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Abstract1

Governments around the world are responding to the novel coronavirus (COVID-19) pandemic12

with unprecedented policies designed to slow the growth rate of infections. Many actions,3

such as closing schools and restricting populations to their homes, impose large and visible4

costs on society. In contrast, the benefits of these policies, in the form of infections that5

did not occur, cannot be directly observed and are currently understood through process-based6

simulations.2–4 Here, we compile new data on 1,659 local, regional, and national anti-contagion7

policies recently deployed in the ongoing pandemic across localities in China, South Korea, Iran,8

Italy, France, and the United States (US). We then apply reduced-form econometric methods,9

commonly used to measure the effect of policies on economic growth, to empirically evaluate10

the effect that these anti-contagion policies have had on the growth rate of infections. In the11

absence of any policy actions, we estimate that early infections of COVID-19 exhibit exponential12

growth rates of roughly 42% per day. We find that anti-contagion policies collectively have had13

significant effects slowing this growth. Our results suggest that similar policies may have14

different impacts on different populations, but we obtain consistent evidence that the policy15

packages now deployed are achieving large, beneficial, and measurable health outcomes. We16

estimate that, to date, current policies have already prevented or delayed on the order of 6217

million infections across these six countries. These findings may help inform whether or when18

these ongoing policies should be lifted or intensified, and they can support decision-making in19

the other 180+ countries where COVID-19 has been reported.520
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Introduction21

The 2019 novel coronavirus1 (COVID-19) pandemic is forcing societies around the world to make22

consequential policy decisions with limited information. After containment of the initial outbreak23

failed, attention turned to implementing large-scale social policies designed to slow contagion of24

the virus,6 with the ultimate goal of slowing the rate at which life-threatening cases emerge so as25

to not exceed the capacity of existing medical systems. In general, these policies aim to decrease26

opportunities for virus transmission by reducing contact among individuals within or between pop-27

ulations, such as by closing schools, limiting gatherings, and restricting mobility. Such actions are28

not expected to halt contagion completely, but instead are meant to slow the spread of COVID-1929

to a manageable rate. These large-scale policies are informed by epidemiological simulations2,4, 7–1730

and a small number of natural experiments in past epidemics.18 However, the actual effects of31

these policies on infection rates in the ongoing pandemic are unknown. Because the modern world32

has never experienced a pandemic from this pathogen, nor deployed anti-contagion policies of such33

scale and scope, it is crucial that direct measurements of policy impacts be used alongside numerical34

simulations in current decision-making.35

Populations across the globe are currently weighing whether, or when, the health benefits of36

anti-contagion policies are worth the costs they impose on society. Many of these costs are plainly37

seen; for example, restrictions imposed on businesses are increasing unemployment,19 travel bans38

are bankrupting airlines,20 and school closures may have enduring impacts on affected students.2139

It is therefore not surprising that some populations hesitate before implementing such dramatic40

policies, particularly when these costs are visible while their health benefits – infections and deaths41

that would have occurred but instead were avoided or delayed – are unseen. Our objective is to42

measure the direct health benefits of these policies; specifically, how much these policies slowed the43

growth rate of infections. We treat recently implemented policies as hundreds of different natural44

experiments proceeding in parallel. Our hope is to learn from the recent experience of six countries45

where early spread of the virus triggered large-scale policy actions, in part so that societies and46

decision-makers in the remaining 180+ countries can access this information.47
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Here we directly estimate the effects of 1,659 local, regional, and national policies on the growth48

rate of infections across localities within China, France, Iran, Italy, South Korea, and the US (see49

Figure 1 and Supplementary Table 1). We compile publicly available subnational data on daily50

infection rates, changes in case definitions, and the timing of policy deployments, including (1)51

travel restrictions, (2) social distancing through cancellations of events and suspensions of educa-52

tional/commercial/religious activities, (3) quarantines and lockdowns, and (4) additional policies53

such as emergency declarations and expansions of paid sick leave, from the earliest available dates54

to April 6, 2020 (see complete descriptions in the Supplementary Information, also Extended Data55

Fig. 1). During this period, populations in these countries remained almost entirely suscepti-56

ble to COVID-19, causing the natural spread of infections to exhibit almost perfect exponential57

growth.7,14,22 The rate of this exponential growth may change daily and is determined by epidemi-58

ological factors, such as disease infectivity and contact networks, as well as policies that induce59

behavior changes.7,8, 22 We cannot experimentally manipulate policies ourselves, but because they60

are being deployed while the epidemic unfolds, we can estimate their effects empirically. We exam-61

ine how the daily growth rate of infections in each locality changes in response to the collection of62

ongoing policies applied to that locality on that day.63

We employ well-established “reduced-form” econometric techniques23,24 commonly used to mea-64

sure the effects of policies25,26 or other events (e.g., wars27 or environmental changes28) on economic65

growth rates. Similarly to early COVID-19 infections, economic output generally increases exponen-66

tially with a variable rate that can be affected by policies and other conditions. Unlike process-based67

epidemiological models,7–9,12,22,29,30 the reduced-form statistical approach to inference that we ap-68

ply does not require explicit prior information about fundamental epidemiological parameters or69

mechanisms, many of which remain uncertain in the current pandemic. Rather, the collective influ-70

ence of these factors is empirically recovered from the data without modeling their individual effects71

explicitly (see Methods). Prior work on influenza,31 for example, has shown that such statistical72

approaches can provide important complementary information to process-based models.73

To construct the dependent variable, we transform location-specific, subnational time-series data74

on infections into first-differences of their natural logarithm, which is the per-day growth rate of75
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infections (see Methods). We use data from first- or second-level administrative units and data on76

active or cumulative cases, depending on availability (see Supplementary Information). We then77

employ widely-used panel regression models23,24 to estimate how the daily growth rate of infections78

changes over time within a location when different combinations of large-scale social policies are79

enacted (see Methods). Our econometric approach accounts for differences in the baseline growth80

rate of infections across sub-national locations, which may be affected by time-invariant charac-81

teristics, such as demographics, socio-economic status, culture, and health systems; it accounts for82

systematic patterns in growth rates within countries unrelated to policy, such as the effect of the83

work-week; it is robust to systematic under-surveillance specific to each sub-national unit; and it84

accounts for changes in procedures to diagnose positive cases (see Methods and Supplementary85

Information). The reduced-form statistical techniques we use are designed to measure the total86

magnitude of the effect of changes in policy, without attempting to explain the origin of baseline87

growth rates or the specific epidemiological mechanisms linking policy changes to infection growth88

rates (see Methods). Thus, this approach does not provide the important mechanistic insights89

generated by process-based models; however, it does effectively quantify the key policy-relevant re-90

lationships of interest using recent real-world data, when fundamental epidemiological parameters91

are still uncertain.92

Results93

We estimate that in the absence of policy, early infection rates of COVID-19 grow 42% per day on94

average (Standard Error [SE] = 7%), implying a doubling time of approximately 2 days. Country-95

specific estimates range from 24% per day in China (SE = 9%) to 69% per day in Iran (SE =96

5%). Growth rates in South Korea, Italy, France, and the US are very near the 42% average97

value (Figure 2a). These estimated values differ from observed growth rates because the latter are98

confounded by the effects of policy. These growth rates are not driven by the expansion of testing or99

increasing rates of case detection (see Methods and Extended Data Fig. 2) and are not dependent100

on data from any particular region of any country (Extended Data Fig. 3).101
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Some prior analyses of pre-intervention infections in Wuhan suggest slower growth rates (dou-102

bling every 5–7 days)32,33 using data collected before national standards for diagnosis and case103

definitions were first issued by the Chinese government on January 15, 2020.34 However, case data104

in Wuhan from before this date contains multiple irregularities:34 the cumulative case count de-105

creased on January 9; no new cases were reported between January 9 and January 15; and there106

were concerns over whether information about the outbreak was actively suppressed35 (see Supple-107

mentary Table 2). When we remove these problematic data, utilizing a shorter but more reliable108

pre-intervention time series from Wuhan (January 16–21, 2020), we recover a growth rate of 43%109

per day (SE = 3%, doubling every 2 days) consistent with results from all other countries (Figure 2a110

and Supplementary Table 3), except Iran.111

During the early stages of an epidemic, a large proportion of the population remains suscepti-112

ble to the virus, and if the spread of the virus is left uninhibited by policy or behavioral change,113

exponential growth will continue until the fraction of the susceptible population declines meaning-114

fully.7,29 This decline results from members of the population leaving the transmission cycle, due115

to either recovery or death.29 After correcting for estimated rates of case-detection,36 we compute116

that the minimum susceptible population in any of the administrative units in our sample is ap-117

proximately 78.0% of the total population (Cremona, Italy: roughly 79,000 total infections in a118

population of 360,000) and 86% of administrative units across all six countries would likely be in119

a regime of uninhibited exponential growth (susceptible fraction of population > 95%) if policies120

were removed on the last date of our sample.121

Consistent with predictions from epidemiological models,2,18,37 we find that the combined effect122

of policies within each country reduces the growth rate of infections by a substantial and statistically123

significant amount (Figure 2b, Supplementary Table 3). For example, a locality in France with a124

baseline growth rate of 0.34 (national average) that fully deployed all policy actions used in France125

would be expected to lower its daily growth rate by −0.28 to a growth rate of 0.06. In general, the126

estimated total effects of policy packages are large enough that they can in principle offset a large127

fraction of, or even eliminate, the baseline growth rate of infections—although in several countries,128

many localities are not currently deploying the full set of policies used in that country. Overall, the129
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estimated effects of all policies combined are generally insensitive to dropping regional (i.e. state-130

or province-level) blocks of data from the sample (Extended Data Fig. 3).131

In China, only two policies were enacted across 116 cities early in a seven week period, providing132

us with sufficient data to empirically estimate how the effects of these policies evolve over time133

without making any assumptions about the timing of these effects (see Methods and Fig. 2b). We134

estimate that the combined effect of these policies significantly reduced the growth rate of infections135

by −0.14 (SE = 0.031) in the first week immediately following their deployment (also see Extended136

Data Fig. 5a), with effects doubling in the second week to −0.30 (SE = 0.040), and stabilizing in137

the third week at −0.34 (SE = 0.036). In other countries, we lack sufficient data to estimate these138

temporal dynamics explicitly and only report the average pooled effect of policies across all days139

following their deployment (see Methods). If other countries were to exhibit transient responses140

similar to that observed in China, we would expect effects in the first week following deployment to141

be smaller in magnitude than the average effect for all post-deployment weeks. Below, we explore142

how our estimates would change if we impose the assumption that policies cannot affect infection143

growth rates until after a fixed number of days, but we do not find evidence this improves model144

fit (Extended Data Fig. 5b).145

The estimates described above (Figure 2b) capture the superposition of all policies deployed146

in each country, i.e., they represent the average effect of policies on infection growth rates that147

we would expect to observe if all policies enacted anywhere in each country were implemented148

simultaneously in a region of that country. We also estimate the effects of individual policies or149

clusters of policies that are grouped either based on their similarity in goal (e.g., library closures and150

museum closures are grouped) or timing (e.g., policies that are generally deployed simultaneously151

in a certain country). In many cases, our estimates for these effects are statistically noisier than152

the estimates for all policies combined because we are estimating multiple effects simultaneously.153

Thus, we are less confident in the individual estimates and in their relative rankings. Estimated154

effects differ between countries, and policies are neither identical nor perfectly comparable in their155

implementation across countries or, in many cases, across different localities within the same coun-156

try. Nonetheless, despite a higher level of variability in these values, 28 out of 34 point estimates157
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indicate that individual policies are likely contributing to reducing the growth rate of infections158

(Figure 2c). Six policies (one in South Korea, two in Italy, and three in the US) have point esti-159

mates that are positive, five of which are small in magnitude (< 0.1) and not statistically different160

from zero (5% level). Consistent with greater overall uncertainty in these dis-aggregated estimates,161

some in China, France, Italy, and South Korea are somewhat more sensitive to dropping regional162

blocks of data (Extended Data Fig. 4). The estimated effects of individual policies are broadly163

robust to assuming a constant delayed effect of all policies (Extended Data Fig. 5c).164

We combine the estimates above with our data on the timing of the 1,659 policy deployments165

to estimate the total effect of all policies across the dates in our sample. To do this, we use our166

estimates to predict the growth rate of infections in each locality on each day, given the policies167

in effect at that location on that date (Figure 3, blue markers). We then use the same model168

to predict what counterfactual growth rates would be on that date if all policies were removed169

(Figure 3, red markers), which we refer to as a “no-policy scenario.” The difference between these170

two predictions is our estimated effect that all anti-contagion policies actually deployed had on171

the growth rate of infections. We estimate that since the beginning of our sample, on average,172

all anti-contagion policies combined have slowed the average daily growth rate of infections by173

−0.156 per day (±0.015, p < 0.001) in China, −0.248 (±0.089, p < 0.001) in South Korea, −0.241174

(±0.068, p < 0.001) in Italy, −0.362 (±0.069, p < 0.001) in Iran, −0.139 (±0.038, p < 0.001) in175

France and −0.092 (±0.033, p < 0.05) in the US. Taken together, these results suggest that anti-176

contagion policies currently deployed in all six countries are achieving their intended objective of177

slowing the pandemic, broadly confirming epidemiological simulations. These results are robust to178

modeling the effects of policies without grouping them (Extended Data Fig. 6a and Supplementary179

Table 4) or assuming a delayed effect of policy on infection growth rates (Supplementary Table 5).180

At a particular moment in time, the total number of COVID-19 infections depends on the growth181

rate of infections on all prior days. Thus, persistent decreases in growth rates have a compounding182

effect on total infections, at least until a shrinking susceptible population slows growth through a183

different mechanism. To provide a sense of scale and context for our main results in Figs. 2 and 3,184

we integrate the growth rate of infections in each locality from Figure 3 to estimate the total number185
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of infections to date, both with actual anti-contagion policies and in the no-policy counterfactual186

scenario. To account for the declining size of the susceptible population in each administrative unit,187

we couple our econometric estimates of the effects of policies with a simple Susceptible-Infected-188

Removed (SIR) model of infectious disease dynamics7,22 that adjusts the susceptible population189

based on previously estimated case-detection rates36 (see Methods). This allows us to extend our190

projections beyond the initial exponential growth phase of infections, a threshold which our results191

suggest would currently be exceeded in several countries in the no-policy scenario.192

Our results suggest that ongoing anti-contagion policies have already substantially reduced the193

number of COVID-19 infections observed in the world today (Figure 4). Our central estimates194

suggest that there would be roughly 27 million more cumulative confirmed cases in China, 20195

million more in South Korea, 2.7 million more in Italy, 5.4 million more in Iran, 530,000 more196

in France, and 5.1 million more in the US had these countries never enacted any anti-contagion197

policies since the start of the pandemic. The relative magnitudes of these impacts partially reflects198

the timing, intensity, and extent of policy deployment (e.g., how many localities deployed policies),199

and the duration for which they have been applied. Several of these estimates are subject to large200

statistical uncertainties (see intervals in Figure 4). Sensitivity tests that assume a range of plausible201

alternative parameter values and disease dynamics, such as incorporating a Susceptible-Exposed-202

Infected-Removed (SEIR) model, suggest that policies may have reduced the number of infections203

by a total of 57–65 million confirmed cases over the dates in our sample (central estimates).204

Discussion205

Overall, our results indicate that large-scale anti-contagion policies are achieving their intended206

objective of slowing the growth rate of COVID-19 infections. Because infection rates in the countries207

we study would have initially followed rapid exponential growth had no policies been applied,208

our results suggest that these ongoing policies are currently providing large health benefits. For209

example, we estimate that there would be roughly 339× the current number of confirmed infections210

in China, 22× in Italy, and 15× in the US by the end of our sample if large-scale anti-contagion211
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policies had not already been deployed. Consistent with process-based simulations of COVID-19212

infections,2,4, 10–12,14,17,29 our empirical analysis of existing policies indicates that seemingly small213

delays in policy deployment likely produce dramatically different health outcomes.214

While the limited amount of currently available data poses challenges to our analysis, our aim215

is to use what data exist to estimate the first-order impacts of unprecedented policy actions in an216

ongoing global crisis. As more data become available, empirical research findings will become more217

precise and may capture more complex interactions. For example, this analysis does not account for218

potentially important interactions between populations in nearby localities,7,38 nor the structure219

of mobility networks.3,4, 10,12,17,39 Nonetheless, we hope the results we are able to obtain at this220

early stage of the pandemic can support critical decision-making, both in the countries we study221

and in the other 180+ countries where COVID-19 infections have been reported.222

A key advantage of our reduced-form “top down” statistical approach is that it captures the real-223

world behavior of affected populations without requiring that we explicitly model all underlying224

mechanisms and processes. This property is useful in the current stage of the pandemic when225

many process-related parameters remain unknown. However, our results cannot and should not be226

interpreted as a substitute for process-based epidemiological models specifically designed to provide227

guidance in public health crises. Rather, our results complement existing models, for example,228

by helping to calibrate key model parameters. We believe both forward-looking simulations and229

backward-looking empirical evaluations should be used to inform decision-making.230

