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Abstract: With the recent COVID-19 pandemic, healthcare sys-
tems all over the world are struggling to manage the massive
increase in emergency department (ED) visits. This has put
an enormous demand on medical professionals. Increased wait
times in the ED increases the risk of infection transmission. In
this work we present an open-source, low cost, off-body system
to assist in the automatic triage of patients in the ED based on
widely available hardware. The system initially focuses on two
symptoms of the infection - fever and cyanosis. The use of vis-
ible and far-infrared cameras allows for rapid assessment at a
1m distance, thus reducing the load on medical staff and lower-
ing the risk of spreading the infection within hospitals. Its utility
can be extended to a general clinical setting in non-emergency
times as well to reduce wait time, channel the time and effort of
healthcare professionals to more critical tasks and also priori-
tize severe cases.

Our system consists of a Raspberry Pi 4, a Google Coral USB
accelerator, a Raspberry Pi Camera v2 and a FLIR Lepton 3.5
Radiometry Long-Wave Infrared Camera with an associated 10
module. Algorithms running in real-time detect the presence
and body parts of individual(s) in view, and segments out the
forehead and lip regions using PoseNet. The temperature of the
forehead-eye area is estimated from the infrared camera image
and cyanosis is assessed from the image of the lips in the visible
spectrum. In our preliminary experiments, an accuracy of 97%
was achieved for detecting fever and 77% for the detection of
cyanosis, with a sensitivity of 91% and area under the receiver
operating characteristic curve of 0.91. Heart rate and respira-
tory effort are also estimated from the visible camera.

Although preliminary results are promising, we note that the
entire system needs to be optimized before use and assessed for
efficacy. The use of low-cost instrumentation will not produce
temperature readings and identification of cyanosis that is ac-
ceptable in many situations. For this reason, we are releasing
the full code stack and system design to allow others to rapidly
iterate and improve the system. This may be of particular bene-
fit in low-resource settings, and low-to-middle income countries
in particular, which are just beginning to be affected by COVID-
19.
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Introduction

With a dramatic increase in the emergency department (ED)
visit rates over the last four decades, both in the United States

and around the world (1-4), accurate and timely triage is es-
sential for assuring patients’ safety and optimal resource al-
location. Crowding in the ED can affect the triage process,
leading to longer waiting times for triage, longer ED length
of stays, and potentially poorer outcomes (5). More acutely,
crowding in ED during a pandemic such as COVID-19 could
increase the risk for health professionals as well as patients.

Computer-aided triage systems have been proposed over
the years with the help of browser-based applications that ex-
change information with existing medical records (6), wear-
able sensors (7) and automatic initial interpretation of CT
scans (8). However, most existing methods either require sig-
nificant interaction between the patients and the healthcare
workers or need active input from the patients. Hence, there
is an emerging need for an automatic triage system that works
passively and requires minimal attention and interaction from
both patients and health professionals. In this work, we fo-
cus on real-time identification of febrile status and cyanosis
in patients, and estimation of heart-rate and respiratory effort.

The Emergency Severity Index (ESI), used by most EDs
in the United States (9), records the febrile state of young
children and the manifestation of cyanosis in all age groups.
While core temperature is difficult to measure non-invasively,
there is some evidence that infrared cameras can do so to
some level of acceptable accuracy (10). In particular, we con-
sidered temperature in the forehead area and color distribu-
tion of the lip as indicators for the febrile state and cyanosis.

The Merck Manual (11) defines fever as an elevated body
temperature that is higher than 37.8°C orally (12) and the
Cleveland Clinic advised patients with a fever higher than
100.4°F / 38°C to isolate themselves as of April 2020 (13).

Cyanosis is a bluish discoloration of the skin or other ar-
eas of the peripheral body resulting from poor circulation or
inadequate oxygenation of the blood. More specifically, it
is due to an increased concentration of reduced hemoglobin
(Hb) in the circulation and is clinically evident at an oxygen
saturation of 85% or less. Mild cyanosis is more challenging
to detect. Cyanosis can be observed in the lips, ears, trunk,
nailbed, hands, and conjunctiva. Circumoral areas (around
the mouth) have been compared in detecting cyanosis result-
ing from arterial hypoxemia. It has been noted that while the
tongue is the most sensitive area, the lips are more specific
((14), chapter 45). For this work, we, therefore, focus on
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the lips, since they are easier to observe than the tongue and
have been identified in ED emergency response assessment
systems.

Assessing the heart rate is crucial in determining the over-
all health of an individual (15). Fever, which generally causes
an elevated heart rate (16), fever is one of the key symptoms
of coronavirus (17). While there is no standard for ‘high heart
rate’ (that is no high enough to be tachycardia) for arous-
ing suspicion of infection, somewhere between 100 and 100
beats per minute (bpm) is generally considered cause for con-
cern. (Obviously this depends on recent activity, time of day,
age, underlying health conditions, for example.)

Another symptom of coronavirus, as detailed by the Cen-
ters for Disease Control and Prevention (CDC), is shortness
of breath or difficulty breathing (17). This results in abnor-
mal breathing patterns. Estimating a metric that captures the
respiration rate can help with classifying breathing as normal
or abnormal, but is a rather brutal approach that can miss the
difficulties encountered. A disordered respiratory effort may
provide more useful information.

