.144 0.44 0.26 

WM 0.897 0.792 1.016 0.087 NA NA 

IVW 
Concentration of 
very large HDL 
particles 

Lipoprotein 
subclasses - 
XL.HDL 

9 

0.866 0.786 0.955 0.004 NA 0.33 

0.02 0.282 NA NA 
MR-
EGGER 

0.737 0.566 0.958 0.057 0.24 0.39 

WM 0.882 0.779 0.999 0.049 NA NA 

IVW 

Phospholipids in 
very large HDL 

Lipoprotein 
subclasses - 
XL.HDL 

11 

0.886 0.810 0.969 0.008 NA 0.24 

0.025 0.198 NA NA 
MR-
EGGER 

0.879 0.692 1.118 0.321 0.95 0.18 

WM 0.912 0.811 1.025 0.121 NA NA 
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Table 2. a) Metabolites ranked by their marginal inclusion probability (MIP) in 

MR-BMA analyses.  b) Best individual  metabolite models based on their 

posterior probability. 

a) 

Metabolite MIP Average Effect 

GP 0.465 0.088 

XL-HDL-C 0.179 -0.022 

XL-HDL-FC 0.178 -0.022 

XL-HDL-CE 0.164 -0.017 

S-HDL-TG 0.107 -0.015 

L-HDL-C 0.098 -0.007 

L-HDL-CE 0.096 -0.007 

DHA 0.044 -0.003 

PUFA 0.024 0.001 

 
b) 

Metabolite model Posterior Probability 

GP 0.287 

XL-HDL-C 0.113 

XL-HDL-FC 0.112 

XL-HDL-CE 0.102 

L-HDL-C 0.050 

L-HDL-CE 0.049 

Gp,XL-HDL-C 0.020 

XL-HDL-CE,Gp 0.019 

Gp,S-HDL-TG 0.019 
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Figure Legends 

Figure 1. Study design. 

 

Figure 2. Association of metabolites associated with AD at p<0.009 following 

MR.  

Results for IVW, MR-Egger and Weighted Median for each metabolite are displayed.  

Metabolites are sorted based on the beta estimate of the association with AD (IVW). 
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Supplementary Table S1.  Metabolite instruments for Univariable MR analyses.  

Instruments included all SNPs that were associated with each metabolite at 

metabolite GWS. 

 

Supplementary Table S2.  AD instruments for Univariable MR analyses. 

Instruments included all SNPs from Kunkle et al., 2019 that were associated with AD 

at GWS, excluding variants with MAF<0.01 and variants in the APOE gene. 

 

Supplementary Table S3.  Metabolite-Metabolite genetic correlations. 

Metabolites were taken forward for Bayesian model averaging MR based on pairwise 

rg<0.95.  

 

Supplementary Table S4. Results of univariable MR analyses investigating the 

causal association of AD with 19 metabolites. 

 IV-analyses are presented for IVW, MR-Egger and Weighted Median MR. The Egger 

intercept Pvalue tests for horizontal pleiotropy and Cochrans Q tests for heterogeneity. 

The corrected P-value of MR-PRESSO test is used when both global and distortion 

tests were significant. 

 

Supplementary Table S5. A) Q statistic and b) Cook’s distance results for the 

first four MR-BMA models with posterior probabilities >0.1. 

Supplementary Table S6. a) Metabolites ranked by their marginal inclusion 

probability (MIP) in MR-BMA analyses and b) Best individual metabolite models 

based on their posterior probability, after outlier excluding potential outliers 

rs2575876, rs247617 and rs77303550. 
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Supplementary Table S7. Results of univariable MR analyses investigating the 

causal association of AD with 19 metabolites after excluding palindromic not 

inferable SNPs (rs174578, rs609526 and rs2954029). IV-analyses are presented for 

IVW, MR-Egger and Weighted Median MR. The Egger intercept Pvalue tests for 

horizontal pleiotropy and Cochrans Q tests for heterogeneity. The corrected P-value 

of MR-PRESSO test is used when both global and distortion tests were significant. 

 
Supplementary Table S8. a) Metabolites ranked by their marginal inclusion 

probability (MIP) in MR-BMA analyses and b) Best individual metabolite 

models based on their posterior probability after excluding palindromic non 

inferable SNPs (rs2954029). 

 

Supplementary Information N1. Metabolite Pruning in preparation for Bayesian 

Model Averaging Mendelian Randomization  

 

Supplementary Information N2. Multiple test corrections. 

 

Supplementary Information F1a-F1s. Scatterplots of the gene-AD versus gene-

metabolite associations for each metabolite-AD pair when metabolite is the 

exposure and AD the outcome following univariable MR analyses. 

Each point in the scatter plot represents an instrumental SNP and different 

regression lines represents the different MR methods used. 
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Supplementary Information F2a-F2s. Funnel plots for each metabolite-AD pair 

when metabolite is the exposure and AD the outcome following univariable MR 

analyses. 

 

Supplementary Information F3a-F3s. Leave-one-out (LOO) plots for each 

metabolite-AD pair when metabolite is the exposure and AD the outcome 

following univariable MR analyses. 

 

Supplementary Information F4. Results of univariable MR analyses 

investigating the causal association of AD with metabolites. 

Results for IVW, MR-Egger and Weighted Median for each metabolite are displayed.  

Metabolites are sorted based on the beta estimate of the association with AD (IVW). 

 

Supplementary Information F5a-F5s. Scatterplots of the gene-metabolite 

versus gene-AD associations for each AD-metabolite pair when AD is the 

exposure and each metabolite the outcome following univariable MR analyses. 

Each point in the scatter plot represents an instrumental SNP and different 

regression lines represents the different MR methods used. 

 

Supplementary Information F6a-F6s. Funnel plots for each AD-metabolite pair 

when AD is the exposure and each metabolite the outcome following 

univariable MR analyses. 
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Supplementary Information F7a-F7s. Leave-one-out (LOO) plots for each AD-

metabolite pair when AD is the exposure and each metabolite the outcome 

following univariable MR analyses. 

 

Supplementary Information F8a-F8d.  Diagnostic plots for outliers for the top 

four models with posterior probabilities >0.1.   

Predicted associations (x-axis) are plotted against observed associations (y-axis) for 

AD. Any genetic variant with a qvalue>10 is marked with the name of the variant. 

 

Supplementary Information F9a-F9d.  Diagnostic plots for influential genetic 

variants for the top four models with posterior probabilities >0.1.   

Predicted associations (x-axis) are plotted against observed associations (y-axis) for 

AD. Any genetic variant with a Cook’s distance  >0.19 (4/21) is marked with the 

name of the variant. 
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