Our analysis measures changes in local infection growth rates associated with changes in anti-231

contagion policies, treating each subnational administrative unit as if it were in a natural experi-232

ment. Intuitively, each administrative unit observed just prior to a policy deployment serves as the233

“control” for the same unit in the days after it receives a policy “treatment”. Thus, a necessary234

condition for our estimates to be interpreted as the plausibly causal effect of these policies is that235

the timing of policy deployment is independent of infection growth rates.23 Such an assumption is236

supported by epidemiological theory, which predicts that infection totals in the absence of policy237

will be near-perfectly exponential early in the epidemic,7 implying that pre-policy infection growth238

rates in this context should be constant. The policies we analyze are unlikely to have been de-239
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ployed in reaction to or anticipation of changes in growth rates, since epidemiological guidance to240

decision-makers explicitly projected constant growth rates in the absence of anti-contagion mea-241

sures.2,29,40,41 In practice, decision-makers have tended to deploy policies in response to the count242

of total infections in their locality, rather than their growth rate,2 in response to outbreaks in other243

regions or countries,42 or based on other arbitrary and exogenous factors, such as closing schools244

on a Monday or after Spring Break.43245

Our analysis accounts for documented changes in the availability of and procedures for testing246

for COVID-19 as well as differences in case-detection across locations; however, unobserved trends in247

case-detection could affect our results (see Methods). For example, if growing awareness of COVID-248

19 caused an increasing fraction of infected individuals to be tested over time, then unadjusted249

infection growth rates later in our sample would be biased upwards. Because an increasing number250

of policies are active later in these samples as well, this bias would cause our current findings to251

understate the overall effectiveness of anti-contagion policies. However, our analysis of estimated252

case-detection trends36 (Extended Data Fig. 2) suggests that the magnitude of this potential bias253

is small, elevating our estimated no-policy growth rates by 0.022 (6%) on average.254

It is also possible that changing public information during the period of our study has some255

unknown effect on our results. If individuals alter their behavior in response to new information256

unrelated to anti-contagion policies, such as news reports about COVID-19, this could alter the257

growth rate of infections and thus affect our estimates. Because the quantity of new information258

is increasing over time, if this information reduces infection growth rates, it would cause us to259

overstate the effectiveness of anti-contagion policies. We note, however, that if public information260

is increasing in response to policy actions, then it should be considered a pathway through which261

policies alter infection growth, not a form of bias. Investigating these potential effects is beyond262

the scope of this analysis, but it is an important topic for future investigations.263

While our analysis has focused on changes in the growth rate of infections, other outcomes,264

such as hospitalizations or deaths, are also of policy interest. Because these outcomes are more265

context- and state-dependent than infection growth rates, their analysis in future work may require266

additional modeling approaches. Nonetheless, we experimentally implement our approach on the267
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daily growth rate of hospitalizations in France, the only country in our sample where we were able268

to obtain hospitalization data at the granularity of this study. We find that the total estimated269

effect of anti-contagion policies on the growth rate of hospitalizations is similar to our reported270

effect on the infection growth rate (Extended Data Fig. 6c).271

Here we exclusively analyzed large-scale anti-contagion social policies to understand their effects272

on infection growth rates within a locality. However, contact tracing, international travel restric-273

tions, and medical resource management, along with many other policy decisions, will play key274

roles in the global response to COVID-19. Our results do not speak to the efficacy of these other275

policies.276

Lastly, the results presented here are not sufficient on their own to determine which anti-277

contagion policies are ideal for particular populations, nor do they speak to whether the social278

costs of individual policies are larger or smaller than the social value of their health benefits. Com-279

puting a full value of health benefits also requires understanding how different growth rates of280

infections and total active infections affect mortality rates, as well as determining a social value281

for all of these impacts. Furthermore, this analysis does not quantify the sizable social costs of282

anti-contagion policies, a critical topic for future investigations.283
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2/19: 1st reported
cases and deaths
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Figure 3: Estimated infection growth rates based on actual anti-contagion policies and in a no-policy counterfac-
tual scenario. Predicted daily growth rates of active (China and South Korea) or cumulative (all others) COVID-19 infections
based on the observed timing of all policy deployments within each country (blue) and in a scenario where no policies were
deployed (red). The difference between these two predictions is our estimated effect of actual anti-contagion policies on the
growth rate of infections. Small markers are daily estimates for subnational administrative units (vertical lines are 95% CI).
Large markers are national averages. Black circles are observed daily changes in log(infections), averaged across administrative
units.
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Figure 4: Estimated cumulative confirmed COVID-19 infections with and without anti-contagion policies. The
predicted cumulative number of confirmed COVID-19 infections based on actual policy deployments (blue) and in the no-policy
counterfactual scenario (red). Shaded areas show uncertainty based on 1,000 simulations where empirically estimated parameters
are resampled from their joint distribution (dark = inner 70% of predictions; light = inner 95%). Black dotted line is observed
cumulative infections. Infections are not projected for administrative units that never report infections in the sample, but which
might have experienced infections in a no-policy scenario.
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Methods399

Data Collection and Processing400

We provide a brief summary of our data collection processes here (see the Supplementary Notes401

for more details, including access dates). Epidemiological, case definition/testing regime, and pol-402

icy data for each of the six countries in our sample were collected from a variety of in-country403

data sources, including government public health websites, regional newspaper articles, and crowd-404

sourced information on Wikipedia. The availability of epidemiological and policy data varied across405

the six countries, and preference was given to collecting data at the most granular administrative406

unit level. The country-specific panel datasets are at the region level in France, the state level in407

the US, the province level in South Korea, Italy and Iran, and the city level in China. Due to data408

availability, the sample dates differ across countries: in China we use data from January 16 - March409

5, 2020; in South Korea from February 17 - April 6, 2020; in Italy from February 26 - April 6, 2020;410

in Iran from February 27 - March 22, 2020; in France from February 29 - March 25, 2020; and in411

the US from March 3 - April 6, 2020. Below, we describe our data sources.412

China We acquired epidemiological data from an open source GitHub project1 that scrapes time413

series data from Ding Xiang Yuan. We extended this dataset back in time to January 10, 2020 by414

manually collecting official daily statistics from the central and provincial (Hubei, Guangdong, and415

Zhejiang) Chinese government websites. We compiled policies by collecting data on the start dates416

of travel bans and lockdowns at the city-level from the “2020 Hubei lockdowns” Wikipedia page2,417

the Wuhan Coronavirus Timeline project on Github,3 and various other news reports. We suspect418

that most Chinese cities have implemented at least one anti-contagion policy due to their reported419

trends in infections; as such, we dropped cities where we could not identify a policy deployment date420

to avoid miscategorizing the policy status of these cities. Thus our results are only representative421

for the sample of 116 cities for which we obtained policy data.422

South Korea We manually collected and compiled the epidemiological dataset in South Korea,423

based on provincial government reports, policy briefings, and news articles. We compiled policy424

actions from news articles and press releases from the Korean Centers for Disease Control and425

Prevention (KCDC), the Ministry of Foreign Affairs, and local governments’ websites.426

Iran We used epidemiological data from the table “New COVID-19 cases in Iran by province”4427

in the “2020 coronavirus pandemic in Iran” Wikipedia article, which were compiled from the data428

provided on the Iranian Ministry of Health website (in Persian). We relied on news media reporting429

and two timelines of pandemic events in Iran5 6 to collate policy data.430

1https://github.com/BlankerL/DXY-COVID-19-Data
2https://en.wikipedia.org/wiki/2020 Hubei lockdowns
3https://github.com/Pratitya/wuhan2020-timeline
4https://en.wikipedia.org/wiki/2020 coronavirus pandemic in Iran
5https://www.thinkglobalhealth.org/article/updated-timeline-coronavirus
6https://en.wikipedia.org/wiki/2020 coronavirus pandemic in Iran
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Italy We used epidemiological data from the GitHub repository7 maintained by the Italian De-431

partment of Civil Protection (Dipartimento della Protezione Civile). For policies, we primarily432

relied on the English version of the COVID-19 dossier “Chronology of main steps and legal acts433

taken by the Italian Government for the containment of the COVID-19 epidemiological emergency”434

written by the Dipartimento della Protezione Civile,8 and Wikipedia.9435

France We used the region-level epidemiological dataset provided by France’s government web-436

site10 and supplemented it with numbers of confirmed cases by region on France’s public health437

website, which was previously updated daily through March 25.11 We obtained data on France’s438

policy response to the COVID-19 pandemic from the French government website,12 press releases439

from each regional public health site,13 and Wikipedia.14440

United States We used state-level epidemiological data from usafacts.org,15 which they compile441

from multiple sources. For policy responses, we relied on a number of sources, including the U.S.442

Centers for Disease Control (CDC), the National Governors Association, as well as various executive443

orders from county- and city-level governments, and press releases from media outlets.444

Policy Data Policies in administrative units were coded as binary variables, where the policy445

was coded as either 1 (after the date that the policy was implemented, and before it was removed)446

or 0 otherwise, for the affected administrative units. When a policy only affected a fraction of447

an administrative unit (e.g., half of the counties within a state), policy variables were weighted448

by the percentage of people within the administrative unit who were treated by the policy. We449

used the most recent population estimates we could find for countries’ administrative units (see the450

Population Data section in the Appendix). Additionally, in order to standardize policy types across451

countries, we mapped each country-specific policy to one of the broader policy category variables452

in our analysis. In this exercise, we collected 137 policies for China, 59 for South Korea, 215 for453

Italy, 22 for Iran, 59 for France, and 1167 for the United States (see Supplementary Table 1).454

Epidemiological Data We collected information on cumulative confirmed cases, cumulative455

recoveries, cumulative deaths, active cases, and any changes to domestic COVID-19 testing regimes,456

such as case definitions or testing methodology. For our regression analysis (Figure 2), we use457

active cases when they are available (for China and South Korea) and cumulative confirmed cases458

otherwise. We document quality control steps in the Appendix. Notably, for China and South459

Korea we acquired more granular data than the data hosted on the John Hopkins University (JHU)460

interactive dashboard;16 we confirm that the number of confirmed cases closely match between the461

7https://github.com/pcm-dpc/COVID-19
8http://www.protezionecivile.it/documents/20182/1227694/Summary+of+measures+taken+against+

the+spread+of+C-19/c16459ad-4e52-4e90-90f3-c6a2b30c17eb
9https://en.wikipedia.org/wiki/2020 Italy coronavirus lockdown

10https://www.data.gouv.fr/en/datasets/fr-sars-cov-2/
11https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires

/infection-a-coronavirus/articles/infection-au-nouveau-coronavirus-sars-cov-2-covid-19-france-et-monde
12https://www.gouvernement.fr/info-coronavirus
13https://www.ars.sante.fr/
14https://fr.wikipedia.org/wiki/Pand%C3%A9mie de maladie %C3%A0 coronavirus de 2020 en France
15https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
16https://github.com/CSSEGISandData/COVID-19
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two data sources (see Extended Data Fig. 1). To conduct the econometric analysis, we merge the462

epidemiological and policy data to form a single data set for each country.463

Econometric analysis464

Reduced-Form Approach The reduced-form econometric approach that we apply here is a465

“top down” approach that describes the behavior of aggregate outcomes y in data (here, infection466

rates). This approach can identify plausibly causal effects23,24 induced by exogenous changes in467

independent policy variables z (e.g., school closure) without explicitly describing all underlying468

mechanisms that link z to y, without observing intermediary variables x (e.g., behavior) that might469

link z to y, or without other determinants of y unrelated to z (e.g., demographics), denoted w. Let470

f(·) describe a complex and unobserved process that generates infection rates y:471

y = f(x1(z1, ... , zK), ... , xN (z1, ... , zK), w1, ... , wM ) (1)

Process-based epidemiological models aim to capture elements of f(·) explicitly, and then simulate472

how changes in z, x, or w affect y. This approach is particularly important and useful in forward-473

looking simulations where future conditions are likely to be different than historical conditions.474

However, a challenge faced by this approach is that we may not know the full structure of f(·), for475

example if a pathogen is new and many key biological and societal parameters remain uncertain.476

Crucially, we may not know the effect that large-scale policy (z) will have on behavior (x(z)) or477

how this behavior change will affect infection rates (f(·)).478

Alternatively, one can differentiate Equation 1 with respect to the kth policy zk:479

∂y

∂zk
=

N∑
j=1

∂y

∂xj

∂xj
∂zk

(2)

which describes how changes in the policy affects infections through all N potential pathways480

mediated by x1, ..., xN . Usefully, for a fixed population observed over time, empirically estimating481

an average value of the local derivative on the left-hand-side in Equation 2 does not depend on482

explicit knowledge of w. If we can observe y and z directly and estimate changes over time ∂y
∂zk

483

with data, then intermediate variables x also need not be observed nor modeled. The reduced-form484

econometric approach23,24 thus attempts to measure ∂y
∂zk

directly, exploiting exogenous variation485

in policies z.486

Model Active infections grow exponentially during the initial phase of an epidemic, when the487

proportion of immune individuals in a population is near zero. Assuming a simple Susceptible-488

Infected-Recovered (SIR) disease model (e.g., ref. [22]), the growth in infections during the early489

period is490

dI

dt
= (Sβ − γ)It =

S→1
(β − γ)It, (3)

where It is the number of infected individuals at time t, β is the transmission rate (new infections491

per day per infected individual), γ is the removal rate (proportion of infected individuals recovering492
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or dying each day) and S is the fraction of the population susceptible to the disease. The second493

equality holds in the limit S → 1, which describes the current conditions during the beginning494

of the COVID-19 pandemic. The solution to this ordinary differential equation is the exponential495

function496

It2
It1

= eg·(t2−t1), (4)

where It1 is the initial condition. Taking the natural logarithm and rearranging, we have497

log(It2)− log(It1) = g · (t2 − t1). (5)

Anti-contagion policies are designed to alter g, through changes to β, by reducing contact between498

susceptible and infected individuals. Holding the time-step between observations fixed at one day499

(t2− t1 = 1), we thus model g as a time-varying outcome that is a linear function of a time-varying500

policy501

gt = log(It)− log(It−1) = θ0 + θ · policyt + εt, (6)

where θ0 is the average growth rate absent policy, policyt is a binary variable describing whether a502

policy is deployed at time t, and θ is the average effect of the policy on growth rate g over all periods503

subsequent to the policy’s introduction, thereby encompassing any lagged effects of policies. εt is504

a mean-zero disturbance term that captures inter-period changes not described by policyt. Using505

this approach, infections each day are treated as the initial conditions for integrating Equation 4506

through to the following day.507

We compute the first differences log(It)− log(It−1) using active infections where they are avail-508

able, otherwise we use cumulative infections, noting that they are almost identical during this early509

period (except in China, where we use active infections). We then match these data to policy vari-510

ables that we construct using the novel data sets we assemble and apply a reduced-form approach511

to estimate a version of Equation 6, although the actual expression has additional terms detailed512

below.513

Estimation To estimate a multi-variable version of Equation 6, we estimate a separate regression514

for each country c. Observations are for subnational units indexed by i observed for each day515

t. Because not all localities began testing for COVID-19 on the same date, these samples are516

unbalanced panels. To ensure data quality, we restrict our analysis to localities after they have517

reported at least ten cumulative infections.518

We estimate a multiple regression version of Equation 6 using ordinary least squares. We519

include a vector of subnational unit-fixed effects θ0 (i.e., varying intercepts captured as coefficients520

to dummy variables) to account for all time-invariant factors that affect the local growth rate of521

infections, such as differences in demographics, socio-economic status, culture, and health systems.24522

We include a vector of day-of-week-fixed effects δ to account for weekly patterns in the growth rate523

of infections that are common across locations within a country, however, in China, we omit day-524

of-week effects because we find no evidence they are present in the data – perhaps due to the fact525

that the outbreak of COVID-19 began during a national holiday and workers never returned to526

work. We also include a separate single-day dummy variable each time there is an abrupt change527

in the availability of COVID-19 testing or a change in the procedure to diagnose positive cases.528

Such changes generally manifest as a discontinuous jump in infections and a re-scaling of subsequent529
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infection rates (e.g., See China in Figure 1), effects that are flexibly absorbed by a single-day dummy530

variable because the dependent variable is the first-difference of the logarithm of infections. We531

denote the vector of these testing dummies µ.532

Lastly, we include a vector of Pc country-specific policy variables for each location and day.533