In this work we describe a system consisting of a low-cost
minicomputer - a Raspberry Pi, a Google Coral USB acceler-
ator tensor processing unit (TPU), a visible light camera and
a thermal camera, which are all portable and relatively inex-
pensive. By leveraging computer vision, signal processing,
and machine learning classification techniques, the system is
designed to be capable of segmenting out regions of inter-
est and classifying the subject as febrile and/or cyanotic in
real time (frame-by-frame). We also describe methods to es-
timate heart rate and respiratory effort in real-time using the
same system.

Related work

A. Febrile state detection. Infrared imaging has been used
extensively for remote, contactless human body temperature
estimation for the last two decades since SARS (18). The
efficacy of using infrared imaging for mass fever screening
was first validated in (19), which demonstrated an ability to
detect hyperthermia and a good correlation between thermal
scanner readings and ear temperature. The efficacy of using
a handheld FLIR350 camera (20) and the FLIRONE camera
(which uses the Lepton sensor) (21) for febrile state detection
were then validated. Recently, a deep learning face detection
method was introduced to detect the face in thermal images
for febrile state detection (22). However, the deep learning
approach is only used intermittently due to the high process-
ing time, and the region of interest was arbitrarily defined,
leading to potential limitations in the usage.

B. Cyanosis detection. Assessment of cyanosis is often
conducted visually by doctors. The only known general
method to semi-automatically detect cyanosis via a color cor-
rection and manual lips segmentation was proposed in a brief
conference article (23).

C. Heart rate estimation. Heart rate is one of the most fre-
quently measured human vital signs. It is usually measured
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using electrocardiography, pulse oximetry, or by counting by
radial palpation (24). With advances in the field of computer
vision, various camera-based heart rate estimation methods
have emerged. These methods have the advantage of being
contactless. Subtle head motion is caused by the Newtonian
reaction to the influx of blood at each beat. In (25), the au-
thors report a method which leverages this behavior to mea-
sure the heart rate. The motion of the head is extracted by
feature tracking and principal component analysis is applied
to decompose the trajectories of the features into its compo-
nent motions. The component which has a frequency spec-
trum that corresponds to the cardiac frequency interval is se-
lected. The motion in this component is analyzed to iden-
tify peaks, which correspond to heartbeats. However, various
noise sources such as internal and external head motions, low
facial frame quality from video or camera and abnormal pos-
ture affect the heart rate estimation. Some solutions to these
issues are proposed in (26), which introduces a face quality
assessment method to ensure that low-quality frames do not
contribute to the estimation of heart rate. Feature points from
the face are combined with facial landmarks in order to create
stable trajectories that are used to estimate heart rate.

The first remote photoplethysmogram (rPPG) imaging
method, which used ambient light to estimate heart rate, was
introduced in (27). The red, green and blue (R, G, and B)
channels are extracted from a region of interest (ROI) in the
frame. A raw photoplethysmogram (PPG) signal is generated
using the spatial average pixel values of the channels from
each frame over time. This raw signal is bandpass filtered to
remove noise.

In (28) authors extract PPG signals from facial videos us-
ing blind source separation. The mean R, G, B channel val-
ues are calculated for the ROI in each frame over time. Here
the ROI is the entire face. These raw signals generated from
the means are normalized and decomposed into three source
signals using Independent Component Analysis. The source
signal which corresponds closest with a PPG signal is used
to measure the heart rate, which somewhat limits the utility,
since the heart rate estimation must be seeded with a known
heart rate in the first place. A detailed review of many other
heart rate estimation methods is given in (29).

D. Respiratory effort estimation. From non-invasive
methods to non-contact methods, various methods have been
proposed to automatically estimate respiration rate and res-
piratory effort. Most early methods focused on replacing in-
vasive methods like esophageal manometry via non-invasive
methods, such as measuring the external breathing airflow
via nasal cannula/pressure transducer system (30), measuring
movement using diaphragm mechanomyography (31) or ac-
celerometer (32), or measuring indirectly from surface elec-
trocardiogram (33).

More recently, contactless approaches have gained pop-
ularity. A vast majority of them utilized either rPPG or a
certain type of measurement for respiration induced motion.
Karlen et al. acquired rPPG was via video in (34, 35) and
proved to be feasible to estimate respiratory rates. However,
respiratory effort estimation was not addressed in methods

Hegde, Jiang etal. | AutoTriage


https://doi.org/10.1101/2020.04.09.20059840
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.09.20059840; this version posted April 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

using the rPPG approach. The effectiveness of motion mea-
surement based methods has also demonstrated with Doppler
radar (36) and visible video (37). Additionally, it has been
reported that respiratory pattern can be reconstructed with a
motion based method (37), which enables estimation of res-
piratory effort.

Many other works have described attempts to derive phys-
iology from video cameras, and an extensive comparison of
the literature can be found in (38). In particular, the authors
note that many approaches have been described in this field
and that ‘the lack of standardization hinders comparability of
these techniques and of their performance’. Notably they ad-
vise that sharing algorithms and/ or datasets would address
this issue and potentially allow the application of newer tech-
niques, such as deep learning’. Notably, none of the reviewed
systems are available open source or have been tested in ex-
tremely large populations in noisy real-world settings. In
this work we leverage deep learning algorithms developed
on public data, and begin the work of applying these using a
framework that we have publicly released to help reach criti-
cal mass with public data and repeatable techniques.

