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Abstract: 
Importance: Access to testing is key to a successful response to the COVID-19 pandemic. 
Objective: To determine the geographic accessibility to SARS-CoV-2 testing sites in the United 
States, as quantified by travel time. Design: Cross-sectional analysis of SARS-CoV-2 testing 
sites as of April 7, 2020 in relation to travel time. Setting: United States COVID-19 pandemic. 
Participants: The United States, including the 48 contiguous states and the District of 
Columbia. Exposures: Population density, percent minority, percent uninsured, and median 
income by county from the 2018 American Community Survey demographic data. Main 
Outcome: SARS-CoV-2 testing sites identified in two national databases (Carbon Health and 
CodersAgainstCovid), geocoded by address. Median county 1 km2 gridded friction surface of 
travel times, as a measure of geographic accessibility to SARS-CoV-2 testing sites. Results: 
6,236 unique SARS-CoV-2 testing sites in 3,108 United States counties were identified. Thirty 
percent of the U.S. population live in a county (N = 1,920) with a median travel time over 20 
minutes. This was geographically heterogeneous; 86% of the Mountain division population 
versus 5% of the Middle Atlantic population lived in counties with median travel times over 20 
min. Generalized Linear Models showed population density, percent minority, percent uninsured 
and median income were predictors of median travel time to testing sites. For example, higher 
percent uninsured was associated with longer travel time (β = 0.41 min/percent, 95% confidence 
interval 0.3-0.53, p = 1.2x10-12), adjusting for population density. Conclusions and Relevance:  
Geographic accessibility to SARS-Cov-2 testing sites is reduced in counties with lower 
population density and higher percent of minority and uninsured, which are also risk factors for 
worse healthcare access and outcomes. Geographic barriers to SARS-Cov-2 testing may 
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exacerbate health inequalities and bias county-specific transmission estimates. Geographic 
accessibility should be considered when planning the location of future testing sites and 
interpreting epidemiological data. 
 
Key Points: 

1. SARS-CoV-2 testing sites are distributed unevenly in the US geography and population. 
2. Median county-level travel time to SARS-CoV-2 testing sites is longer in less densely 

populated areas, and in areas with a higher percentage of minority or uninsured 
populations.  

3. Improved geographic accessibility to testing sites is imperative to manage the COVID-19 
pandemic in the United States.  

 
Introduction 
Uniform access to SARS-CoV-2 testing is crucial for controlling and containing the COVID-19 
epidemic1. Lack of testing can result in the epidemic spreading undetected2,3 and increase the 
risk of extensive local transmission. The United States (US) has been slow to develop reliable 
diagnostic tests and, while there has been recent improvement in testing capabilities4, the ability 
for large-scale testing remains a serious concern. 
 
Inequalities in geographic accessibility to healthcare in the US have been documented to cause 
negative health outcomes for seasonal influenza transmission and other diseases5. Further, 
travel time negatively impacts healthcare-seeking behavior6. The deployment of SARS-CoV-2 
testing within existing medical infrastructure, while logistically efficient, may exacerbate this 
disparity in health outcomes7,8 and underestimate disease burden in disadvantaged populations. 
 
Geographic accessibility to SARS-CoV-2 testing sites, to our knowledge, has not been 
systematically quantified. Therefore, we evaluated whether testing sites were equally accessible 
to populations across the US, leveraging county-level sociodemographic data, two public SARS-
CoV-2 testing site datasets, and a high-resolution map of US travel times. 
 
Materials and Methods 
Source Population and Covariates:  
This study was conducted in the 48 contiguous US states and the District of Columbia (DC), 
using 2014-2018 cross-sectional American Community Survey data (API accessed April 8, 
2020, https://www.census.gov/data/developers/data-sets/acs-5year/2018.html), tabulated at the 
county level. Covariates include population, population density (ln 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑚𝑚

𝑐𝑐𝑚𝑚𝑚𝑚𝑐𝑐𝑝𝑝𝑐𝑐 𝑏𝑏𝑝𝑝𝑝𝑝𝑐𝑐𝑏𝑏
), percent 

uninsured, percent minority (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑁𝑁𝑁𝑁𝑝𝑝 𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝐻𝐻𝑝𝑝𝐻𝐻𝑝𝑝 𝑊𝑊ℎ𝐻𝐻𝑝𝑝𝑝𝑝), and median household income.  
 