These policy variables take on values between zero and one (inclusive) where zero indicates no534

policy action and one indicates a policy is fully enacted. In cases where a policy variable captures535

the effects of collections of policies (e.g., museum closures and library closures), a policy variable is536

computed for each, then they are averaged, so the coefficient on this type of variable is interpreted537

as the effect if all policies in the collection are fully enacted. There are also instances where multiple538

policies are deployed on the same date in numerous locations, in which case we group policies that539

have similar objectives (e.g., suspension of transit and travel ban, or cancelling of events and no540

gathering) and keep other policies separate (i.e., business closure, school closure). The grouping of541

policies is useful for reducing the number of estimated parameters in our limited sample of data,542

allowing us to examine the impact of subsets of policies (e.g. Fig. 2c). However, policy grouping543

does not have a material impact on the estimated effect of all policies combined nor on the effect544

of actual policies, which we demonstrate by estimating a regression model where no policies are545

grouped and these values are recalculated (Supplementary Table 4, Extended Data Fig. 6).546

In some cases (for Italy and the US), policy data is available at a more spatially granular level547

than infection data (e.g., city policies and state-level infections in the US). In these cases, we code548

binary policy variables at the more granular level and use population-weights to aggregate them to549

the level of the infection data. Thus, policy variables may take on continuous values between zero550

and one, with a value of one indicating that the policy is fully enacted for the entire population.551

Given the limited quantity of data currently available, we use a parsimonious model that assumes552

the effects of policies on infection growth rates are approximately linear and additively separable.553

However, future work that possesses more data may be able to identify important nonlinearities or554

interactions between policies.555

For each country, our general multiple regression model is thus556

gcit = log(Icit)− log(Ici,t−1) = θ0,ci + δct + µcit +

Pc∑
p=1

(θcp · policypcit) + εcit (7)

where observations are indexed by country c, subnational unit i, and day t. The parameters of557

interest are the country-by-policy specific coefficients θcp. We display the estimated residuals εcit558

in Extended Data Fig. 10, which are mean zero but not strictly normal (normality is not a require-559

ment of our modeling and inference strategy), and we estimate uncertainty over all parameters560

by calculating our standard errors robust to error clustering at the day level.23 This approach561

allows the covariance in εcit across different locations within a country, observed on the same day,562

to be nonzero. Such clustering is important in this context because idiosyncratic events within a563

country, such as a holiday or a backlog in testing laboratories, could generate nonuniform country-564

wide changes in infection growth for individual days not explicitly captured in our model. Thus,565

this approach non-parametrically accounts for both arbitrary forms of spatial auto-correlation or566

systematic misreporting in regions of a country on any given day (we note that it generates larger567

estimates for uncertainty than clustering by i). When we report the effect of all policies combined568

(e.g., Figure 2b) we are reporting the sum of coefficient estimates for all policies
∑Pc

p=1 θcp, ac-569

counting for the covariance of errors in these estimates when computing the uncertainty of this570
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sum.571

Note that our estimates of θ and θ0 in Equation 7 are robust to systematic under-reporting
of infections, a major concern in the ongoing pandemic, due to the construction of our dependent
variable. This remains true even if different localities have different rates of under-reporting, so
long as the rate of under-reporting is relatively constant. To see this, note that if each locality i
has a medical system that reports only a fraction ψi of infections such that we observe Ĩit = ψiIit
rather an actual infections Iit, then the left-hand-side of Equation 7 will be

log(Ĩit)− log(Ĩi,t−1) = log(ψiIit)− log(ψiIi,t−1)

= log(ψi)− log(ψi) + log(Iit)− log(Ii,t−1)

= log(Iit)− log(Ii,t−1) = gt

and is therefore unaffected by location-specific and time-invariant under-reporting. Thus systematic572

under-reporting does not affect our estimates for the effects of policy θ. As discussed above, potential573

biases associated with non-systematic under-reporting resulting from documented changes in testing574

regimes over space and time are absorbed by region-day specific dummies µ.575

However, if the rate of under-reporting within a locality is changing day-to-day, this could bias
infection growth rates. We estimate the magnitude of this bias (see Extended Data Fig. 2), and
verify that it is quantitatively small. Specifically, if Ĩit = ψitIit where ψit changes day-to-day, then

log(Ĩit)− log(Ĩi,t−1) = log(ψit)− log(ψi,t−1) + gt (8)

where log(ψit)−log(ψi,t−1) is the day-over-day growth rate of the case-detection probability. Disease576

surveillance has evolved slowly in some locations as governments gradually expand testing, which577

would cause ψit to change over time, but these changes in testing capacity do not appear to578

significantly alter our estimates of infection growth rates. In Extended Data Fig. 2, we show one579

set of epidemiological estimates36 for log(ψit)− log(ψi,t−1). Despite random day-to-day variations,580

which do not cause systematic biases in our point estimates, the mean of log(ψit) − log(ψi,t−1)581

is consistently small across the different countries: 0.047 in China, 0.066 in Iran, 0.008 in South582

Korea, −0.053 in France, 0.028 in Italy, and 0.036 in the US. The average of these estimates is 0.022,583

potentially accounting for 6.2% of our global average estimate for the no-policy infection growth584

rate (0.35). These estimates of log(ψit) − log(ψi,t−1) also do not display strong temporal trends,585

alleviating concerns that time-varying under-reporting generates sizable biases in our estimated586

effects of anti-contagion policies.587

Transient dynamics In China, we are able to examine the transient response of infection growth588

rates following policy deployment because only two policies were deployed early in a seven-week589

sample period during which we observe many cities simultaneously. This provides us with sufficient590

data to estimate the temporal structure of policy effects without imposing assumptions regarding591

this structure. To do this, we estimate a distributed-lag model that encodes policy parameters592

using weekly lags based on the date that each policy is first implemented in locality i. This means593
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the effect of a policy implemented one week ago is allowed to differ arbitrarily from the effect of594

that same policy in the following week, etc. These effects are then estimated simultaneously and595

are displayed in Fig. 2 (also Supplementary Table 3). Such a distributed lag approach did not596

provide statistically meaningful insight in other countries using currently available data because597

there were fewer administrative units and shorter periods of observation (i.e. smaller samples), and598

more policies (i.e. more parameters to estimate) in all other countries. Future work may be able599

to successfully explore these dynamics outside of China.600

We also explore the day-by-day response to the first anti-contagion policies in a limited number601

Chinese cities using an event study approach.44 We examine the 36 cities in which five days of602

infection growth data immediately before and after deployment of the first anti-contagion policy603

(home isolation) are available (similar samples were unavailable in the other countries we study).604

Pooling these data, we then estimate average rates of infection growth five days before deployment,605

four days before, etc., shown in Extended Data Fig. 5a. In this limited sample of cities, we find606

that infection growth rates separate from the average pre-policy growth rate within the first three607

days following deployment of the policy.608

As a robustness check, we examine whether excluding the transient response from the estimated609

effects of policy substantially alters our results. We do this by estimating a “fixed lag” model,610

where we assume that policies cannot influence infection growth rates for L days, recoding a policy611

variable at time t as zero if a policy was implemented fewer than L days before t. We re-estimate612

Equation 7 for each value of L and present results in Extended Data Fig. 5 and Supplementary613

Table 5.614

Alternative disease models Our main empirical specification is motivated with an SIR model615

of disease contagion, which assumes zero latent period between exposure to COVID-19 and infec-616

tiousness. If we relax this assumption to allow for a latent period of infection, as in a Susceptible-617

Exposed-Infected-Recovered (SEIR) model, the growth of the outbreak is only asymptotically ex-618

ponential.22 Nonetheless, we demonstrate that SEIR dynamics have only a minor potential impact619

on the coefficients recovered by using our empirical approach in this context. In Extended Data620

Figs. 8 and 9 we present results from a simulation exercise which uses Equations 9-11, along with621

a generalization to the SEIR model22 to generate synthetic outbreaks (see Supplementary Methods622

Section 2). We use these simulated data to test the ability of our statistical model (Equation 7) to623

recover both the unimpeded growth rate (Extended Data Fig. 8) as well as the impact of simulated624

policies on growth rates (Extended Data Fig. 9) when applied to data generated by SIR or SEIR625

dynamics over a wide range of epidemiological conditions.626

Projections627

Daily growth rates of infections To estimate the instantaneous daily growth rate of infections628

if policies were removed, we obtain fitted values from Equation 7 and compute a predicted value for629

the dependent variable when all Pc policy variables are set to zero. Thus, these estimated growth630

rates ĝno policy
cit capture the effect of all locality-specific factors on the growth rate of infections (e.g.,631

demographics), day-of-week-effects, and adjustments based on the way in which infection cases are632

reported. This counterfactual does not account for changes in information that are triggered by633

policy deployment, since those should be considered a pathway through which policies affect out-634

comes, as discussed in the main text. When we report an average no-policy growth rate of infections635
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(Figure 2a), it is the average value of these predictions for all observations in the original sample.636

Location-and-day specific counterfactual predictions (ĝno policy
cit ), accounting for the covariance of637

errors in estimated parameters, are shown as red markers in Figure 3.638

Cumulative infections To provide a sense of scale for the estimated cumulative benefits of
effects shown in Figure 3, we link our reduced-form empirical estimates to the key structures in a
simple SIR system and simulate this dynamical system over the course of our sample. The system
is defined as the following:

dSt

dt
= −βtStIt (9)

dIt
dt

= (βtSt − γ)It (10)

dRt

dt
= γIt (11)

where St is the susceptible population and Rt is the removed population. Here βt is a time-evolving639

parameter, determined via our empirical estimates as described below. Accounting for changes in S640

becomes increasingly important as the size of cumulative infections (It +Rt) becomes a substantial641

fraction of the local subnational population, which occurs in some no-policy scenarios. Our reduced-642

form analysis provides estimates for the growth rate of active infections (ĝ) for each locality and643

day, in a regime where St ≈ 1. Thus we know644

dIt
dt
/It

∣∣∣
S≈1

= ĝt = βt − γ (12)

but we do not know the values of either of the two right-hand-side terms, which are required to
simulate Equations 9-11. To estimate γ, we note that the left-hand-side term of Equation 11 is

dRt

dt
≈ d

dt
(cumulative recoveries + cumulative deaths)

which we can observe in our data for China and South Korea. Computing first differences in these645

two variables (to differentiate with respect to time), summing them, and then dividing by active646

cases gives us estimates of γ (medians: China=0.11, Korea=0.048). These values differ slightly from647

the classical SIR interpretation of γ because in the public data we are able to obtain, individuals are648

coded as “recovered” when they no longer test positive for COVID-19, whereas in the classical SIR649

model this occurs when they are no longer infectious. We adopt the average of these two medians,650

setting γ = .079. We use medians rather than simple averages because low values for I induce a651

long right-tail in daily estimates of γ and medians are less vulnerable to this distortion. We then652

use our empirically-based reduced-form estimates of ĝ (both with and without policy) combined653

with Equations 9-11 to project total cumulative cases in all countries, shown in Figure 4. We654

simulate infections and cases for each administrative unit in our sample beginning on the first day655

for which we observe 10 or more cases (for that unit) using a time-step of 4 hours. Given we observe656

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2020. ; https://doi.org/10.1101/2020.03.22.20040642doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/


confirmed cases, rather than true infections, in our data, we seed each simulation by assuming It on657

the first day is equal to the number of observed cases divided by country-specific estimates of the658

proportion of infections confirmed.36 We assume Rt = 0 on the first day. To maintain consistency659

with the reported data, we report our output in confirmed cases by multiplying our simulated660

It + Rt values by the aforementioned proportion of infections confirmed. We estimate uncertainty661

by resampling from the estimated variance-covariance matrix of all parameters. In Extended Data662

Fig. 7, we show sensitivity of this simulation to the estimated value of γ as well as to the use of663

a Susceptible-Exposed-Infected-Recovered (SEIR) framework (see Supplementary Methods Section664

1).665

End Notes666
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Additional Information694

695 Supplementary Information is available for this paper. Correspondence and requests for materials 
696 should be addressed to Solomon Hsiang (shsiang@berkeley.edu). All data and code used in 
697 this analysis are available at https://github.com/bolliger32/gpl-covid. Updates posted at 
698 http://www.globalpolicy.science/covid19.
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b 
 

  
Extended Data Figure 1 | Validating disaggregated epidemiological 
data against aggregated data from the Johns Hopkins Center for 
Systems Science and Engineering. Comparison of cumulative confirmed 
cases from a subset of regions in our collated epidemiological dataset to 
the same statistics from the 2019 Novel Coronavirus COVID-19 
(2019-nCoV) Data Repository by the Johns Hopkins Center for Systems 
Science and Engineering (JHU CSSE).  We conduct this comparison for 1

Chinese provinces and South Korea, where the data we collect are from  
 
 
 

1 https://github.com/CSSEGISandData/COVID-19 (access date: April 7, 
2020) 

local administrative units that are more spatially granular than the data in 
the JHU CSSE database.  a, In China, we aggregate our city-level data to 
the province level, and b, in Korea we aggregate province-level data up to 
the country level. Small discrepancies, especially in later periods of the 
outbreak, are generally due to imported cases (international or domestic) 
that are present in national statistics but which we do not assign to 
particular cities (in China) or provinces (in Korea). 
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Extended Data Figure 2 | Estimated trends in case detection over time 
within each country. Systematic trends in case detection may potentially 
bias estimates of no-policy infection growth rates (see Equation 8). We 
estimate the potential magnitude of this bias using data from the Centre 
for Mathematical Modelling of Infectious Diseases.   Markers indicate daily 2

first-differences in the logarithm of the fraction of estimated symptomatic 

2 Russell, T., Joel Hellewell, and S. Abbot. “Using a delay-adjusted case 
fatality ratio to estimate under-reporting.” Centre for Mathematical 
Modelling of Infectious Diseases Repository (2020). URL: 
https://cmmid.github.io/topics/covid19/severity/global_cfr_estimates.ht
ml (access date: April 18, 2020) 

cases reported for each country over time. The average value over time 
(solid line and value denoted in panel title) is the average growth rate of 
case detection, equal to the magnitude of the potential bias.  For 
example, in the main text we estimate that the infection growth rate in 
the United States is 0.30 (Figure 2A), of which growth in case detection 
might contribute 0.036 (this figure). 
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Extended Data Figure 3 | Robustness of the estimated no-policy growth rate 
of infections and the combined effect of policies to withholding blocks of 
data from entire regions. For each country, we re-estimated Eq. 7 using real 
data k times, each time withholding one of the k first-level administrative 
regions (“Adm1,” i.e. state or province) in that country. Each gray circle is either 
(a) the estimated no-policy growth rate or (b) the total effect of all policies 
combined, from one of these k regressions. Red and blue circles show estimates 

from the full sample, identical to results presented in panels A and B of Figure 2, 
respectively. For each country panel, if a single region is influential, the 
estimated value when it is withheld from the sample will appear as an outlier. 
Some regions that appear influential are highlighted with an open pink circle. As 
in Figure 2B of the main text, we estimate a distributed lag model for China and 
display each of the estimated weekly lag effects (red circle is the same “without 
Hubei” sample for lags). 
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Extended Data Figure 4 | Robustness of the estimated effects of individual 
policies to withholding blocks of data from entire regions. Same as Extended 
Data Figure 3, but for individual policies (analogous to Figure 2C in the main  
 
   

text). In cases where two regions are influential, a second region is highlighted 
with an open green circle. 
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Extended Data Figure 5 | Evidence supporting models where policies 
affect infection growth rates  in the days following deployment. 
Existing evidence has not demonstrated whether policies should affect 
infection growth rates in the days immediately following deployment. It is 
therefore  not clear ex ante  whether the policy variables in Eq. 7 should be 
encoded as “on” immediately following a policy deployment.  We 
estimate “fixed-lag” models in which a fixed delay between a policy’s 
deployment and its effect is assumed (see Supplementary Methods 3). If a 
delay model is more consistent with real world infection dynamics, these 
fixed lag models should recover larger estimates for the impact of policies 
and exhibit better model fit. a, Because data from China cover a longer 
period with fewer policies that are each implemented early in the sample, 
we estimated an explicit distributed lag model in the main article (Figure 
2), finding evidence of policy impacts in the first week of deployment and  
   

evidence that these effects increase in the following weeks. Using a 
reduced sample of 36 Chinese cities where at least five days of infection 
data are available before and after the first policy (home isolation) is 
deployed, we implement an event study.  Orange markers show the 3

average infection growth rate in the five days immediately prior to and 
following the first  policy deployment.  b, R-squared values associated 
with fixed-lag lengths varying from zero to fifteen days. In-sample fit 
generally declines or remains unchanged if policies are assumed to have a 
delay longer than four days (whiskers are 95% CI computed through 
resampling). c, Estimated effects for no lag (the model reported in the 
main text) and for fixed-lags between one and five days. Estimates 
generally are unchanged or shrink towards zero (e.g. Home isolation in 
Iran), consistent with mis-coding of post-policy days as no-policy days. 