Methods

E. Hardware configuration. The system proposed is an
off-body camera based system to detect symptoms of respi-
ratory illnesses. A Raspberry Pi 4 (RasPi) with 4GB RAM
is used as the main processor and is used to run most of
the algorithms. A Google Coral USB Accelerator is used to
perform person detection, which uses a deep learning based
algorithm, and thus needs significantly more computational
power. The accelerator is designed to run deep learning mod-
els optimally.

A Raspberry Pi camera v2, which is a visible light cam-
era, is used to detect people and for cyanosis, heart rate, and
respiration effort estimation. A FLIR Lepton 3.5 Radiome-
try Long-Wave Infrared Camera with its associated IO mod-
ule is used for febrile state detection. The left panel in Fig-
ure 1 shows the proposed system. An optional temperature
and humidity sensor is added to help with the thermal cam-
era calibration. For this work, we tested the Gowoops 2 PCS
DHT?22 Temperature Humidity Sensor Module. An optional
car battery power-source is also detailed in this work for use
in remote and rugged locations.

Our system works in real-time, with the visible light cam-
era capturing frames at a rate of 25Hz and the thermal cam-
era at a rate of 9Hz. The various estimation results can be
displayed on an external monitor via an HDMI-microHDMI
cable or on an LCD display screen directly connected to the
RasPi. (We chose a $20 touch-screen 3.5 inch LCD for com-
pactness.) The full setup can be seen in the right panel of Fig-
ure 1. The costs associated with various parts are included in
the appendix. The total retail off-the-shelf cost of the system
is around $480 (not including the car battery).

F. Electrical supply. The design of this system focuses on

low-resource mass-triage scenarios, where power is limited
or absent. We therefore chose to power our system from a
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Coral USB
Accelerator

Fig. 1. Left: Hardware configuration consisting of a Raspberry Pi 4 (4 GB RAM),
a Google Coral USB accelerator (top), a RasPi Camera v2 and a FLIR Lepton
3.5 Radiometry Long-Wave Infrared Camera. Right: Installation of system with all
cabling including power and external monitor for visualization (not shown or needed
for detection).

car battery, which is a readily available power source across
the planet. Since car batteries supply energy at 12V, a step-
down transformer is required. We chose a 12V to 5V DC
step-down power converter that comes with a 15W output
(3A at 5V). The transformer was equipped with a USB Type-
C power supply output, which was connected to the RasPi.

Noting that the average car battery supplies 40 Ampere-
hours or 144,000 Coulombs at 12V for one charge cy-
cle, and the RasPi together with the coral, transformer and
LCD touchscreen draw 3A at 5V, the car battery can supply
power for %{% = 32 hours continuously before
discharging. Assuming we do not want the car battery to
go below 50% of its capacity, we expect the car battery to
run the unit for 16 hours continuously before needing to be
recharged.

G. Temperature and Humidity Detection. A
temperature-humidity detection module was added to
assist with the calibration of the FLIR lepton camera.
Specifically, we used the DHT22 sensor module that is
comprised of a capacitive humidity sensor and a thermistor
that measures the surrounding air to provide calibrated
temperature and humidity values.

This module comes with a digital board that houses three
pins, namely VCC, GND, and OUT. The sensor has an oper-
ating voltage of 3.3/5V (DC), and the OUT can be read from
a GPIO pin on the RasPi. The temperature range is —40 to
80°C, and the humidity range is 0 — 100%RH. The associ-
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ated Python software that allowed us to integrate the sensor
with the RasPi is open source and available in our Github
repository (39).

H. Face and thorax detection. To estimate febrile state,
cyanosis, heart rate, and respiration effort, it is necessary to
detect people in a frame and segment out certain regions of
the face. For febrile detection, the forehead-eye region is nec-
essary. Heart rate estimation is performed on the area of the
face below the eyes. For cyanosis estimation, the lips need to
be segmented, and the thorax region is necessary for respira-
tory effort estimation.

We use PoseNet (40) to detect people in a frame. This
is a convolutional neural network based algorithm which re-
gresses keypoints of human beings in an image or video.
Here, keypoints refer to image coordinates of certain key
parts of the body, such as the elbows, knees, eyes, nose, etc.

We use the estimated keypoints of the left and right eyes to
extract the various face segments mentioned above. If we de-
fine the distance between the eyes to be D pixels, then to de-
termine the bounding box around the forehead-eye region, we
use a rectangle that has width 2D and a height 1.2D. The base
of the bounding box is 0.2D below the eyes. This ensures
that the forehead-eyes area is captured. This is an impor-
tant site since the inner canthus of the eye is consistently the
warmest area on the head and the most suitable area for fever
detection (41). To create a bounding box around the lips, we
move a distance D below the eyes and create a bounding box
with width D and height 0.5D. For heart rate estimation, the
bounding box has a height of 0.8D, starting 0.2D below the
eyes and extending downwards. It has width 1.2D, which ex-
tends from 0.1D left of the left eye to 0.1D right of the right
eye. The bounding box for respiratory effort estimation is ob-
tained by using the shoulder keypoints as reference. The top
edge of the bounding box is formed by joining the shoulder
keypoints. If we let the number of pixels between the shoul-
ders be denoted, R, then the bottom edge is 1.5R pixels below
the top edge. I.e., the bounding box has a width of R pixels
and height of 1.5R pixels. Note that the coordinates obtained
by applying this heuristic are rounded to the closest integer
value

These values were set empirically (through trial and error
using the authors as test points). With few subjects in a given
lockdown space, large scale experiments in a short period of
time were not possible. In future experiments, these values
can be optimized on larger datasets. Figure 2 shows an ex-
ample of the forehead and lip detection on one of the authors
using this approach in the visible spectrum (upper plot) and
the corresponding FLIR image (lower plot). Note that the
images have slight FOV, image angle, and translational dif-
ferences since the cameras cannot take images from the same
location in space and operate at different (non-synchronous)
sampling rates.