Travel Time to Testing Site: 
Testing Sites: A national database of SARS-CoV-2 testing sites was curated using the Carbon 
Health (N = 5,376) and CodersAgainstCovid (N = 1,547) datasets which were accessed on April 
7, 2020. Carbon Health (carbonhealth.com/covid-19-testing-centers) prospectively called urgent 
care centers and hospitals on publicly listed telephone numbers from March 17, 2020 to ask 
whether SARS-CoV-19 testing was being offered. Additionally, a verified, non-exhaustive 
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collection of publicly-documented and user-entered testing sites were included. 
CodersAgainstCovid identified urgent care centers, hospitals, drive-throughs, health 
departments and other facility types prospectively from March 15, 2020 onward, through 
volunteer-verified “webscraping” and crowdsourcing (see https://codersagainstcovid.org/). 
 
Database compilation and completeness: Testing sites were geocoded using ggmap v3.0.0 in R 
v.3.6.2. We identified 6,236 unique sites (687 excluded following manual de-duplication and 
cleaning, or because situated in Alaska or Hawaii). Related site ontologies were collapsed into 
meta-ontologies (e.g. Urgent with Immediate Care). To date, this is the largest database of US 
testing sites known to the authors. To evaluate completeness (as of April 20, 2020), we 
identified public testing sites listed in sample areas: 34 in Illinois 
(https://www.dph.illinois.gov/covid19/covid-19-testing-sites), 5 in Colorado 
(https://covid19.colorado.gov/testing-covid-19) and 104 in West Virginia 
(https://www.wvhealthconnection.com/covid-19). Our database included 169, 85 and 60 sites in 
each area, respectively. We confirmed our database identified at least one site in every city in 
Texas operating a drive-through (https://www.dshs.state.tx.us/coronavirus/testing.aspx). 
 
Travel Time Estimation: We used published friction-based travel times9 between approximately 
1 km2 gridded cells in the US, accounting for topographic features (e.g. water) and the most 
efficient method of non-air travel (e.g. vehicle). The shortest path to testing sites was calculated 
using the Dijkstra algorithm10. Median travel times across all grid cells in each of the 3,108 
counties were calculated.  
 
Statistical Analysis: 
Generalized Linear Models (GLM, using glm, stats v3.6.2 in R) were used to estimate the effect 
of population density, percent minority, percent uninsured and median income on median travel 
time, by county. We also tested for potential interactions between population density and 
percent minority or percent uninsured. For each model, influential counties with a Cook’s 
distance measure over 4/N were excluded (up to N=175)11. 
 
Results 
In our database, we collate 6,236 SARS-Cov-2 testing sites in the 48 contiguous US states plus 
DC. Testing sites (Table 1) were often affiliated with Medical Centers (43%) and Urgent Care 
(47%). Drive-through sites accounted for only 3% of testing centers. Testing sites were spatially 
clustered (Moran’s I=0.037, z=61.4, p<10-5), likely around US urban centers (Figure S1). 
 
Spatially Heterogeneous Access to Testing Sites The travel time from each 1 km2 grid cell to 
the nearest US testing site is spatially heterogeneous at the national and state level (Figure 1A 
and 1B). Thirty percent of the population live in a county (N = 1,920) with a median travel time 
over 20 minutes, though with pronounced regional differences (Figure 1C) ranging from 5% 
(Middle Atlantic) to 86% (Mountain). 
  