3 For a canonical example, see: Jacobson, L. S., LaLonde, R. J., & Sullivan, 
D. G. (1993). Earnings losses of displaced workers. The American Economic 
Review, 685-709. 
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Extended Data Figure 6 | Estimated infection or hospitalization 
growth rates with actual anti-contagion policies and in a “no policy” 
counterfactual scenario. a, The estimated daily growth rates of active 
(China, South Korea) or cumulative (all others) infections based on the 
observed timing of all policy deployments within each subnational unit 
(blue) and in a scenario where no policies were deployed (red). Identical 
to Figure 3 in the main text, but using an alternative disaggregated 
encoding of policies that does not group any policies into policy 
packages.  b, Same as Figure 3 in the main text, but Eq. 7 is implemented 
for a single example administrative unit, Wuhan, China. c, Same as Figure 

3 in the main text, but using hospitalization data from France rather than 
cumulative cases, since the French government stopped reporting the 
latter after March 25, 2020. For all panels, the difference between the 
with- and no-policy predictions is our estimated effect of actual 
anti-contagion policies on the growth rate of infections (or 
hospitalizations). The markers are daily estimates for each subnational 
administrative unit (vertical lines are 95% confidence intervals). Black 
circles are observed changes in log(infections) (or diamonds for 
log(hospitalizations)), averaged across the same administrative unit.  
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Extended Data Figure 7 | Sensitivity of estimated averted/delayed 
infections  to the choice of  γ and σ in an SIR/SEIR framework. This 
figure displays the sensitivity of total averted/delayed cases presented in 
Figure 4 of the main text to alternative modeling assumptions. We 
compute total cases across the respective final days in our samples for the 
six countries presented in our analysis. The figure displays how these 
totals vary with eight values of γ (0.05-0.4) and four values of σ (0.2, 
0.33, 0.5, ∞), where the final value of σ (∞) corresponds to the SIR model. 
a, The simulated total number of infections under no policy.  b, Same, but 
using  
   

actual policies. c, The difference between (a) and (b), which are the total 
number of averted/delayed infections.  d, Same as (c), but on a 
logarithmic scale similar to Figure 4 in the main text (a-c are on a linear 
scale, trimmed to show details). Figure 4 in the main text uses γ = 0.079, 
which we calculate using empirical recovery/death rates in countries 
where we observe them (China and South Korea, see Methods). If we 
assume a 14-day delay between infected individuals becoming 
non-infectious and being reported as “recovered” in the data, we would 
calculate γ = 0.18. Figure 4 in the main text assumes σ = ∞.    
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Extended Data Figure 8 | Simulating reduced form estimates for the 
no-policy growth rate of infections for different population regimes and 
disease dynamics. We examine the performance of reduced form 
econometric estimators through simulations in which different underlying 
disease dynamics are assumed (see Supplementary Information Section 3). 
Each histogram shows the distribution of econometrically estimated values 
across 1,000 simulated outbreaks. Estimates are for the no-policy infection 
growth rate (analogous to Figure 2A) when three different policies are 
deployed at random moments in time. The black line shows the correct value 
imposed on the simulation and the red histogram shows the distribution of 
estimates using the regression in Eq. 7, applied to data output from the 
simulation. The grey dashed line shows the mean of this distribution. The 12 
subpanels describe the results when various values are assigned to the mean 

latency period (γ-1) and mean infectious period (σ-1) of the disease. “σ = ∞” 
is equivalent to SIR disease dynamics. In each panel, Smin is the minimum 
susceptible fraction observed across all 1,000 45-day simulations shown in 
each panel. For reference, in the real datasets used in the main text, after 
correcting for country-specific underreporting, Smin across all units analyzed 
is 0.78 and 95% of the analyzed units finish with Smin > 0.93. “Bias” refers to 
the distance between the dashed grey and black line as a percentage of the 
true value.  a, Simulations in near-ideal data conditions in which we observe 
active infections within a large population (such that the susceptible fraction 
of the population remains high during the sample period). For example, 
these conditions are similar to those in our real data for Chongqing, China. b, 
Simulations in a non-ideal data scenario where we are only able to observe 
cumulative infections in a small population. For example, these conditions 
are similar to those in our real sample of data for Cremona, Italy. 
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Extended Data Figure 9 | Simulating reduced form estimates for 
anti-contagion policy effects for different population regimes and 
assumed  disease dynamics.  Same as Extended Data Figure 8, but 

estimates are for the combined effect of three different policies 
(analogous to Figure 2B) that are deployed at random moments in time. 
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Extended Data Figure 10 | Regression residuals for the growth rates of 
COVID-19 by country. These plots show the estimated residuals from 
Equation 7 for each country-specific econometric model. Histograms (left) 
show the estimated unconditional probability density function. Quantile  

plots (right) show quantiles of the cumulative density function (y-axis) 
plotted against the same quantiles for a Normal Distribution. For 
additional details, see the full model under the Methods - Econometric 
analysis section as well as the results in Figure 3 of the main paper.  
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Describes the data acquisition and processing for the epidemiological and policy data. The sources for 
both types of data come from a variety of in-country data sources, which include government public 
health websites, regional newspaper articles, and Wikipedia crowd-sourced information. We have 
supplemented this data with international data compilations.  
 
Supplementary Methods: 
Describes sensitivity analyses and simulations performed to verify the robustness of our model, 
including: the sensitivity of our regression model and counterfactual projections to varying 
epidemiological parameters; and the sensitivity of our estimates to alternative lag structures, 
withholding of data, and differing policy groupings. 
 
Supplementary Tables: 
Contains tables detailing: 1) the number of anti-contagion policies tabulated by administrative 
division in each country; 2) the main regression results estimating the effect of policy on growth rates; 
and 3) epidemiological data in Wuhan prior to policy intervention, and estimates of the initial 
infection growth rate and case doubling times.   
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The Supplementary Information contains three sections: Supplementary Notes, Supplementary 
Methods, and Supplementary Tables. 
 
The Supplementary Notes section describes the data acquisition and processing procedure for the 
epidemiological and policy data used in this paper. The sources for both types of data come from a 
variety of in-country data sources, which include government public health websites, regional 
newspaper articles, and Wikipedia crowd-sourced information. We have supplemented this data with 
international data compilations. A list of the epidemiological and policy data compiled for this 
analysis can be found here.  
 
The Supplementary Methods section describes sensitivity analyses and simulations performed to 
verify the robustness of our model, including: the sensitivity of our regression model and 
counterfactual projections to varying epidemiological parameters; and the sensitivity of our estimates 
to alternative lag structures, withholding of data, and differing policy groupings. 
 
The Supplementary Tables section contains tables detailing: 1) the number of anti-contagion policies 
tabulated by administrative division in each country; 2) epidemiological data in Wuhan prior to policy 
intervention, and estimates of the initial infection growth rate and case doubling times;  and 3) the 
main regression results estimating the effect of policy on growth rates.   
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Supplementary Notes 

Epidemiological Data 
The epidemiological datasets and sources used in this paper are described below. The main health 
variables of interest are: 

1. “cum_confirmed_cases”: The total number of confirmed positive cases in the administrative 
area since the first confirmed case.  

2. “cum_deaths”: The total number of individuals that have died from COVID-19. 
3. “cum_recoveries: The total number of individuals that have recovered from COVID-19. 
4. “cum_hospitalized”: The total number of hospitalized individuals.  
5. “cum_hospitalized_symptom”: The total number of symptomatic hospitalized individuals.  
6. “cum_intensive_care” : The total number of individuals that have received intensive care.  
7. “cum_home_confinement”: The total number of individuals that have been self-quarantined in 

their homes as a result of a positive test. 
8. “active_cases”: The number of individuals who currently still test positive on the date of the 

observation. 
9. “active_cases_new”: The number of new active cases since the previous date.  
10. “cum_tests”: The total number of tests (includes both positive and negative results) 

conducted in an administrative unit.  
 
Additional metadata accompanying the health outcome variables: 

1. “date”: The date of observation.  
2. “adm0_name”: The ISO3 (country) code to which this observation belongs. 
3. “adm1_name”: The name of the “Adm1” region (typically state or province)  to which this 

observation belongs. 
4. “adm2_name”: If the dataset contains observations at the “Adm2” level, then this is the name 

of the “Adm2” region to which this observation belongs (e.g. counties in the United States). 
5. “adm[1,2]_id”: Any alphanumeric ID scheme to identify different administrative units (e.g. FIPS 

code in the United States). 
6. “lat”: The latitude of the centroid of the administrative unit. 
7. “lon”: The longitude of the centroid of the administrative unit. 
8. “policies_enacted”: The number of active policies that are in place for the administrative unit 

as of that date. This variable is not population weighted. 
9. “testing_regime”: A categorical variable used to identify when an administrative region 

changed their COVID-19 testing regime. This is zero-indexed, with the ordering only indicating 
chronological progression (there is no external meaning to Regime 2 vs. Regime 1 vs. Regime 
0, and there is no consistency enforced for coding across countries). For example, if China 
changes their testing regime twice, all observations prior to the first regime change would be 
coded “testing_regime=0,” all observations in between the two changes would be coded 
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“testing_regime=1,” and all observations after the second change would be coded 
“testing_regime=2.” 

10. “population”: The population of the administrative unit. 
11. “pop_is_imputed”: A binary variable equal to 1 if the population is imputed, and 0 otherwise. 

Used for imputing the population of some cities in China.  

Data Imputation:  
In instances where health outcome observations are missing or suffer from data quality issues, we 
have imputed to fill in the missing values. Imputed health outcome variables are denoted by 
“[health_outcome]_imputed.” For the majority of our analyses we do not use imputed data; France is 
the exception where we impute two days of missing data. We do this to ensure we have variation in 
policy variables for use in the analysis.  
 
We impute by:  

1. Taking the natural log of the non-missing observations pertaining to that health outcome 
variable.  

2. Linearly interpolating over the missing dates for that health outcome variable. 
3. Exponentiating the interpolated values back into levels and rounding to the nearest integer.  

China 
We have collated a city-level time series health outcome dataset in China for 339 cities from January 
10, 2020 to April 7, 2020.  
 
For data from January 24, 2020 onwards, we relied on the public dataset Ding Xiang Yuan  (DXY) that 1

reports daily statistics across Chinese cities. Since DXY only publishes the most recent 
(cross-sectional) statistics (and not the historical data), we used the time series dataset scraped from 
DXY in an open source GitHub project . The web scraper program checks for updates at least once a 2

day for the statistics published on DXY and records any changes in the number of cumulative 
confirmed cases, cumulative recoveries or cumulative deaths.  
 
We assumed that no updates to the statistics meant there had been no new cases. We dropped a small 
number of cases that had been recorded but not assigned to a specific city (many of these cases are 
imported ones from other cities). We also dropped confirmed cases in prison populations (we 
assumed the spread of COVID-19 in prisons was not affected by the implementation of city-level 
lockdowns or travel ban policies).  
 
For city level health outcomes prior to January 24, 2020, we manually collected official daily statistics 
from the central  and provincial (Hubei,  Guangdong,  and Zhejiang ) Chinese government websites. 3 4 5 6

1 全球新冠病毒最新实时疫情地图 (The latest real-time global COVID-19 map) 
2 BlankerL/DXY-COVID-19-Data: 2019新型冠状病毒疫情时间序列数据仓库 (COVID-19/2019-nCoV Infection Time Series Data 
Warehouse) 
3 疫情通报 (National Health Commision of PRC; COVID-19 Report) 
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We did not collect city level health outcomes recorded prior to January 24, 2020 in provinces that had 
fewer than ten confirmed cases at that date. We made this decision since our analysis dropped 
observations with fewer than ten cumulative confirmed cases to prevent noisy data during the early 
transmission phase from disproportionately biasing the estimated results. 
 
After merging the two datasets, we conducted a few quality checks:  
 
(1) We checked that cumulative confirmed cases, cumulative recoveries, and cumulative deaths were 
increasing over time. In instances when cumulative outcomes decreased over time, we assumed that 
the recent numbers were more reliable, and treated the earlier number of cumulative cases as missing 
(this was often due to data entry errors or cases where patients that were reported to have been 
diagnosed with COVID-19, but were later found out to actually have tested negative). The magnitude 
of these errors was relatively small. We filled in any missing data with the imputation methodology 
described in the health data overview section.  
 
(2) We validated our city-level dataset by aggregating observations up to the provincial level and 
comparing the time trends from the aggregated dataset to that of the provincial dataset collated by 
Johns Hopkins University.  We confirmed that the two datasets matched very closely (see Figure A2 7

Panel A). 
 
Testing Regime Changes:  
During our sample period starting January 16, 2020, the criteria for being diagnosed with COVID-19 
changed five times in China.  On January 18, 2020, China began using the reverse transcription 8

polymerase chain reaction (RT-PCR) test in addition to genome sequencing to confirm the SARS-CoV-2 
infection in suspected cases.  China also no longer required failure in antibiotic treatment and began 9

considering patients who were not exposed to markets in Wuhan but had contact with symptomatic 
persons from Wuhan.  On January 28, 2020,  China began considering patients not necessarily linked 10

to Wuhan with at least two out of the previous three required clinical manifestations.  On February 11

13, 2020, China created a separate “clinically confirmed” case definition for the Hubei province, which 
counted patients who met clinical criteria through chest imaging and may not have had 
epidemiological links or a positive PCR test.  On February 20, 2020, China reversed this decision and 12

removed the separate “clinically confirmed” case definition for Hubei.  On March 4, 2020, China 13

4 信息发布--湖北省卫生健康委员会 (Information release - Hubei Provincial Health Commission) 
5 广东省卫生健康委员会网站 (Information Release - Guangdong Provincial Health Commission) 
6 浙江省人民政府门户网站疫情通告 (Information Release - Zhejiang Provincial Health Commission) 
7 CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE 
8 'Confusion breeds distrust:' China keeps changing how it counts coronavirus cases 
9 Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China 
10 Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China 
11 Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China 
12 wuhan2020-timeline/时间线TIMELINE.md at master · Pratitya/wuhan2020-timeline; Why China's Huge Increase in New 
COVID-19 Cases Is Actually a Step in the Right Direction.  We have found another data source indicating that this case 
definition change happened on February 5 (Impact of changing case definitions for COVID-19 on the epidemic curve and 
transmission parameters in mainland China); we control for both dates. 
13 Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China 
Affiliation ; China records 2 straight days of fewer than 1,000 new COVID-19 cases 
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http://wsjkw.gd.gov.cn/zwyw_yqxx/index_5.html
http://www.zj.gov.cn/col/col1228996608/index.html
https://github.com/CSSEGISandData/COVID-19
https://www.cnbc.com/2020/02/26/confusion-breeds-distrust-china-keeps-changing-how-it-counts-coronavirus-cases.html
https://www.medrxiv.org/content/10.1101/2020.03.23.20041319v1.full.pdf
https://www.medrxiv.org/content/10.1101/2020.03.23.20041319v1.full.pdf
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expanded the possible laboratory confirmation tests for SARS-CoV-2 to include serology.   We 14

included this information in the dataset because it could have potentially changed the levels and 
short-term growth rates of the number of confirmed cases. 
 
The testing regime date changes are encoded within the data cleaning script.  

France 
We have collated a regional-level time series confirmed cases dataset in France from February 15, 
2020 to March 25, 2020, and regional-level time series hospitalization data from March 3, 2020 to April 
6, 2020.  
 
We used the number of confirmed COVID-19 cases by région from France’s government website.  The 15

sources listed for this dataset were the French public health website,  the Ministry of Solidarity and 16

Health,  French newspapers that reported government information,  and regional public health 17 18

websites.  Given that these data were not published on a daily basis, we supplemented the dataset by 19

scraping the number of confirmed cases by région on the French public health website through March 
25, 2020, which is the last date the subnational case data are made publicly available.   20

 
Hospitalization data come from the same source  (Santé Publique France) as the case data . Santé 21

Publique France  announced they would stop posting regional-level case data because they were not 
reliable, and only provide hospitalization data instead. 
 
Testing Regime Changes:  
The one testing regime change in France occurred on March 13, 2020 with the beginning of the 
epidemic “stade 3”, when the government started to give severe cases in hospitals priority for testing.

 The testing regime date changes are encoded within the data cleaning script. 22

South Korea 
We have collated a provincial-level time series health outcome dataset in South Korea from January 
20, 2020 to April 6, 2020.  
 
Most provinces in South Korea have been publishing data on their number of confirmed coronavirus 
cases. Seoul,  Daegu,  Gyeongsangbuk-do,  Jeollabuk-do,  and Sejong  provinces have been 23 24 25 26 27

14 Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China 
15 Fr-SARS-CoV-2 
16 Infection à coronavirus 
17 Points de situation coronavirus COVID-19  
18 France 3 Régions: Actualités  
19 Agence régionale de santé | Agir pour la santé de tous  
20 Infection au nouveau Coronavirus (SARS-CoV-2), COVID-19, France et Monde 
21 https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-a-lepidemie-de-covid-19/  
22 Coronavirus : en quoi consiste le « stade 3 » de l’épidémie ? 
23 서울특별시 코로나19 발생현황 (Seoul COVID-19 Status)  
24 대구광역시 코로나19 확진자 추이 (Daegu COVID-19 The Confirmed Cases) 
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https://solidarites-sante.gouv.fr/soins-et-maladies/maladies/maladies-infectieuses/coronavirus/article/points-de-situation-coronavirus-covid-19
https://france3-regions.francetvinfo.fr/
https://www.ars.sante.fr/
https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/articles/infection-au-nouveau-coronavirus-sars-cov-2-covid-19-france-et-monde
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reporting the number of confirmed cases on a daily basis. For these provinces, we recorded this 
published health data.  
 