I. Febrile state detection. Unlike the previous studies, our
proposed system detects key points using visible light video
and then transforms the coordinates of the bounding boxes of
the ROI to coordinates in the thermal video. After finding the
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Fig. 2. Bounding boxes detected for the forehead and lips from a 1m range in visible
light video (upper image) and thermal video (lower image) using PoseNet.

ROI in the thermal video, the ten pixels exhibiting the high-
est temperatures are averaged to produce a final temperature
estimate. Lastly, a threshold is set to determine the febrile
state.

I.1. Thermal output calibration. To achieve a more accu-
rate measurement of the body temperature, we followed the
guidelines from the FLIR Lepton 3.5 datasheet (42) and used
a robust regression to map the temperature output to the
ground truth within the desired range.

We used bottles (with open lids) of heated water with tem-
perature ranging from 35 — 40°C as a heat source and located
them at one meter to the camera and approximately in the
center of the field of view (FOV). (See figure 3.)

The reference temperature of the water was measured
three times using a Braun IRT6500 thermometer and aver-
aged. The reference has an accuracy of £0.2°C within the
35 — 42°C measurement range. Also, the top ten pixels in
the heat source were selected and averaged as the final out-
put of the FLIR Lepton camera. The slope and the intercept
are then fitted using the above-described experiment via Hu-
ber regression implemented in scipy 1.2.3. The Root Mean
Square Error (RMSE) metric was used to evaluate the fitting
error. The fitted line was then implemented to convert pixels
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values to temperature output.

Fig. 3. lllustration of the water calibration experiment. The bright spot in the lower
left quadrant of the FLIR output represents the water heated to varying known tem-
peratures.

1.2. ROI registration in thermal video. Since the forehead-
eyes area is detected in the visible light image sequences,
a coordinates transformation is needed to find the forehead-
eyes location in the thermal video. The transformation de-
pends on the resolutions and FOVs of the two cameras and
the relative physical displacement between them. The reso-
lution of the RasPi Camera is set at 1640 x 1232 pixels and
the corresponding FOV is 62.2° horizontally and 48.8° ver-
tically. The resolution of the FLIR Lepton camera is set to be
160 x 120 pixels and the corresponding FOV is 57° horizon-
tally and 71° diagonally. Since there only exist less than 2 cm
distance and consequently a small angle difference between
the cameras, the transformation can be expressed as:

ZLyisibletThias

TLihermal = Tratio
_ YLyisibletYni
thhermal - MZZT;W Las (1)
R _ zRyisible t Thias
thermal — Tratio
_ YRyisiblet T
thhermal = EZZTaiiO s

Where xL,yL are the coordinates for the left vertex of
the bounding box and xR,yR denote the right vertex.
TratiosYratio are the resolution ratios between RasPi Cam-
era and FLIR Lepton Camera. And xp;qs,Ypiqs are the view
difference caused by different FOVs and can be calculated as:

FOVhorizontalfthermal/tan

FOVhorizontal —wvisible

h = tan
2 2
v = tan FOVvertical—thermal /tan FOVvertical—visible
2 2

. h—1
Thias = Resozumonvisible—horizontal . T

. v—1
Yvias = ReSOZUtzonvisiblef'UeTtical . 2

2

In practice, because of the angle difference and distance be-
tween the cameras, which varies with different mounting
schemes, empirical offsets were added to ensure accurate
transformation.
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1.3. Threshold selection. Forehead (temporal) temperature is
usually 0.5°F (0.3°C) to 1°F (0.6°C) lower than an oral tem-
perature measurement (43). Combining the guideline from
Cleveland Clinic (13), a threshold of 37.4°C was selected.

J. Cyanosis detection. To detect cyanosis, we use the im-
age of the lips, which is segmented as explained in section H.
In this work, we have tested three classification algorithms: K
nearest neighbor algorithm, logistic regression, and support
vector classifier on a dataset of cyanotic and non-cyanotic
lips. We picked the algorithm with the best performance to
run in real-time on the RasPi. This algorithm classifies im-
ages of lips segmented from the frames coming from the vis-
ible light camera as cyanotic or non-cyanotic.

J.1. Dataset of cyanotic lips. A small dataset was created us-
ing images available on the internet. Images of cyanotic lips
were identified using Google Image search, and those images
with the word “cyanosis” in the description were chosen to
be included in the dataset. Similarly, images of non-cyanotic
or healthy lips were chosen from Google Images at random.
(Human over-read was used to ensure quality.) These images
were cropped to include only the lips and exclude other parts
of the face. The dataset is balanced with 35 cyanotic lip im-
ages and 35 non-cyanotic lip images. We have attempted to
make the dataset as race and age inclusive as possible. The
non-cyanotic lip images are a mix of different races and also
include a range of ages, from infants to elderly people. Find-
ing such a mix of races was challenging for cyanotic lip im-
ages using internet-based image searches, which is consistent
with the racial bias observed in other datasets (44). Approx-
imately 91% of the cyanotic images belong to fair skinned
people. The dataset is included in our Github repository (39).
It is important to note that the labels for these images are not
verified by independent healthcare experts. We assume that
the description of the images that were available on the inter-
net are correct.