Determinants of Access to Testing We estimated the effect of covariates on county-level 
median travel time (Table 2). Population density, a determinant of population distribution, was 
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associated with a shorter median travel time (β = -13.41 min/unit density, 95% Confidence 
Interval (CI) -14.02 to -12.79). While controlling for population density as a potential confounder, 
percent minority was associated with an increase in travel time (β = 0.15 min/percent, 95% CI 
0.12-0.18), as was percent uninsured (β = 0.41 min/percent, 95% CI 0.3-0.53). These 
associations remained when also adjusting for median income. We found a significant negative 
interaction between percent uninsured and population density (p<0.01) suggesting that the 
disparity of longer rural travel times is greater in counties where a higher proportion of the 
population is uninsured. Percent minority and population density did not interact statistically. 
 
Discussion 
Using two large, national datasets of SARS-CoV-2 testing sites throughout the US paired with 
geographically precise estimates of travel times, we demonstrate an uneven distribution of 
critical public health resources. The testing site distribution recapitulates structural disparities, 
including inequities among minority, uninsured, and rural groups, which may further perpetuate 
disparities as the pandemic progresses. Differential accessibility to testing may lead to biases in 
estimation of disease incidence, in turn, potentially delaying identification of COVID-19 hot 
spots. In the absence of representative testing, syndromic surveillance tools (e.g. 
Safepaths.mit.edu, CovidNearYou.org) may provide early warning signals, and augment 
targeted-testing and other public health interventions. 
 
The presented analyses are limited by the databases on which they are based. Despite efforts 
to ensure comprehensiveness, in some regions our dataset may be missing testing sites (e.g. 
West Virginia) and a handful of sites have been added to source datasets since accession. 
Given recent difficulties scaling up testing, we believe our database remains representative12,13. 
However, there is potential for differential missingness of sites located in areas with reduced 
“webscraping” visibility or sites specifically placed to address geographic inaccessibility. 
Nevertheless, this work highlights the potential utility of data sharing during a pandemic, and the 
need for comprehensive resources to identify geographic gaps and optimize access for all. 
 
The travel time metric used here accounts for the presence of public transportation and routine 
traffic. Early evidence shows that there is widespread geographic variability in mobility 
reductions during the epidemic in the US14,15. Our estimates of differential access present a 
conservative picture of inequality in the continental US which may be worse if public transit 
closures and private transportation were also modeled, and should be the subject of future 
research. Additionally, our models do not examine other, non-geographic barriers to SARS-
CoV-2 testing access (e.g. economic), nor the unique issues for residents in Alaska and Hawaii. 
 
In summary, reduced geographic access to SARS-CoV-2 testing sites is associated with 
sociodemographic factors that, in turn, are linked to poor structural access to care and health 
outcomes. The location of future testing sites should explicitly account for travel time and 
sociodemographic predictors, in addition to other public health mandates for testing. 
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Figures 
Figure 1. Distribution of SARS-CoV-2 testing sites. A) Travel time to the nearest testing site per 
1 km2 area (shorter travel time in darker blue) in the 48 contiguous US states plus DC. B) Travel 
time as in Panel A enlarged to show detail in the state of Texas. C) Median travel time by county 
versus the cumulative population for each geographic region (excluding two outlier counties). 
Vertical line at 20 minute median travel time. Horizontal lines indicate cumulative population 
percentage in that region (in parenthesis) residing in counties with less than 20 minutes median 
travel time. D) Percent minority (1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑁𝑁𝑁𝑁𝑝𝑝 𝐻𝐻𝐻𝐻𝐻𝐻𝑝𝑝𝐻𝐻𝑝𝑝𝐻𝐻𝑝𝑝 𝑊𝑊ℎ𝐻𝐻𝑝𝑝𝑝𝑝) by county in Texas. 
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Tables 
 
Table 1. Breakdown of SARS- CoV-2 Testing Sites by Location Type and Region. Percentage 
of each type of testing site for the Census Division in parenthesis (48 contiguous US and DC, 
excluding Hawaii and Alaska). The final column is the total number of testing sites (percentage 
contributed by that Census Division in parenthesis).  

 
 
Table 2: Generalized Linear Regression models evaluating the association between covariates 
and median travel time in minutes by county in the 48 contiguous US states and DC. 
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Supplement: 
Figure S1. Locations (N = 6,236) offering SARS-CoV-2 testing in the 48 contiguous United 
States and DC.  
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