Given that the province of Gangwon-do   does not report provincial-level health data, we refer to the 28

daily number of new cases reported by each of its counties (Chuncheon-si,  Wonju-si,  Gangneung-si,29 30

 Taebaek-si,  Sokcho-si,  and Samcheok-si ). As a result, we manually collected the number of new 31 32 33 34

confirmed cases from each county’s webpage and aggregated the numbers to the provincial level.  
 
The remaining provinces (Gyeonggi-do,  Incheon,  Busan,  Ulsan,  Gwangju,  35 36 37 38 39

Chungcheongnam-do,  Chungcheongbuk-do,  Gyeongsangnam-do,  Jeju,  and  Jeollanam-do ) did 40 41 42 43 44

not explicitly publish the number of cumulative confirmed cases. However, they did publish 
patient-level data, including the date when patients had tested positive. For these provinces, we 
constructed the measure of cumulative confirmed cases by counting the number of daily confirmed 
cases and adding it to the previous date’s total.  
 
Most provinces did not publish the number of deaths. Instead, we checked the daily policy briefings 
posted on the government homepages mentioned in the footnotes and manually collected mortality 
data. In instances when mortality data were not found in the briefings, we obtained the mortality data 
from other sources, such as through social media sources (e.g. Facebook) and blogs maintained by 
local governments. Lastly, we supplemented these sources with mortality data reported in news 
articles.   
 
Testing regime changes:  
We collected information on testing regime changes using press releases from the Korean Center for 
Disease Control and Prevention (KCDC). In the press release menu, the KCDC uploaded daily briefing 
announcements which contained information on testing criteria and changes to its testing regime.  45

Initially, the South Korean government only tested people who: 1) demonstrated respiratory 

25 경상북도 코로나19 발생동향 (Gyeongsangbuk-do COVID-19 Status) 
26 전라북도 코로나19 일일상황보고 (Jeollabuk-do COVID-19 Daily Reports) 
27 세종특별자치시 코로나19 현황판 (Sejong COVID-19 Status) 
28 강원도청 (Gangwon-do Provincial Government)  
29 춘천시 코로나19 현황 (Chuncheon COVID-19 Status) 
30 원주시 코로나19 현황 (Wonju COVID-19 Status) 
31 강릉시 코로나바이러스감염증-19 비상대책 (Gangneung COVID-19 Emergency Plan) 
32 태백시청 (Taebaek City Government) 
33 속초시청 (Sokcho City Government) 
34 삼척시청 (Samcheok City Government) 
35 경기도 코로나19 발생동향 (Gyeonggi-do COVID-19 Status) 
36 인천광역시 코로나19 상황판 (Incheon COVID-19 Status) 
37 부산광역시 코로나19 발생현황 (Busan COVID-19 Status) 
38 울산광역시 코로나19 발생현황 (Ulsan COVID-19 Status) 
39 광주광역시청 (Gwangju COVID-19 Status) 
40 충청남도 코로나19 발생현황 (Chungcheongnam-do COVID-19 Status) 
41 충청북도 코로나19 발생현황 (Chungcheongbuk-do COVID-19 Status) 
42 코로나19 경상남도 현황 (COVID-19 Gyeongsangnam-do Status) 
43 제주특별자치도 코로나19 현황 (Jeju COVID-19 Status) 
44 전라남도 코로나19 현황 (Jeollanam-do COVID-19 Status) 
45 List | Press Release | News Room : KCDC 
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symptoms within 14 days after visiting Wuhan South China Seafood Wholesale Market and 2) those 
who had pneumonia symptoms within 14 days after returning from Wuhan.   46

 
As the outbreak spread, the KCDC broadened the criteria for testing. Starting January 28, 2020, the 
agency isolated 1) those who had fever or respiratory symptoms upon returning from Hubei province 
and 2) those who had symptoms of pneumonia upon returning from mainland China. ,  We coded 47 48

this as the first change in the testing regime. 
 
The second testing regime change occurred on February 4, 2020, when the KCDC announced that 
people who had had any “routine contacts” with confirmed cases were required to self quarantine for 
a 14-day period. The agency defines two categories of contacts: close contacts and routine contacts. 
The former is defined as a person who has been within two meters of, in the same room as, or exposed 
to any respiratory secretions of an infected individual. The latter refers to whether the individual 
conducted any activity in the same place and at the same time as the infected person. Prior to this 
regime change, the KCDC separated those two cases and applied different quarantine policies; 
starting February 4, 2020, any routine contacts were also required to be self-quarantined.  49

 
Shortly thereafter, South Korea aggressively expanded the scope of their testing. Starting February 7, 
2020, the KCDC broadened the definition of suspected cases to 1) anyone who developed a fever or 
respiratory symptoms within 14 days after returning from China, 2) anyone who developed a fever or 
respiratory symptoms within 14 days after being in close contact with a confirmed case, and 3) anyone 
suspected of contracting COVID-19 based on their travel history to affected countries and their clinical 
symptoms.  Moreover, the KCDC announced that the test would be free for all suspected cases and 50

confirmed cases.  As a result of these efforts, KCDC announced that they would begin to test 3,000 51

people daily, a marked increase from only 200 people a day previously.  52

 
The KCDC revised their guidelines on February 20, 2020 in order to test more people. Their press 
release stated: “Suspected cases with a medical professional’s recommendation, regardless of travel 
history, will get tested. Additionally, those who are hospitalized with unknown pneumonia will also be 
tested. Lastly, anybody in contact with a diagnosed individual will need to self-isolate, and will only be 
released when they test negative on the thirteenth day of isolation.”  53

46 중국 후베이성 우한시 폐렴환자 집단발생 | 보도자료 | 알림·자료 (Pneumonia Outbreak in Wuhan City, Hubei, China) 
47 신종코로나바이러스감염증 국내 발생 현황(1월 26일, 사례정의 확대) | 보도자료 | 알림·자료 (COVID-19 Domestic Status 
(Jan 26, Case Definition Broadened)) 
48 NB: The KCDC English website explains the testing regime change in a more condensed format: “Any citizens identified 
with a fever or respiratory symptoms and have visited Wuhan will be isolated and tested at a nationally designated isolation 
hospital, and any foreigners staying in Korea will be conducted in cooperation with police.” Urges cooperation in preventing 
the spread of 2019-nCoV in community | Press Release | News Room : KCDC 
49 알림 > 보도자료 내용보기 " 신종 코로나바이러스 감염증 대응지침 일부 변경 " (Revision in the Guidance Documents for 
COVID-19) 
50 The updates on novel Coronavirus in Korea (since 3 January) | Press Release | News Room : KCDC 
NB: The date of this press release is February 8, 2020, but the definition of “suspected cases” was effective starting from 
February 7, 2020. 
51 NB: The testing fee was already somewhat affordable; a person needed to pay 160,000 KRW (about $130 USD). A related 
article can be found here: 5 신종코로나 진단검사 비용은 얼마? (How much is the COVID-19 testing fee?) 
52 신종 코로나바이러스감염증 중앙사고수습본부 정례 브리핑 (2월 7일) (Daily briefing on COVID-19, February 7)  
53 The updates of COVID-19(as of Feb.19) in Korea | Press Release | News Room : KCDC 
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As the number of patients grew rapidly, the KCDC decided to focus on more vulnerable groups. In their 
February 29, 2020 press release, the agency stated: “The KCDC has asked local government and health 
facilities to focus on tests and treatment, especially targeting those aged 65+ and those with 
underlying conditions who need early detection and treatment.” This change was coded as our next 
testing regime change in the dataset.  54

 
On March 22, 2020,  the KCDC began conducting COVID-19 diagnostic testing for every inbound 
traveler entering from Europe. This was coded as another testing regime change. Of the 1,442 inbound 
travelers from Europe arriving March 22, 2020, 152 were symptomatic and were quarantined and 
tested at an airport quarantine facility. The remaining 1,290 travelers were asymptomatic and were 
moved to a temporary living facility to be tested.   55

 
On March 27, 2020, this policy was expanded, where all inbound travellers from the US with symptoms 
(regardless of nationality) were required to be tested at the airport.  We code this as our final testing 56

regime change.  
The data on the testing regime date changes are in the “KOR_policy_data_sources.csv.” 

Italy 
We have collated a regional and provincial level time series health outcome dataset in Italy from 
February 24, 2020 to April 7, 2020. 
 
This data came from the GitHub repository maintained by the Italian Department of Civil Protection 
(Dipartimento della Protezione Civile). Health outcomes included the number of confirmed cases, the 
number of deaths, the number of recoveries, and the number of active cases. These figures have been 
updating daily at 5 or 6 pm (Central European Time). The regional-level dataset was pulled directly 
from “dati-regioni/dpc-covid19-ita-regioni.csv,” and the provincial-level dataset was pulled from 
“dati-province/dpc-covid19-ita-province.csv.” 
 
Testing regime changes:  
The testing regime change in Italy occurred when the Director of Higher Health Council announced on 
February 26, 2020 that COVID-19 testing would only be performed on symptomatic patients, as the 
majority of the previous tests performed were negative.  
 
The data on the testing regime date changes are in the “ITA_policy_data_sources.csv.” 

Iran 
We have collated a provincial-level time series health outcome dataset in Iran from February 19, 2020 
to March 22, 2020.  

54 The updates of COVID-19 in Korea (As of 29 Feb. 2020)  
55 List | Press Release | News Room : KCDC 
56 The updates on COVID-19 in Korea as of 27 March | Press Release | News Room : KCDC 
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The Iranian government had been announcing its new daily number of COVID-19 confirmed cases at 
the provincial level on the Ministry of Health’s website. This data has been compiled daily in the table 
"New COVID-19 cases in Iran by province"  located in the “2020 coronavirus pandemic in Iran” article 57

on Wikipedia.  
 
We spot-checked the data in the Wikipedia table against the Iranian Ministry of Health 
announcements  using a combination of Google Translate and a comparison  of the numbers in the 58 59

announcements (which were written in Persian script) to the Persian numbers. 
 
Testing regime changes:  
On March 6, 2020, the Ministry of Health announced  a national coronavirus plan, which included 60

contacting families by phone to identify potential cases, along with the disinfecting of public places. 
The plan was to begin in the provinces of Qom, Gilan, and Isfahan, and then would be rolled out 
nationwide. On March 13, 2020, the government announced a military-enforced home isolation policy 
throughout the nation.  This announcement included nationwide disinfecting of public places. While 61

a follow-up announcement of the March 6 high testing regime stating its complete rollout was not 
found, the March 13 announcement did reference the implementation of the public spaces 
component of the earlier plan across the country. We thus assumed that the high testing regime had 
also been fully rolled out on March 13, 2020.  
 
The data on the testing regime date changes are in the “IRN_policy_data_sources.csv.” 

United States 
We have collated a state-level time series health outcome dataset in the United States from January 
22, 2020 to April 7,  2020.  
 
The data come from the Github repository associated with the usafacts.org interactive dashboard. As 
of the time of writing, the data are available here. The repository and dashboard are updated 
essentially in real-time, at least daily. 
 
Testing regime changes:  
To determine the testing regime, we used estimated daily counts of the cumulative number of tests 
conducted in every state, as aggregated by the largely crowdsourced effort named "The Covid 
Tracking Project" (covidtracking.com). We estimated the total number of tests as the sum of 
confirmed positive and negative cases. For some states and some days, there have been no negative 
case counts, in which case we utilize just the confirmed positive cases. We also ensured that the 

57 2020 coronavirus pandemic in Iran   
58 Example of Ministry of Health data:  
  (Identification of 1209 new patients with COVID-19 in the country) شناسایی 1209 بیمار جدید مبتلا به کووید 19 در کشور
59 Google Translate sometimes translates various Persian numbers as "1". Persian numbers compared here: Persian numbers  
60 ANOTHER senior Iranian official dies from coronavirus   
61 Revolutionary Guards to enforce coronavirus controls in Iran   
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confirmed number of positive cases agreed with the counts in the John Hopkins University COVID-19 
›4dataset.   62

 
We programmatically determined possible testing regime changes by filtering for any consecutive 
days during which the testing rate increased at least 250% from one day to the next, and where this 
jump was an increase of at least 150 total tests over one day. After visually inspecting the candidates, 
we confirmed that the automatically detecting testing regime changes represent visually 
distinguishable changes in testing rates. The testing regime date changes are encoded within the data 
cleaning script. 

Policy Data 
The policy events, datasets, and sources used in this paper are described below. For each country, the 
relevant country-specific policies identified were then mapped to a harmonized policy categorization 
used across all countries.  
 
The policy categories are by default coded as binary variables, where “[policy_variable]” = 0 before the 
policy is implemented in that area, and “[policy_variable]” = 1 on the date the policy is implemented 
(and for all subsequent dates until the policy is lifted). There are instances when the value of the policy 
variable is between 0 and 1; for further details, refer to the Policy Intensity subsection. 
 
The main policy categories identified across the six different countries fall into four broad classes: 
 

1. Restricting travel: 
a. “travel_ban_local” : A policy that restricts people from entering or exiting the 

administrative area (e.g county or province) treated by the policy.  
b. “travel_ban_intl_in”: A policy that either bans foreigners from specific countries from 

entering the country, or requires travelers coming from abroad to self-isolate upon 
entering the country. 

c. “travel_ban_intl_out”: A policy that suspends international travel to specific foreign 
countries that have high levels of COVID-19 outbreak.  

d. “travel_ban_country_list”: A list of countries for which the national government has 
issued a travel ban or advisory. This information supplements the policy variable 
“travel_ban_intl_out.” 

e. “transit_suspension”: A policy that suspends any non-essential land-, rail-, or 
water-based passenger or freight transit. 

2. Distancing through cancellation of events and suspension of 
educational/commercial/religious activities:  

a. “school_closure”: A policy that closes school and other educational services in that 
area.  

62 CSSEGISandData/COVID-19: Novel Coronavirus (COVID-19) Cases, provided by JHU CSSE  
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b. “business_closure”: A policy that closes offices, non-essential businesses, and 
non-essential commercial activities in that area. “Non-essential” services are defined 
by area. This policy also includes the limiting of business hours and reducing restaurant 
and bar operations. 

c. “religious_closure”: A policy that prohibits gatherings at a place of worship, specifically 
targeting locations that are epicenters of the COVID-19 outbreak. See the section on 
Korean policy for more information on this policy variable.  

d. “work_from_home”: A policy that requires people to work remotely. This policy may 
also include encouraging workers to take holiday/paid time off. 

e. “event_cancel”: A policy that cancels a specific pre-scheduled large event (e.g. parade, 
sporting event, etc). This is different from prohibiting all events over a certain size.  

f. “no_gathering”: A policy that prohibits any type of public or private gathering. 
(whether cultural, sporting, recreational, or religious). Depending on the country, the 
policy can prohibit a gathering above a certain size, in which case the number of 
people is specified by the “no_gathering_size” variable. 

g. “no_gathering_inside”: A policy that specifically prohibits indoor gatherings. See the 
section on French policy for more information on this policy variable.  

h. “no_demonstration”: A policy that prohibits protest-specific gatherings. See the 
section on Korean policy for more information on this policy variable.  

i. “social_distance”: A policy that encourages people to maintain a safety distance (often 
between one to two meters) from others. This policy differs by country, but includes 
other policies that close cultural institutions (e.g. museums or libraries), or encourage 
establishments to reduce density. 

j. “welfare_services_closure”: A policy that mandates the closure of social welfare 
facilities, specifically mental rehabilitation facilities, social welfare centers, and 
homeless use facilities. See the section on Korean policy for more information on this 
policy variable.  

 
3. Quarantine and lockdown:  

a. “pos_cases_quarantine”: A policy that mandates that people who have tested positive 
for COVID-19, or subject to quarantine measures, have to confine themselves at home. 
The policy can also include encouraging people who have fevers or respiratory 
symptoms to stay at home, regardless of whether they tested positive or not.  

b. “home_isolation”: A policy that prohibits people from leaving their home regardless of 
their testing status. For some countries, the policy can also include the case when 
people have to stay at home, but are allowed to leave for work- or health-related 
purposes.   

4. Additional policies 
a. “emergency_declaration”: A decision made at the city/municipality, county, 

state/provincial, or federal level to declare a state of emergency. This allows the 
affected area to marshal emergency funds and resources as well as activate 
emergency legislation.  
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b. “paid_sick_leave”: A policy where employees receive pay while they are not working 
due to the illness.  

Optional policies: 
In the cases when the aforementioned policies are optional, we denote this as “[policy_variable]_opt.” 