J.2. Classification algorithm. The task of classifying lip im-
ages as cyanotic or non-cyanotic is a binary classification
problem. As stated above, we implemented three binary clas-
sifiers for this purpose: K nearest neighbors (KNN), logis-
tic regression (LR), and support vector classifier (SVC). We
computed the frequency of pixel intensities from each color
channel (R, G, B channels) and used this as input to the clas-
sifiers. A simple histogram with eighteen equally spaced bins
was used for this purpose. The number of bins (i.e., 18) was a
hyperparameter that was tuned. The rationale behind this was
that the color distribution would be different in cyanotic and
non-cyanotic lips, but there would be some colors in com-
mon. In other words, not all of the lip would be cyanotic, and
some areas outside of the lip would be included. The bins
representing these colors could then be regularized out.

For the KNN algorithm, we used K = 3 neighbors (chosen
by hyperparameter tuning) and the Euclidean distance metric
to calculate the distance between the neighbors. Logistic re-
gression is a well known binary classification algorithm. In
our implementation, we combined this with Lo regulariza-
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tion. For the SVC, a regularization parameter C' = 2 was
chosen via grid search. Radial basis function kernel was used
to make SVC a non-linear classifier. Leave-one-out cross val-
idation method was used for all three classifiers to report the
results.

For all the three implementations above, we have used the
scikit-learn package (version 0.22.2) (45) in Python 3.7.3.
We have used the default scikit-learn values for the param-
eters which are not mentioned above.

K. Heart rate estimation. Our implementation of heart rate
estimation uses the visible light camera in our system. We
have followed the algorithm detailed in (46) for our imple-
mentation. This method attempts to nullify the effects of the
motion of the subject and illumination variation while mea-
suring heart rate, which are common problems in a real-world
setting. The steps involved are detailed below. It is worth
noting that a similar pipeline can be applied to thermal video
as well, and the fluctuation of the output in ROI can also be
viewed as remote PPG.

K.1. ROI detection and tracking. In their original work, (46)
use the Viola-Jones face detection algorithm (47) to detect
faces in the frames. They then use the Discriminative Re-
sponse Map Fitting method (48) to find facial landmarks to
select the ROI, which is the area of the face below the eyes.
This reduces interference caused by blinking and other eye
movement and also excludes non-face pixels like the back-
ground.

In our implementation, we use PoseNet (40) to detect faces
and identify the region of the face below the eyes, as ex-
plained in H. The Viola-Jones algorithm relies on the pres-
ence of eyes and the face looking straight into the camera
in order to detect the face. If the face is at an angle to the
camera, detection is not guaranteed. PoseNet does not suffer
from this problem. The process of obtaining the ROI using
PoseNet is explained in section H.

K.2. lllumination rectification. This step is performed in or-
der to reduce the effect of illumination changes that occur
in the environment where the system is placed. To achieve
this, the authors in (46) calculate the mean value of all pixels
in the green channel for the ROI extracted above and for the
background region. Some amount of the mean green chan-
nel value of the background is subtracted from the face re-
gion. This amount is determined iteratively using a Normal-
ized Least Mean Square adaptive filter (49). The authors use
the Distance Regularized Level Set Evolution method (50) to
segment out the background in order to obtain the mean green
channel value. We use a simpler method that involves extract-
ing pixels that are not part of the ROI and finding their mean
green channel value. Note that the green channel is used
over other channels since it contains the strongest plethys-
mographic signal out of all the three channels (27).

K.3. Non-rigid motion estimation. Non-rigid motions inside

the ROI, such as small changes in expression, can disturb
the heart rate estimation. To address this, the authors of (46)
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segment the illumination rectified mean values into smaller
pieces and estimated their standard deviations. 5% of the seg-
ments with the highest standard deviations are excluded from
further processing. In our implementation, we find that ex-
cluding 20% of segments with the highest standard deviation
provided more accurate results during initial optimization.

K.4. Temporal filtering. Three filters are used by (46) on the
signal obtained from the above step to exclude frequencies
outside the range of interest. First, a detrending filter is used
to remove the slow and non-stationary trend in the signal.
Next, a moving average filter is used to remove random noise.
Finally, a Hamming window-based finite impulse response
bandpass filter is used to limit the signal to have frequen-
cies in the desired range. The filter has cutoff frequencies
of 0.7Hz and 4Hz to cover the normal range of heart rate
from 42 beat-per-minute (bpm) to 240 bpm. After filtering,
the power spectral density (PSD) of the signal is found us-
ing Welch’s method (51). The frequency with the maximum
power is multiplied by 60 to obtain the heart rate in beats-
per-minute.

L. Respiration effort estimation. Respiration rate is a dif-
ficult parameter to estimate, given that it can be non-periodic,
spectral estimation techniques are likely to fail. In partic-
ular, we are looking to observe the pattern of respiration
(i.e., struggling to breath), rather than any respiratory rate (al-
though hyperventilation is important to identify). Rather than
estimating a rate, we chose to derive the respiratory effort
tracing that can then be used to derive further metrics (e.g.,
high sample entropy with a peak in energy between 0.05-2
Hz may identify disordered, but rapid, breathing). Of course,
much more data is needed before reliable metrics and thresh-
olds can be determined.

To determine the respiratory effort, we isolate the upper
thorax using a bounding box that covers the regions from
the shoulders to the diaphragm. Then we calculated the first
difference between each pixel in subsequent frames. The fi-
nal effort signal is then given as the average of each ‘differ-
ence’ image after a post-processing bandpass filter step (with
a passband of 0.5Hz and 2Hz).

Experiments

M. Febrile state detection. The preliminary test was con-
ducted on a healthy male subject. A heated cloth was put on
the subject’s forehead to raise the temperature of the subject’s
forehead. The estimated temperature from the proposed sys-
tem was recorded immediately after a measurement from the
thermometer in the center of the subject’s forehead. The sub-
ject was sitting one meter away from the cameras. The RMSE
between the estimated value and temperature from the ther-
mometer was used to evaluate the accuracy of our proposed
system.

N. Heart rate estimation. To test the algorithm in real time,

one of the authors was used as the subject. The subject was
seated in an indoor setting at distances of 50cm and 1m from
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the system. The heart rate was measured using the system,
and the pulse reading was taken at the wrist simultaneously.
The pulse readings are used as ground truth. Each reading
was one minute long. This was repeated for different heart
rate by increasing the heart rate using cardiovascular exer-
cises. The subject tried to stay as still as possible to get ac-
curate readings. 30 readings were recorded in total, with 15
readings recorded at a distance of 50cm from the system and
15 readings recorded at a distance of 1m from the system.

O. Respiratory effort estimation. To test this concept, one
of the authors was used as a subject. The subject stood 0.5m
away from the system, and the algorithm was run to estimate
respiratory effort for 30 seconds in each trial. Respiratory
rate was recorded simultaneously by counting the number of
breaths per minute. There were a total of 14 trials where 7
were normal breathing, and the other 7 were faster and harder
breaths to simulate shortness of breath. It was ensured that
there was minimal illumination variation in the environment
in order to avoid interference from varying ambient lighting.

Results

P. Febrile state detection. The left subfigure in figure 4
shows the measurements used in the calibration process and
the fitted results. The calibrated values of the slope and in-
tercept were determined to be 0.0113 and 313.383, respec-
tively, and the resultant RMSE was 0.57°C. The right sub-
figure in figure 4 shows the measured data points in the pre-
liminary experiment, in which the proposed system achieved
an RMSE of 0.41°C and a Pearson correlation coefficient of
0.96. When applying 37.4°C as the threshold for febrile state
detection, an accuracy of 96.7% and an area under receiver
operating characteristic curve (AUC) of 0.97 were achieved.

Since the system described here was only created in an
apartment with a narrow temperature and light range, which
is not necessarily reflective of how this tool might be used
in a real triage situation, we evaluated the system in Emory’s
ED and discussed its utility with the ED team. When used
in a bright cold environment, the temperature estimation ap-
peared to run about 2 degrees °C lower than in the training
environment, and the lip analysis triggered many false posi-
tives.

Q. Cyanosis detection. Tables 1 shows the confusion ma-
trices for each classifier. Figure 5 shows the receiver operat-
ing characteristic curve and AUC of each classifier. Table 2
summarizes the accuracy, AUC, sensitivity and specificity of
each of the three classification models.

To assess the relative importance of the features used for
classification, we visualized the weights assigned to differ-
ent features by the logistic regression classifier, since this is
easier to interpret than the parameters of the SVR or KNN.
Figure 6 shows the weights for the eighteen features used
(six bins each for each of the three R, G and B channels).
The first six features correspond to the red channel (R1 - R6).
The next six features correspond to the green channel (G1 -
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Fig. 4. Upper: Calibration of FLIR images using a bottle of water: Best fitted line
between the average temperature from the thermometer and the FLIR pixel values
had a root mean square error (RMSE) of 0.57 °C. Lower: Estimated temperature
vs. temperature measured from thermometer. The Pearson correlation between
the parameters was found to be 0.96 and the RMSE difference between them was

0.41°C. Table 1. Confusion matrix for KNN, LR, SVC.
Actual Values
KNN ) Cyanotic | Non-cyanotic
Predicted Values Cyanotic 28 13
Non-cyanotic 7 22
Actual Values
R Cyanotic | Non-cyanotic
Predicted Values Cyanotic 27 10
Non-cyanotic 8 25
Actual Values
sve Cyanotic | Non-cyanotic
Predicted Values Cyanotic 32 13
Non-cyanotic 3 22

G6) and the last six features correspond to the blue channel
(B1 - B6).

R. Heart rate estimation.Figure 7 provides a Bland-
Altman plot for the heart rate estimates. The mean of the ab-
solute difference between the ground truth and estimate val-
ues is 16.31 bpm, and the standard deviation of this absolute
difference is 14.42 bpm. It can be observed that the estimate
struggles to provide an accurate hear rate above 70 bpm. This
could be due to small movements within the ROI - the sub-

medRxiv | 7


https://doi.org/10.1101/2020.04.09.20059840
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.04.09.20059840; this version posted April 30, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

Table 2. Performance of assessed cyanosis detection classifiers.