Population weighting of policy variables: 
In cases where only a portion of the administrative unit (e.g. half of the counties within the state) are 
affected by the implementation of the policy, we weight the policy variable by the percentage of 
population within the administrative unit that is treated by the policy. This is denoted as 
“[policy_variable]_popwt,” and the value that this variable can take on is a continuous number 
between 0 and 1. Sources for the population data are detailed in a later section. 

Policy intensity: 
“policy_intensity” is a continuous value between 0 and 1 that modulates the intensity/restrictiveness 
of a policy. By default this value is 0 when the policy has not been implemented and 1 when the policy 
is implemented (i.e. the policy variables are treated as indicator variables). However, in instances 
when a policy has evolved over time, then earlier (less restrictive) implementations of the policy are 
weighted by a “policy_intensity” value that is between 0 and 1, and the most recent (more restrictive) 
version of the policy has a value of 1.  
 
For simplicity, if a given policy has undergone one version change, then the “policy_intensity” of the 
first edition is equal to 0.5, and the value of the second edition is equal to 1. If there have been two 
version changes, then the “policy_intensity” of the first edition is equal to 0.33, the value of the second 
edition is equal to 0.67, and the value of the last edition is equal to 1, etc.   
 
We compute ‘policy_intensity’ using this approach: 
 

1. For non population-weighted policy variables: For a given policy category on a specific date 
(e.g. “business_closure” on March 15, 2020), take the maximum of the mandatory policy 
intensities for all units lower (e.g. Adm0) than, equal to, and higher (e.g. Adm2) than the 
analysis unit (e.g. Adm1). Assign this maximum “policy_intensity” value to the unit of analysis. 
If there is no mandatory version of the policy that applies to the unit of analysis, then take the 
maximum of the optional policy intensities and assign it to the optional policy variable for the 
analysis unit. 

2. For population-weighted policy variables: Take the maximum of the mandatory policy 
intensities for all units lower (e.g. Adm0) than and equal to the analysis unit (e.g. Adm1), and 
assign that as the default mandatory intensity for all units higher (e.g. Adm2). If the policy is 
not mandatory at the analysis or lower unit, then assign the maximum of the optional 
“policy_intensity” value as the default optional intensity for all higher units. For any higher unit 
that has a specific policy, assign the appropriate version (mandatory or optional) of the policy 
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variable at that higher unit the maximum of that intensity and the default intensity, with 
mandatory always taking priority over optional. For all that don't have a specific policy, assign 
them the default intensity (again, assigning this to the optional or mandatory version as 
appropriate). Then calculate the population-weighting at the analysis unit level (e.g. Adm1), 
separately for both optional and mandatory variables. Each higher unit should only have a 
non-zero intensity for optional or for mandatory (or neither), but not both. 

3. For broadly defined policy variables like “social_distance” that could encompass a variety of 
country-specific policies: The “policy_intensity” assignment differs by country. If the specific 
policies employed at the various administrative levels are the same policy, then the approach 
in (1) is used. If they are different policies within the same broad category, then we add 
instead of taking the maximum, allow for both optional and mandatory policies, and and 
otherwise follow the approach of (1). This addition is appropriate across different 
administrative divisions because of (1). If some policies are the same and some are different, 
we use a combination of addition and taking the maximum over the “policy_intensity” values. 
For instances when we add the “policy_intensity” values, once the processed dataset has been 
constructed and formatted, the last step is to normalize each variable such that it takes values 
between 0 and 1 (e.g. if the maximum from addition of sub-policies is 1.4, divide that entire 
column by 1.4). This standardization should again be done separately for each mandatory and 
optional version of each policy. 

 

China 

We obtain data on China’s policy response to the COVID-19 pandemic by culling data on the start 
dates of travel bans and lockdowns at the city-level from the “2020 Hubei lockdowns” Wikipedia page,

 the Wuhan Coronavirus Timeline project on Github,  and various news reports.  63 64

 
To combat the spread of COVID-19, the Chinese government imposed travel restrictions and 
quarantine measures, starting with the lockdown of the city of Wuhan, the origin of the pandemic, on 
January 23, 2020. Immediately following the Wuhan lockdown, neighboring cities followed suit, 
banning travel into and out of their borders, shutting down businesses, and placing residents under 
household quarantine. The same policy measures were implemented in cities across China for the 
next three weeks.  
 
Some lockdowns occurred during the national Chinese New Year holiday (January 24–30, 2020) when 
schools and most workers were on break. On January 27, 2020, China extended the official holiday to 
February 2, 2020, while many additional provinces delayed resuming work and opening schools for 
even longer.  The Chinese New Year holiday is analogous to containment policies such as school 65

closures and restrictions on non-essential work. We do not specifically estimate the effect of this 
holiday extension, as most cities were in lockdown during the extended holiday, and a lockdown is a 

63 2020 Hubei lockdowns 
64 Pratitya/wuhan2020-timeline: 以社会学年鉴模式体例规范地统编自2019年12月起武汉新冠肺炎疫情进展的时间线 (The 
timeline of COVID-19 events since December 2019) 
65 China Extends Lunar New Year Holiday to Feb 2, Shanghai to Feb 9 
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more restrictive containment measure. A lockdown requires all residents to stay home, except for 
medical reasons or essential work, and only allows one person from each household to go outside 
once every one to five days (exact policy varied by city). 

France 
We obtain data on France’s policy response to the COVID-19 pandemic from the French government 
website, press releases from each regional public health site, and Wikipedia.  
 
The French government website contains a timeline of all national policy measures.  Each regional 66

public health agency (l’Agence Régionale de Santé) in France posts press releases with information on 
the policies the région or départements within the région will implement to mitigate the spread and 
impact of the COVID-19 outbreak.  The Wikipedia page on the 2020 coronavirus pandemic in France 67

has collated information on the major policy measures taken in response to the COVID-19 pandemic.   68

 
Starting February 29, 2020, France banned mass gatherings of more than 5,000 people nationwide, 
while some major sporting events were cancelled and a handful of schools closed to mitigate the 
spread of the virus. As more COVID-19 cases were confirmed during the following week, additional 
sporting events were canceled, more schools decided to close, and certain cities and départements 
limited mass gatherings to no more than 50 people, excluding shops, business, restaurants, bars, 
weddings, and funerals. Some régions closed early childhood establishments (e.g. nurseries, daycare 
centers) and prohibited visitors to elderly care facilities. On March 8, 2020, France banned mass 
gatherings of more than 1,000 people nationwide. Other schools, cities, and départements followed 
suit with additional school closures and limiting mass gatherings. On March 11, 2020, France 
prohibited all visits to elder care establishments. Starting March 16, 2020, France closed all schools 
nationwide.  Between March 17, 2020 – March 23, 2020, governments at both the national level and 
région level implemented more restrictive lockdown policies, which included shelter-in-place 
measures,  the closing of public places,  and banning of outside markets and severely restricting 69 70

movement outside of the house.   71

 
We have coded various policies that cancel events and large gatherings as such: any cancellations of 
professional sporting and other specific pre-scheduled events as the policy variable “event_cancel.” 
The “no_gathering” policy variable represents policy measures that banned all events or mass 
gatherings of a certain size, e.g. no gatherings of over 1,000 people. The “social_distance” policy 
variable includes measures preventing visits to elder care establishments, closures of public pools and 
tourist attractions, and teleworking plans for workers.  

66 Info Coronavirus COVID-19 
67 Agence régionale de santé | Agir pour la santé de tous 
68 Pandémie de Covid-19 en France 
69 Info Coronavirus COVID-19  
70 Confinement de 2020 en France  
71 Décret n° 2020-293 du 23 mars 2020 prescrivant les mesures générales nécessaires pour faire face à l'épidémie de covid-19 
dans le cadre de l'état d'urgence sanitaire  
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South Korea 
We obtained data on South Korea’s policy response to the COVID-19 pandemic from various news 
sources, as well as press releases from the Korean Centers for Disease Control and Prevention (KCDC), 
the Ministry of Foreign Affairs, and local governments’ websites. The policy variables coded in the 
dataset are: “welfare_services_closure,” “business_closure_opt,” “emergency_declaration,” 
“no_demonstration,” “religious_closure,” “event_cancel,” “school_closure,” “social_distance_opt,” 
“travel_ban_intl_in_opt,” “travel_ban_intl_out_opt,”, “work_from_home_opt, and 
pos_cases_quarantine”. 
 
On February 28 2020, the KCDC recommended the closure of 14 types of social welfare facilities to 
reduce the spread of infection among vulnerable groups in the population.  These include childcare 72

centers, vocational rehabilitation centers for the disabled,  senior citizen centers, mental 
rehabilitation facilities, and homeless use facilities.  We code this in the variable 
“welfare_services_closure”. Even though it was technically a recommendation, we did not code this 
policy as optional because a majority of facility types listed in the press release (senior citizen centers, 
job centers, childcare centers, etc.) are under public administration, so these facilities likely would 
have followed recommendations. Indeed, some news articles have reported that all children’s centers 
in Busan are closed  as well as over 3,600 facilities in Seoul.  73 74

 
We created another variable, “business_closure_opt”, which applies to two provinces: Seoul and 
Gyeonggi-do. On March 11, 2020, the mayor of Seoul advised that popular commercial establishments 
such as karaoke places, clubs, and cyber cafes be closed.  Seven days later, the governor of 75

Gyeonggi-do issued an executive order limiting the usage of commonly frequented commercial 
establishments and requiring a higher standard of cleanliness.  We coded this as an optional business 76

closure given that the policy discourages usage of these facilities but did not explicitly order them to 
shut down.  
 
Daegu and Gyeongsangbuk-do have been two of the regions hardest hit by COVID-19. The government 
of South Korea declared an emergency for those two areas on March 15, 2020.  We incorporated this 77

information into the variable “emergency_declaration.”  
 
The variable “no_demonstration” reflects the efforts of some regions limiting any protests calling for 
slowing the spread of the outbreak. On February 24, 2020, Incheon stopped a protest in front of the 

72 코로나19 여파 “사회복지 이용시설 휴관 권고” (Social welfare facilities recommended to shut down) 
73 부산 지역아동센터 모두 휴관…더 외로운 저소득층 아이들 (Busan child-care facilities shut down - worse for the 
lower-income children) 
74 서울시, 노인복지관 등 사회복지시설 3601곳 휴관 (Seoul, 3601 social welfare facilities shut down) 
75 코로나19 확산을 막기 위한 서울시 일일보고 (Seoul daily report on limiting the spread of COVID-19)  
76 (브리핑) 이재명, “PC방·노래연습장·클럽형태업소에 밀접이용제한 행정명령” (Cyber cafes, karaokes, and clubs under 
the administrative order limiting close-distance usage) 
77 19 > 뉴스 & 이슈 > 보도자료 내용보기 " [카드뉴스] 중앙재난안전대책본부 정례브리핑(3.14.), 특별재난지역선포(대구, 
경북 경산·청도·봉화) " (Daily briefing on announcing the emergency declaration for the regions: Daegu; Gyeongsangbuk-do 
Gyeongsan, Cheongdo, Bonghwa) 
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Incheon Metropolitan City Hall.  Two days later, Seoul prohibited protests in downtown areas where 78

massive demonstrations used to take place.   79

 
Many province level COVID-19 policies have targeted religious gatherings at Shincheonji Church of 
Jesus, since its religious gatherings have been linked to the explosion in the number of cumulative 
confirmed cases. Provincial governments tried to shut down Shincheonji-related places of worship, 
and the related policy implementation is encoded in the variable “religious_closure.” The regions 
which utilized this policy option are: Daegu,  Gyeongsangbuk-do,  Seoul,  Jeju,  Gyeonggi-do,  80 81 82 83 84

Jeollanam-do,  Gyeongsangnam-do,  Incheon,  Ulsan,  Busan,  Jeollabuk-do,  85 86 87 88 89 90

Chungcheongbuk-do,  Gwangju,  Chungcheongnam-do,  and Daejeon.   91 92 93 94

Many provinces have also canceled public events organized by local administrative agencies . We code 
this policy in the variable “event_cancel”. The regions which exercised this policy are: Seoul , Daegu , 95 96

Gangwon-do , Chungcheongbuk-do , Chungcheongnam-do , Sejong , Daejeon , 97 98 99 100 101

78 보도자료 조회 "인천시, 인천애뜰 잠정 사용중단(금지) 조치" (Incheon prohibits usage of Incheon City Government 
Square) 
79 코로나19 확산 방지를 위해 도심 집회 제한 강화 (Stronger limits on demonstrations in downtown) 
80 신천지 관련시설 폐쇄조치, 확산 방지에 행정력 집중...대구시 경찰청과 긴밀히 협조 (Shincheonji-related facilities shut 
down, Daegu struggling to limit the spread of the virus with the police power)  
81 경북, 신천지 1612명 중 221명 확진···31번이 156명 옮겼다 (Gyeongsangbuk-do, 221 out of 1612 tested positive, the 31st 
patient responsible for infecting 156 people)  
82 서울시, 신천지 집회 시설 폐쇄 결정 (Seoul shuts down Shincheonji-related facilities)  
83 제주 신천지 신도 전원 능동감시 종료…집회 금지는 유지 (Shincheonji believers now free from monitoring, still religious 
gatherings prohibited)  
84 경기도, 신천지 353개 시설 14일간 강제폐쇄·집회금지 조치 내려 (Gyeonggi-do shuts down 353 Shincheonji facilities for 
14 days)  
85 광주일보 "전남도, 신천지 교회·시설 58곳 강제폐쇄 행정명령 발동" (Jeollanam-do shuts down 58 Shincheonji-related 
facilities)  
86 여성조선 "경남, 신천지 시설폐쇄 및 집회 금지 행정명령 발동" (Gyeongsangnam-do shuts down Shincheongji facilities 
and forbids religious gatherings)  
87 인천시, 신천지교회 종교시설 추가 폐쇄조치 시행 | 기관 소식 | 정책·정보 (Incheon shuts down more Shincheonji 
facilities)  
88 울산시, 신천지교회 및 부속기관 폐쇄 조치 (Ulsan shuts down Shincheonji facilities)  
89 [코로나19] 부산, 신천지 시설 폐쇄·집회 금지 2주 추가 연장 (Busan shuts down Shincheonji facilities for two weeks more)  
90 전북 신천지 시설 폐쇄·집회 금지 연장… (Jeollabuk-do extends the period of shutting down Shincheonji facilities)  
91 충북 신천지 시설 38개소 폐쇄‧방역 완료 (Chungcheongbuk-do shuts down 38 Shincheonji facilities)  
92 광주광역시. 신천지 시설 폐쇄 행정명령 (Gwangju shuts down Shincheonji facilities)  
93 충남도, 신천지 관련 시설 58개소 폐쇄 (Chungcheongnam-do shuts down 58 Shincheonji facilities)  
94 대전광역시 신천지 시설 방역 및 폐쇄조치 현황입니다. 신천지 신도 및 교육생 현황입니다. (Status report on Shincheonji 
facilities shutdown, and Shincheonji believers and trainees)  
95 ‘신종 코로나 확산’ 2월 취소 행사 확인하세요! (Event cancellation in February due to COVID-19) 
96 코로나19(Covid-19) 확산 2~3월 취소 행사 확인하세요! (Event cancellation in February and March due to COVID-19)  
97 연합뉴스 "강원 5명 코로나19 확진..공공시설 출입제한·행사 연기·취소" (Five confirmed cases in Gangwon-do, public 
facilities shutdown, events delayed or canceled)  
98 충북도, 코로나19 확산될라…행사 줄줄이 취소 (Chungcheongbuk-do cancels events due to COVID-19)  
99 '신종코로나 유입 막자'…충남 대규모 체육·문화 행사 줄취소(종합) (Chungcheongnam-do cancels events due to 
COVID-19)  
100 세종시 신종 코로나여파 각종 행사 취소 및 자제요청 (Sejong urges cancellation of events amid COVID-19 outbreak)  
101 '심각단계' 격상 코로나19 대응 시정브리핑 (The alert level raised, COVID-19 daily briefing)  
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Gyeongsangbuk-do , Gyeongsangnam-do , Jeju , Gyeonggi-do , Ulsan , Gwangju , Busan , 102 103 104 105 106 107 108

Incheon , Jeollanam-do , and Jeollabuk-do .  109 110 111

 
The policy variable “school_closure” has been turned on for the entirety of the Korean time series 
dataset. This is because all schools were already on vacation during the beginning of the outbreak, 
and the government then postponed their start dates. At the time of writing, the Ministry of Education 
announced that schools would be kept closed until April 3, 2020.  Therefore, this policy variable is 112

always equal to 1 in the dataset.  
 
“social_distance_opt” has been turned on from February 29, 2020, when KCDC recommended social 
distancing as one of the main tools to deal with the outbreak. In their press release, they 
recommended that “people maintain personal hygiene and practice ‘social distancing’ until the 
beginning of March, an important point of this outbreak.”  In the case of Daegu, the hardest-hit 113

region in the country, we coded the variable as 1 starting from February 22, 2020, based on the 
statement, “It is recommended for residents in Daegu to minimize gathering events and outdoor 
activities.”  114

 
The first travel restriction for incoming travelers (“travel_ban_intl_in_opt”) was implemented on 
January 28, 2020. It is worth noting that it was not a total prohibition of incoming visitors; rather, it 
means inbound travellers were subject to COVID-19 specific emergency measures. KCDC mentioned 
that starting on January 28, 2020 “any travellers depart[ing] from China [would] be a subject to 
strengthened screening and quarantine measures.”  On February 12, 2020, KCDC broadened the list 115

of countries subject to the stricter measures to include Hong Kong and Macau.  Subsequently, KCDC 116

added Italy and Iran (on March 11, 2020);  France, Germany, Spain, UK, and Netherlands (on March 117

15, 2020);   and any remaining European countries (March 15, 2020)  to their country list. On March 118 119

19, 2020, the policy was expanded to include all travelers arriving at port regardless of country of 
origin.   120

102 신종 코로나바이러스 여파로 경북도내 각종 축제·행사 취소 또는 연기 (Gyeongsangbuk-do cancels or delays events due 
to COVID-19)   
103 신종 코로나 확산에 경남 지역행사 등 줄줄이 취소 (Gyeongsangnam-do cancels events due to COVID-19)  
104 제주도내 행사 등 전면 취소, "코로나19 확산 방지 우선" (Jeju cancels events due to COVID-19)  
105 신종 코로나바이러스 감염증 대응을 위한 도내 각종 행사 취소․축소 방침 (Gyeonggi-do cancels events due to COVID-19)  
106 울산지역 주요행사 잇따라 취소·연기 (Ulsan cancels or delays events due to COVID-19)  
107 코로나바이러스감염증-19 대응 관련 취소 행사 현황 (2.28. 현재) (The list of events canceled due to COVID-19)  
108 2020년 정월대보름 관측행사 취소 안내 (Daeboreum events canceled)  
109 인천시, 코로나19 확산방지 강력조치 (Incheon strict policies for limiting the spread of the virus)  
110 신종코로나 확산…전남 지자체, 행사 줄줄이 취소 (Jeollanam-do cancels events)  
111 송하진 도지사, 코로나바이러스 대응 ‘올인’ (Governor of Jeollabuk-do makes every effort to fight against the virus)  
112 전국 모든 유·초·중·고·특 개학 2주간 추가연기 결정 (코로나19) (All kindergarten, elementary schools, middle schools, 
and high schools are closed for two more weeks) 
113 The updates of COVID-19 in Korea, February 29 
114 The updates of COVID-19 in Korea as of 22 February 
115 The case definition of 2019 novel coronavirus will be expanded | Press Release | News Room : KCDC 
116 Expand strict quarantine screening of 2019-nCoV to Hong Kong, Macao | Press Release | News Room : KCDC  
117 The updates on COVID-19 in Korea as of 11 March | Press Release | News Room : KCDC  
118 Updates on COVID-19 in Korea (as of 12 March)  
119 The updates on COVID-19 in Korea as of 16 March | Press Release | News Room : KCDC  
120 목록 | 보도자료 | 알림·자료 (The list of press release)  
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This restriction was not limited to inbound travellers. The government also issued advisories on 
countries where the number of infections had increased, which has been encoded as the variable 
“travel_ban_intl_out_opt.” The first outbound travel alert due to COVID-19 was announced on January 
28, 2020: The Ministry of Foreign Affairs (MOFA) issued a Level 2 (Yellow) alert for any travel to 
mainland China, Hong Kong, and Macau.  Later, MOFA added Italy on February 28, 2020,  Japan on 121 122

March 9, 2020,  and all European countries on March 16, 2020.  On March 18, 2020, KCDC strongly 123 124

called for the cancellation or delay of all international travel on non-urgent matters.   It should be 125

noted that the Level 2 alert does not enable the government to prohibit travel to these destinations, 
which is why the policy was coded as “optional.”  
 
There are four types of travel advisories distributed by the South Korean government: Level 1, Navy; 
Level 2, Yellow; Level 3, Red; and Level 4, Black.  Travel under the Level 4 alert is prohibited, and the 126

government utilizes legal instruments to enforce the restriction. If people leave the country under the 
black alert, they will be subject to fines up to ten million KRW, or imprisonment up to a year. However, 
there is no enforcement instrument for the advisories up to Level 3. In that sense, we stated above 
that the banning policy does not mean prohibiting travel. Nevertheless, we coded the yellow alert as 
the first travel ban in our dataset, since Level 2 alerts are issued relatively rarely, such as during a 
significant demonstration  or military coup.  As a result, we coded the Level 2 alert due to COVID-19 127 128

into the dataset for the policy analysis. 
 
The policy variable “work_from_home_optional” indicates when KCDC began recommending that 
people work from home. On March 15, 2020, the KCDC press release stated: “Since contact with 
confirmed cases in an enclosed space increases the possibility of transmission, it is recommended to 
work at home or adjust desk locations so as to keep a certain distance among people in the office. 
More detailed guidelines for local governments and high-risk working environments will be 
distributed soon.”  129

 
On March 22, 2020, the KCDC announced that all inbound travelers from Europe would be tested at 
the airport and subject to quarantine measures.  Korean citizens and long-term visitors returning 130

from abroad needed to home-quarantine for 14 days (even if they test negative for COVID-19), while 
short-term visitors would be actively monitored. Inbound travelers with no symptoms were required 
to stay at temporary facilities while awaiting their test results.  We coded this as the policy variable 131

“pos_cases_quarantine” modulated by “policy_intensity” = 0.25. When this policy was expanded on 

121 최신 여행경보단계 조정 (The latest adjustment on the travel alert levels)  
122 최신 여행경보단계 조정 (The latest adjustment on the travel alert levels)  
123 일본 전 지역(후쿠시마 원전 주변지역 제외)에 여행경보 2단계(황색경보, 여행자제)로 상향 조정 (All Japanese region, 
other than the Fukushima nuclear reactor area, now under the level 2 travel alert)  
124 최신 여행경보단계 조정 (The latest adjustment on the travel alert levels)  
125 The updates on COVID-19 in Korea as of 18 March 
126 여행경보제도 소개 (The description on the travel alert policy) 
127 홍콩 여행경보 2단계(여행자제)로 상향 조정 (Now travels to Hong Kong under the level two alert) 
128 기니의 여행경보단계 상향 조정 (The alert level is raised against travels to Guinea) 
129 The updates on COVID-19 in Korea as of 11 March | Press Release | News Room : KCDC 
130 The updates on COVID-19 in Korea as of 22 March | Press Release | News Room : KCDC 
131 The updates on COVID-19 in Korea as of 23 March | Press Release | News Room : KCDC 
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March 27, 2020 to include all symptomatic travelers arriving from the US,  we coded this variable 132

with a “policy_intensity” = 0.5.  On April 1, 2020, these quarantine measures were extended to include 
inbound travelers arriving from all countries, with exceptions allowed only for limited cases 
(diplomatic missions etc.).  This variable was then coded with “policy_intensity” = 0.75. Lastly, 133

starting on April 5, 2020, the KCDC announced that inbound travelers who fail to comply with 
quarantine regulations are subject to imprisonment of up to 1 year or a fine of up to 10 million won for 
the violation of the Infectious Disease Control and Prevention Act. In addition, persons of foreign 
nationality who fail to comply may be subject to measures including deportation and entry ban in 
accordance with the Immigration Act.  We then coded this variable with the “policy_intensity” = 1. 134

 

Italy 
 
We have obtained data on Italy’s policy responses to the COVID-19 pandemic primarily from the 
English version of the COVID-19 dossier “Chronology of main steps and legal acts taken by the Italian 
Government for the containment of the COVID-19 epidemiological emergency”  written by the 135

Department of Civil Protection (Dipartimento della Protezione Civile), most recently updated on March 
12, 2020. This dossier details the majority of the municipal, regional, provincial, and national policies 
rolled out between the start of the pandemic to present-day. We have supplemented these policy 
events with news articles that detail which administrative areas were specifically impacted by the 
additional policies. 
 
The first major policy rollout was on February 23, 2020, when 11 municipalities across two provinces in 
Northern Italy were placed on lockdown. These policies included closing schools, cancelling public 
and private events and gatherings, closing museums and other cultural institutions, closing 
non-essential commercial activities, and prohibiting the movement of people into or out of the 
municipalities.  
 
The second major policy rollout was on March 1, 2020, when two provinces and three regions in 
Northern Italy were placed on partial lockdown. These policies also included closing schools, 
cancelling public and private events and gatherings, closing museums, closing non-essential 
commercial activities, as well as limiting the number of people at places of worship, restricting 
operating hours of bars and restaurants, and encouraging people to work remotely. 
 
The third major policy roll-out was on March 5, 2020, when all schools across the country were closed.  
 
The fourth major policy roll-out was on March 8, 2020 when the region of Lombardy and 13 provinces 
in Northern Italy were placed on lockdown. These policies included the cancellation of public and 

132 The updates on COVID-19 in Korea as of 27 March | Press Release | News Room : KCDC 
133 The updates on COVID-19 in Korea as of 31 March | Press Release | News Room : KCDC 
134 The updates on COVID-19 in Korea as of 5 April | Press Release | News Room : KCDC  
135 Chronology of main steps and legal acts taken by the Italian Government for the containment of the COVID-19 
epidemiological emergency 
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private events and gatherings, closing of museums, encouraging people to work remotely, limiting the 
number of people at places of worship, restricting opening hours of bars and restaurants, mandating 
quarantine of people who tested positive for COVID-19, prohibiting the movement of people into or 
out of the affected area, and restricting movement within the affected area to only work or 
health-related purposes. Commercial activities were still allowed, as long as they maintained a safety 
distance of one meter apart per person within the establishment. All civil and religious ceremonies, 
including weddings and funerals, were suspended. During this same policy roll-out, the rest of the 
country faced less stringent policies: cancelling public and private events, closing museums, and 
requiring restaurants and commercial establishments to maintain a safety distance of one meter 
apart per person within the establishment. 
 
The fifth major policy roll-out was announced on March 9, 2020, and went into effect on March 10, 
2020, when lockdown policies applied to Northern Italy were rolled out to the entire country. Lastly, 
on March 11, 2020, the lockdown was changed to also cover the closing of any non-essential 
businesses and further restricted people from leaving their home.  
 
After the death toll in Italy surpassed that of China on March 21, 2020, the Italian government 
increased the severity of their existing policies. Effective March 22, 2020, all non-essential industrial 
production and factories would be shut down across the country.  Domestic travel was further 136

restricted; people were not permitted to leave the municipality they were currently in except for 
urgent matters or emergencies.  Lastly, in the hard-hit northern region of Lombardy, the regional 137

government increased lockdown restrictions by banning all individual outdoor exercise or sporting 
activity.  138

 
Policy Intensity: We have modified the policy intensity of three different policy variables: 
“home_isolation,” “business_closure,” and “travel_ban_local.” 
 
 The “home_isolation” policy underwent three policy revisions: 

1. The least restrictive version of the policy applies to when people were allowed to leave the 
house for work, health, and essential reasons  (“policy_intensity” of “home_isolation” = 0.33). 

2. The moderate version of the policy applies to when people were allowed to leave the house 
only for health and essential reasons (which includes the ability to go outdoors for individual 
exercise/sporting activities) (“policy_intensity” of “home_isolation” = 0.67). 

3. The most restrictive version of the policy applies to when people were allowed to leave the 
house only for health and essential reasons, but were no longer allowed to leave the house for 
individual exercise/sporting activities (“policy_intensity” of “home_isolation” = 1). 
 

The “business_closure” policy underwent three policy revisions: 
1. The least restrictive version of the policy applies to the limiting of restaurant hours (but other 

commercial activities were permitted) (“policy_intensity” of “business_closure” = 0.33), 

136 Virus News: Italian Industry Shuts Down  
137 Italy Coronavirus News: Travel Ban Inside Country 
138 Coronavirus: Lombardy region announces stricter measures  
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2.  the moderate version of the policy applies to the closing of all non-essential businesses, 
(“policy_intensity” of “business_closure” = 0.67), 

3. and the most restrictive version of the policy applies to the closing of all non-essential 
industrial production and factories, in addition to the closing of non-essential businesses 
(“policy_intensity” of “business_closure” = 1).  
 

Lastly, the “travel_ban_local” policy underwent two policy revisions: 
1.  The least restrictive version of the policy applies to when people were not allowed to 

enter/exit the affected administrative area, (“policy_intensity” of “travel_ban_local” = 0.5), 
2.  and the most restrictive version of the policy applies to a more restrictive ban on domestic 

travel that mandated that people had to stay in the municipality they were currently in 
(“policy_intensity” of “travel_ban_local” = 1). 

Iran 
For Iran’s policy response to the COVID-19 pandemic, we relied on news media reporting as the 
primary source of policy information (mostly due to translation restrictions). We also relied on two 
timelines of pandemic events in Iran to help guide the policy search.   139 140

 
The first major outbreak in Iran was connected to a major Shia pilgrimage in the city of Qom that 
brought Shiite pilgrims from Iran and throughout the Middle East, where they came to kiss the Fatima 
Masumeh shrine. It is possible that the disease was brought to Qom by a merchant traveling from 
Wuhan, China.  In addition, it is believed that the Iranian government knew of the COVID-19 outbreak 141

prior to its February 21, 2020 parliamentary elections, but downplayed the risks associated with the 
disease as not to suppress voter turnout (given concerns that a low turnout would reflect poorly on its 
legitimacy).   The disease, initially centered in Qom and neighboring Tehran, spread rapidly 142

throughout the country.  
 
As the number of cases grew, the Iranian government started to increase the stringency of its 
response. The first case was reported on February 19, 2020 (two individuals who both were reported 
to have died that day). The next day, school closures were announced in the province of Qom and 
travel in the region was discouraged. By February 22, 2020 the government closed schools in 14 
provinces and closed down major gathering sites such as football matches and theaters. By March 5, 
2020 schools were closed nationwide and government employees were required to work from home. 
Home isolation was implemented by the military on March 13, 2020, which the media described as 
“the near-curfew follows growing exasperation among MPs that calls for Iranian citizens to stay at 
home had been widely ignored, as people continued to travel before the Nowruz New Year holidays.”

 143

139 UPDATED: Timeline of the Coronavirus 
140 2020 coronavirus pandemic in Iran  
141 How Iran Became a New Epicenter of the Coronavirus Outbreak  
142 How Iran Became a New Epicenter of the Coronavirus Outbreak   
143 Revolutionary Guards to enforce coronavirus controls in Iran   
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United States 

For the United States’ policy response to the COVID-19 pandemic, we relied on a number of sources, 
including the U.S. Center for Disease Control (CDC), the National Governors Association, individual 
state health departments, as well as various press releases from county and city-level government or 
media outlets. The CDC has posted and continually updated a Community Mitigation Framework that 
encompasses both mandatory and recommended policies at a national level.   This framework was 

144 145

interpreted by individual states as they each declared their own States of Emergency at various dates, 
and subsequently released their own community mitigation plans or executive orders. Some of the 
first states to release such plans include Massachusetts, California, Florida, Washington, and New 
York.  Each respective Community Mitigation Framework included both mandatory and optional 146

policies to prevent the COVID-19 spread. In addition the National Governors Association has served as 
a resource for individual states’ policies in response to COVID-19, updating each states’ policy rollout 
timelines as well as providing links to states’ Executive Orders and other official policy 
documentation.  To supplement both national and state level policies and recommendations, data 147

was collected, when possible, for cities and counties that have also taken on the role of providing 
guidance and implementing policies to mitigate the spread of COVID-19. 

There have been a wide range in responses across states since the first case of COVID-19 was 
announced in Washington State on January 14, 2020. As a result, the CDC began releasing guidance to 
those at risk of being exposed to the virus. The initial recommendations included travel warnings for 
specific countries with confirmed cases and sustained COVID-19 spread. Over the course of our 
dataset, these warnings increased in intensity, changing from warning against inbound and outbound 
travel to specific countries in both Europe and Asia to warning against travel at all.  International 

148

travel restrictions were coded as “travel_ban_int_out” for outbound travel, and “travel_ban_int_in” 
for inbound travel, with lists of the places to and from which travel was restricted also included. On 
March 31, 2020, the US changed its global travel warning to Level 4, the highest warning level, which 
the US Department of State defines as avoiding “all international travel due to the global impact of 
COVID-19.”  In addition to the national travel restrictions, individual states also implemented local 149

travel bans, coded as “travel_ban_local” as the spread continued to grow, such that anyone entering 
specific states in which this policy was in effect were required to self-quarantine for 14 days. This 
ultimately reflected the national policy as well, in that people could still technically travel under a 
Level 4 warning, but upon arrival to the US, they would be put in a mandatory quarantine for 14 days.  