Algorithm || Accuracy (%) || AUC Se Sp
KNN 71.4 0.76 || 0.83 || 0.63
LR 74.3 0.73 || 0.77 || 0.71
SvC 77.2 0.83 091 || 0.63
1.0
0.8 ’,’/
2 061 ,//
E 0.4 1 ,f’/
=
024 g —— KNN AUC = 0.76
-~ —— LRAUC=0.73
) —— SVC AUC = 0.83
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 5. Receiver operating characteristic curves for the three classifiers evaluated
in this work for cyanosis detection. The filled circles represent the operating points
resulting in the other performance statistics. (Small differences exist due to the
leave-one-out cross-validation approach.)
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Fig. 6. Weighting of features from logistic regression. The features are the his-
togram values the R, G and B channels. Positive coefficients refer to cyanotic con-
dition and negative refer to non-cyanotic.

ject had to perform cardiovascular exercises to raise the heart
rate. The breathing rate also increased, which caused move-
ment in the face while inhaling and exhaling. Another issue
that contributed to the errors was sudden changes in lighting.

S. Respiratory effort estimation. Figure 8 shows the time
series signal obtained by the process described above (taking
the mean value of all pixels of the difference between consec-
utive frames and passing them through a bandpass filter). On
the left hand side is the signal obtained for rapid breathing
(tachnypnea) at a respiratory rate of 20 breaths per minute.
On the right side of the image is the signal obtained for hy-
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Fig. 7. Bland-Altman plot of estimated heart rates from visible camera from a single
subject

perventilation at 60 breaths per minute.

Figure 9 shows the distribution of energy in the 0.05Hz to
2Hz frequency range of the signal along side the correspond-
ing respiratory rate measured. It can be seen that the energy
values approximately track the respiratory rate. The Pear-
son correlation coefficient between the respiration rate and
energy is 0.63.

T. Clinical feedback. Figure 10 illustrates the system being
used (hand-held version, not on tripod) in a field test at the
emergency department. A series of informal tests for vary-
ing lighting conditions were made, and informal discussions
were conducted with the clinical staff. (Formal testing was
not possible because no ethical review approval had been
made at the time.)

Discussion

U. Forehead and lip segmentation. Detecting and seg-
menting out the forehead and lips is the first step in our
pipeline. The accuracy of this stage can determine the ac-
curacy of the remaining stages. This step is dependent on
the performance of PoseNet, which sometimes provides false
positive detection of individual’s faces. In this implementa-
tion, it is limited to detecting ten people in any given frame.

V. Febrile state detection. Previous meta-reviews suggest
that peripheral temperature may not be sufficient to determine
fever (52, 53). This suggests that our proposed system, along
with all traditional methods that measure peripheral temper-
ature, like an ear thermometer, are not suitable to be used to
perform an accurate diagnosis of febrile state. However, the
proposed system is useful to perform mass early screening of
the febrile state as a triage tool. The body temperature varies
throughout the day in accordance with the circadian rhythm
((14), chapter 218). Taking this into account and having a
dynamic threshold can reduce the number of false positive
and false negative fever detection. Besides, body tempera-
ture could vary based on the ambient temperature. Having a
reference temperature can help solve this issue. Additionally,
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Fig. 9. Plot of energy in signal against respiration rate.

the thermal camera in selection does not innately have the
level of accuracy required for this task. Thus, a calibration
for the targeted temperature range needs to be performed.

However, the temperature calibration of the thermal cam-
era is not a trivial task and can be inaccurate depending on
various aspects, like environmental temperature and surface
condition. Also, a previous study suggests that improper use
and interpretation of the infrared camera can lead to inaccu-
rate triage (54). Hence, it is important to understand that the
proposed system is only reliable for the designated task un-
der limited conditions. For example, the presence of common
cosmetics or clothing such as a turban or hijab can affect the
accuracy of the estimated temperature from thermal camera
(55). With a higher budget, the use of a thermal camera with
higher accuracy and, if possible, one which is pre-calibrated
can lead to a more reliable system. But a higher cost will
inevitably lower the accessibility of the system.

W. Cyanosis estimation. For the detection of cyanosis, out
of the three classification approaches evaluated, the SVC ex-
hibited the highest accuracy (77.1%), and KNN has the high-
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Fig. 10. Photo of one of the authors testing out the system at the emergency
department during a preliminary field trial.

est AUC (0.93), although this is not significantly higher than
the AUC of 0.91 for the SVR. The SVR also produces the
fewest false negatives (missed cyanosis), which at triage, is
probably the most important feature of this system. For the
open-source implementation, we, therefore, chose the SVR,
although we note this is somewhat arbitrary at this point,
given the size of the data set we used.

To visualize the effect of the features on the overall clas-
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sification, we plot the LR coefficients for each feature (see
figure 6).

It can be observed that the red channel exhibits a higher im-
portance for cyanosis detection. When creating a histogram
of the pixel values with six equally spaced bins for each of
the three color channels, it can be seen that every channel (R,
G, and B) contributes to the classification.

We note that the lip cyanosis dataset we used is relatively
small and contains relatively good quality images. In the
wild, the quality of images is not guaranteed to be high.
This may be due to variations in lighting, occlusions, move-
ment, angle of presentation, distances much greater than
Im, among other issues. Consistency of ambient lighting is
an important factor in ensuring the correct classification of
cyanosis (14). Camera parameters such as field of view and
shutter speed can also influence the absolute color detected
by the camera. Applying a color correction by using a color
reference in the frame can solve this issue (56). Cosmetics
applied to and around the lip can also interfere with the clas-
sification. In practice, we observed that if the mouth is open
or teeth are visible, the cyanosis classifications tend to be in-
accurate.

Perhaps the most important issue to consider is that of skin
color and the variation of presentation of cyanosis across the
human race. It has been reported that detection of peripheral
cyanosis in individuals with distinct levels of cutaneous pig-
mentation can have different levels of difficulty, but can be
considerably mitigated by selecting the appropriate skin site
to perform the observations (57). Research into racial bias
in facial recognition algorithms (44) also has highlighted just
how dangerous it can be to use these algorithms out-of-the-
box, without tuning to a population or thought about the bias
it can create.

X. Heart rate estimation. From the results obtained from
our experiments, it can be seen that the algorithm is capa-
ble of estimating heart rate at low heart rates, but it requires
further tuning in order to increase accuracy. The deviation
from ground truth increased when there was a movement in
the ROI and when there were large and frequent illumination
changes, such as from a bright screen. Note that in this ex-
periment, the subject was very still, and illumination changes
in the environment were relatively low. This indicates a need
for an improved heart rate estimation approach.

The algorithm is still susceptible to noise from lighting
variation and unwanted movement, which affects the HR es-
timates. It is also seen that the heart rate tracking is less ac-
curate as the heart rate increases, which may be due to move-
ment in the ROI due to rapid breathing after performing car-
diovascular exercises to increase the heart rate.

Y. Respiratory effort estimation. Shortness of breath
changes the breathing pattern when compared to normal
breathing. This is evident from figure 8. Figure 9 shows
that the energy in the respiratory effort signal is positively
correlated with the respiratory rate measured. These results
indicate that respiratory effort has the potential to be used
in the classification of breathing as normal or abnormal.

10 | medRxiv

Further studies will have to be conducted on a larger
number of subjects with varied demographics in order to
create an algorithm capable of performing this classification
accurately. In the future, we aim to address issues that can
cause interference with readings, such as lighting variation,
movement of clothes, unwanted movement of the body, etc.
This will make the algorithm more robust to noise.

Z. Clinical testing.During a rapid group session, con-
ducted mostly over video connections, and partially in per-
son, we determined that the system would best be deployed
in a mass triage situation. For this reason we chose to add a
car battery supply. We found varying temperatures required a
temperature sensor to help with calibration. Finally, clinical
feedback stressed the need for heart rate and oxygen satura-
tion assessment. (Saturations below 92% and heart rate above
110 beats per minutes were identified as reasons for triage
through to the emergency department.) While heart rate was
implementable in a short period of time, oxygen saturation
was left for future work. We also chose to add respiratory
effort estimation as a key vital sign, since its implementation
is similar to that of heart rate estimation. Never-the-less, the
lack of test subjects, and rapidity of turn-around in develop-
ment, limited the accuracy of these additional vital signs.

Conclusion

In this work, we have proposed a system that can detect fever
and cyanosis and estimate heart rate and respiratory effort us-
ing a combination of visible light and thermal cameras oper-
ating on an edge computation platform that is running state-
of-the-art deep learning algorithms. The system does not re-
quire any direct interaction between the device and either pa-
tients or healthcare workers. The source code needed to repli-
cate our proposed system can be found on Github (39). It is
important to note that PoseNet is image size and rotationally
invariant (at least for most behaviors), and although we opti-
mize the analysis to work at a 1m distance from the camera,
this invariance should create robustness to movement to and
from the camera, as well as within the frame. Many improve-
ments can be made to this system to increase the classification
performance and stability, including larger population studies
and end-to-end deep learning. However, the need for some-
thing is acute and will be increasingly so in low resource ar-
eas.

Through this work, put together as a rapid response within
a few days under lockdown, we hope to provide a starting
point for automatic triage in clinical settings. Improving on
this work could lead to novel implementations that may help
streamline triage in clinics and hospitals, potentially during
the current pandemic, where non-contact and rapid screening
has distinct advantages for infection reduction.
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Supplementary Note A: Bill of Materials

Table 3. Parts required to assemble hardware required with retail prices at time of
publication. I indicates optional

[ Part # [ PartName [ Manufacturer | Price (3) |
1 Raspberry Pi 4 with 1-4 GB of RAM Raspberry Pi 61.20
2 16 GB microSD card Sandisk 5.99
3 Google Coral USB accelerator Google 74.99
4 Visible light (Red, Green and Blue; RGB) RasPi Camera v2 Raspberry Pi 27.50
5 Temperature/Humidity sensor Adafruit 9.99
6 FLIR Lepton 3.5 Radiometry Long-Wave Infrared Camera FLIR 200.00
7 Purethermal-2 FLIR Lepton Smart I/O Module FLIR 100.00

8 3.5 inch Resistive Touch-Screen TFT Display Jun-Electron 22.99
9% Car battery (12V, 44 Ah) Optima 199.99
10 Top-Post Battery Cable Terminal Positive/Negative Clamp BaiFM 5.00
111 12V to 5V DC USB Step-Down Power Converter Konnected 12.99
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