In addition to travel restrictions, as COVID-19 prevalence increased in the world and within the US 
borders, the CDC began to release additional guidance for healthcare workers, individuals at higher 

144 What's New | COVID | CDC 
145 Community Mitigation Strategies | CDC 
146 Schools, Workplaces & Community Locations | CDC 
147 National Governors Association 
148 CDC Travel Guidance & Warnings 

149 US Travel Warnings 
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risk, as well as for state-level action (e.g. travel or social distancing policies).  These policies have 150

largely been implemented at the state-level rather than at the national level. Social distancing 
policies, coded as “social_distance” have either recommended or mandated that individuals avoid 
crowds, stay home as much as possible, delay elective medical procedures, limit or avoid visiting 
vulnerable populations (such as long-term care facilities or prison facilities), wear masks when outside 
the home, and stand at least six feet away from others in public spaces. The “social_distance” policy 
category  also encompasses the closing of government offices and other public facilities such as 
libraries or museums.   Along the same line of social distance policies, a separate variable was 

151 152

coded as “no_gathering” to represent policy measures that banned all events or mass gatherings of a 
certain size, i.e. no gatherings over a certain number of people (where this number has varied by 
region).  

In addition to social distancing, many governors have mandated statewide school closures at the 
private and public K-12 and higher education levels, while others have left it up to each school district 
to decide.  School closures have been coded as “school_closure” and once implemented, have been 153

“turned on” for the remainder of our time series, as no schools have reopened since these policies 
have been implemented.  

Business closures, coded as “business_closure,” have also been recommended or mandated at the 
state level. These policies have ranged from shutting down all non-essential businesses, reducing the 
number of hours a business may be in operation, severely restricting the number of customers that 
are allowed inside at one time, to prohibiting customers to enter a business, such as in the case of 
bars and restaurants, where they were only allowed to operate or take-out and delivery services. 
When business closures have involved shutting down all non-essential operations, “essential” has 
been defined by each state but is largely similar between states, generally defining essential as food or 
healthcare providers, as well as basic government operations (i.e. trash collection, mail, water 
monitoring, etc).  To support employees working remotely or staying home when sick, a number of 
states have also mandated paid sick leave for those who are affected by COVID-19, which has been 
coded as “paid_sick_leave.” There is a separate “work_from_home” category that includes measures 
that require businesses to allow employees to telework, if possible, such that no workers except for 
those who have essential functions are allowed to work in an office. 

At the subnational level, many governors have implemented a statewide mandatory shelter-in-place 
policy, requiring all individuals to self-isolate within their home or place of residence and limit 
outdoor activity to essential functions only, which is defined by each state. Shelter-in-place laws have 
been coded as “home_isolation,” and generally are enacted alongside a number of other policies, 
including business closures, local travel bans, more restrictive gathering sizes, and enforceable social 
distance rules. Again similar to business closures, the definition of “essential function” has been 

150 CDC COVID-19 Guidance Documents 
151  NYT Article | "Wondering About Social Distancing?"  

152 COVID-19 | Get Your Mass Gatherings or Large Community Events Ready for Coronavirus Disease 2019 

153 US School Closures due to COVID-19 
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updated in subsequent policy editions to be more detailed and often stricter, allowing for less activity 
out of the home.   154

We coded various policies that cancel events and large gatherings as “event_cancel”, which is only 
used when one specific event/gathering is cancelled, for example an election postponement, rather 
than any event over a certain size, which would instead be coded with the “no_gathering” variable. 
The “emergency_declaration” variable encompasses all declarations made indicating a “state of 
emergency” at the city, county, state, and federal level. This declaration allows the affected area to 
immediately marshal emergency funds and resources and activate emergency legislation, while also 
giving the public an indication of the gravity of the situation.  

Policy Intensity:  
 
Policy intensity was coded to ensure consistency within the state level for US policy variables as 
opposed to within the national level as was the case for other countries in our dataset.  In the US, 
policies have largely been enacted and enforced by state governments, with variability between 
states’ versions of the same policy type as well as the timing of implementation. As a result, we code 
policy intensity based on the number of editions of the same policy within a state. To demonstrate, we 
include an example of how we code two different states’ implementing the same policy type below: 
 

● On 3/9/20, 3/16/20, and 3/26/20: Connecticut enacted three editions of the “no_gathering” 
policy, restricting public gathering to no more than 250, 50, and 5 people, respectively.  

● On 3/11/20: Florida enacted a “no_gathering” policy restricting public gathering to no more 
than 1,000 people. This is the first and only edition of the “no_gathering” policy in Florida. 

 
Thus, Connecticut and Florida’s policy intensities are assigned based only on the number of editions 
within each of the states rather than comparing the details of the policy between the states (i.e., the 
number of people allowed to gather). Florida’s “no_gathering” policy would therefore be assigned an 
intensity of 1 since there is only one edition, while Connecticut’s three editions of the “no_gathering” 
policy would be assigned intensities of 0.33, 0.67, and 1, respectively. We feel that assigning policy 
intensity within a state allows us to better capture the context within which a policy is enacted, for 
example due to different COVID-19 case loads or variation in population density, which may play a 
significant role in determining the details and timing of a policy.  
 

Population Data 
In order to construct population weighted policy variables and to determine the susceptible fraction 
of the population for disease projections under the realized and the no-policy counterfactual 
scenarios, we obtained the most recent estimates of population for each administrative unit included 
in our analysis. The sources of that population data are documented below. 

154 NYT Article | "See Which States and Cities Have Told Residents to Stay at Home" 
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China 
City-level population data have been extracted from a compiled dataset of the 2010 Chinese City 
Statistical Yearbooks. We matched the city level population dataset to the city level COVID-19 
epidemiology dataset. As the two datasets use slightly different administrative divisions, we only 
matched 295 cities that exist in both datasets, and grouped the remaining 39 cities in our compiled 
epidemiology dataset into "other" for prediction purposes. Cities grouped into "other" because of 
mismatches have a total population of 114,000,000, or 8.5% of the total population in China.  
 
For these 39 cities that we could not match, we imputed the population by taking the total remaining 
population (114,000,000) and divided it evenly between these remaining cities. We flag the imputed 
populations by using the binary variable “pop_is_imputed.”  

France 
Département-level populations are obtained from the National Institute of Statistics and Economic 
database.  We used the most up to date estimation of the population in France as of January 2020. 155

South Korea 
We downloaded the number of population by provinces from a webpage administered by the Korean 
Statistical Information Service (KOSIS).  The government agency recently updated the population 156

information of February, 2020, which we used for our analysis.  

Italy 
Region and province level population data come from the Italian National Institute of Statistics (Istat), 
estimating total population on January 1, 2019. The datasets for all Italian regions and provinces are 
scraped from Istat’s website in get_adm_info.ipynb. 

Iran 
Province level population data for Iran comes from the 2016 Census, as listed on the City Population 
website.  It is scraped in get_adm_info.ipynb. 157

United States 
State- and county-level population data come from the 2017 American Community Surveys dataset, 
and is downloaded via the census Python package  in get_adm_info.ipynb. 158

155 Population de 1999 à 2020 
156 행정구역(시군구)별, 성별 인구수 (Population by county and gender) 
157 Iran: Administrative Division (Provinces and Counties) - Population Statistics, Charts and Map 
158 datamade/census: A Python wrapper for the US Census API. 
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Supplementary Methods 
In our Supplementary Methods, we describe several sensitivity analyses performed to assess the 
robustness of our growth rate impacts and projections of cases averted/delayed.  
 
This section is divided into five analyses: 

1. Testing the sensitivity of projected averted/delayed cases to varying epidemiological 
parameters 

2. Testing the sensitivity of our regression model to varying epidemiological parameters 
3. Testing the sensitivity of our regression model to changes in lag structure 
4. Testing the sensitivity of our regression model to withholding of data 
5. Testing the sensitivity of our regression model  to changes in policy groupings 

 
 

1. Sensitivity of projected averted/delayed cases to the removal 
rate γ and the use of an SEIR framework  
We compute the empirical removal rate using aggregated data from the countries for which we 
observe active cases (i.e., China and South Korea) and estimate a value of γ = 0.079 (see the Methods 
section of the main text). This value measures the inverse of the mean duration from being reported as 
infected to being reported as recovered (or dead) and may differ from the fundamental 
epidemiological parameter describing the rate of removal from the pool of infectious individuals. 
While our estimate implies a recovery period (symptom onset to recovery) that is comparable to some 
estimates in the literature (median time of 19-23 days, varying based on age group, sex, severity, and 
mode of detection ), we test the extent to which our simulation results in Figure 4 depend on this 159

value. One motivation for this exercise is that there may be an unknown delay between the time when 
a patient becomes non-infectious in reality and the time in which they are recorded in the aggregate 
data as recovered. Assuming a (likely high) value of 14 days average delay between true recovery and 
recording this recovery generates an estimate of γ = 0.18, for example. Differential underreporting of 
recoveries versus cases, for example, could also bias the estimation of γ. 
 
In addition, the use of an SIR framework may misrepresent the true underlying disease dynamics, and 
a more general SEIR framework, which includes representation of people exposed to the infection 
without yet being infectious, may produce more realistic simulations of cases averted/delayed by 
policy. We also test sensitivity to the use of the SEIR framework, as well as a key parameter in this 
alternative framework -the assumed rate of transition from exposed to infectious (σ). 
 
We replicate the simulation underlying Figure 4 using an SEIR framework with values of γ = {0.05, 0.1, 
0.15, 0.2, 0.25, 0.3, 0.35, 0.4} and σ ∈ {0.2, 0.33, 0.5, ∞}, with σ = ∞ corresponding to the SIR 

159 Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts 
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framework we employ in the main simulation. We present our estimates of the total number of cases 
under both the no-policy and policy scenarios, as well as the total number of cases averted/delayed 
by policy. We sum simulated cases across all countries on the last dates of the countries’ respective 
samples. Note that the simulation uses the growth rates derived from our empirical model such that 
changes in γ and σ correspond to changes in the transmission rate β. β must vary with γ and σ 
as our data determine the underlying exponential growth rate. We show the results of this sensitivity 
analysis in Extended Data Figure 7. 
 
Panels (a) and (b) respectively show the simulated number of cases in the no-policy and with-policy 
scenarios. The number of simulated no-policy cases is decreasing in γ for high σ and increasing in γ 
for low σ. The number of simulated no-policy cases is increasing in σ for low γ and nonmonotonic 
in σ for high γ. The number of simulated with-policy cases is increasing in γ and decreasing in σ. 
Panel (c) shows the number of cases averted due to policy and demonstrates that varying σ or γ can 
reduce our estimate of cases averted on the order of several million reported cases (up to 10%). Panel 
(c) shows that higher values of γ produce lower estimates of cases averted for the SIR model (σ = ∞), 
but increasing estimates of cases averted for the lower values of σ. Panel (d) plots the content of 
Panel (c) on the log scale used in Figure 4 of the main text for comparison. For our simulation value of 
γ, decreasing σ decreases our estimate of cases averted. 
 
Overall, these results show that the basic order of magnitude of the number of cases averted is 
preserved within this reasonable range of potential γ values in the SIR framework and σ values in 
the SEIR framework. 

2. Sensitivity of exponential regression model to varying 
epidemiological parameters 
The model we use to estimate the impacts of policy on growth rates assumes exponential growth, 
which is typically valid for early-stage disease outbreaks. If growth is not exponential, there exists the 
potential for bias in estimated coefficients. There are three primary reasons why an early-stage 
outbreak could exhibit non-exponential growth in the absence of policy intervention: 
 

1. The infection spread may progress quickly, lowering the susceptible fraction of the population 
to a degree that materially affects the infection spread, transitioning the outbreak away from 
the exponential “early stage” regime. 

2. In a disease with a substantial latent period, the growth of infections is only asymptotically 
exponential.  At any given moment in time, the instantaneous growth rate may differ from a 160

steady-state exponential growth rate.  
3. When analyzing growth in cumulative infections, as we do for countries where active infection 

data are unavailable, growth is similarly only asymptotically exponential. 
 

160 Estimating epidemic exponential growth rate and basic reproduction number 
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In our dataset, 95% of administrative units have susceptible fractions above 0.93 on their last analysis 
day and all have susceptible fractions above 0.78, indicating that the first reason is unlikely to induce 
substantial bias in our results. When the transmission rate of a disease declines due to anti-contagion 
policy, the growth rate in infections decreases with a lag due to the dynamics associated with the 
latent period. Because of this, exponential models estimating the average treatment effect (ATE) of a 
policy may underestimate the true reduction seen from a policy because they include days in which 
the growth rate was still higher than the new steady state growth rate. Finally, in the early stages of an 
outbreak, the number of active cases will dominate the number of recovered/deceased patients and 
thus the differences in growth of active and cumulative cases is likely to be small. 
 
To test the robustness of our regression approach, we construct simulated outbreaks in which we 
control demographic, policy, and epidemiological parameters. We then use a variant of the regression 
model (Eq. 7) from the main text to estimate the no-policy growth rates and the effects of each policy. 
In this simulation, we do not include any fixed effects to control for day-of-week (δ) and changing 
testing regime (μ) effects. These variables are not simulated as these are primarily measurement 
controls and their effects would be directly absorbed by the corresponding regression parameters if 
simulated. We compare the coefficient estimates to the “true” values used in the simulation. 
 
To capture the impact of disease latency, we use an SEIR model framework to generate synthetic 
outbreaks. We simulate 12,000 45-day outbreaks at hourly timesteps, starting with a no-policy 
exponential growth rate of 0.4 (similar to those estimated in our main analysis) and a single exposed 
individual. We adjust this asymptotic exponential growth rate to account for three synthetic policies 
that turn on at random times, each with a known effect (-0.05, -0.1, and -0.2). For each subset of 1,000 
simulations, we use one of four plausible values for the mean latency period, σ-1 (0, 2, 3, and 5 days), 
and one of three plausible values for the mean infectious period, γ-1 (3, 5, and 20 days). We choose a 
wide range of these variables due to substantial uncertainty over the epidemiological characteristics 
of the novel coronavirus,  and a nonexistent latency period is included for comparison to an SIR-like 161

data generating process. The mean transmission rate per infected person per day, β, is derived from 
the asymptotic growth rate, the mean latency period, and the mean infection period by solving for the 
eigenvalues of a SEIR system,  which yields: 162

.β = σ
(g+γ)(g+σ)  

We apply exponential noise to β for each simulation and at each timestep, and contribute additional 
gaussian noise to σ and γ (standard deviations of 0.01 and 0.03, respectively). We add additional 
gaussian “measurement noise” to the instantaneous growth rates after simulation but before running 
our regression (standard deviation of 0.1). Cumulatively, this results in an average 
root-mean-squared-error (RMSE) in regressions across all 12,000 simulations of ~0.11, which matches 
the RMSE of daily growth rate values across all six countries in our main analysis. 
 
The dynamic model outputs a time series of susceptible (S), exposed (E), infectious (I), and removed 
(R) individuals, as a fraction of the total population. We use both I and I+R as the left-hand-side 

161 MIDAS Network Online COVID-19 Portal: Parameter Estimates 
162 Estimating epidemic exponential growth rate and basic reproduction number 
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variables in our regression framework. The former corresponds to the analysis we run for countries in 
which we observe active cases and the latter to countries in which we observe only cumulative cases. 
We assume the majority of the “exposed but not infectious” population will not yet have been tested 
and will not appear in any of the datasets used in the main analysis. Our right-hand-side variables 
consist of the binary policy variables, allowing only for contemporaneous effects. This matches our 
main specification for all countries except China (where data availability allows for the estimate of 
lagged effects) and provides the most challenging environment in which to estimate the effect of 
policy in a dynamic system. 
 
Results are presented in Extended Data Figures 8 and 9. While it is possible to simulate outbreaks 
consisting of innumerable parameter combinations and noise distributions, we display those that 
seem most relevant for evaluating the robustness of our main analysis. Our associated GitHub 
repository contains a Jupyter notebook for readers to further examine the effect of simulation 
configurations on regression model robustness. 
 
Figures 8 and 9 are each split into two panels (a) and (b). Panel (a) of each figure shows simulations in 
near-ideal data conditions, in which we observe active infections within a large population. This 
means that the susceptible fraction of the population remains high during the entire sample period. 
For example, these conditions are similar to those in our real data for Chongqing, China. Panel (b) of 
each figure shows simulations in a non-ideal data scenario where we are only able to observe 
cumulative infections in a small population. In these simulations, the susceptible fraction declines to 
values as low as 33% of the population. For example, these conditions are similar to those in our real 
sample of data for Cremona, Italy. 
 
Figure 8 demonstrates that our model recovers unbiased estimates of the no-policy growth rate under 
all conditions simulated. Because the growth rate prior to policy has likely approached its asymptotic 
rate by the time we begin our regressions, variance in our no-policy growth rate estimates comes from 
noise in the disease parameters and measurement. The ability to recover unbiased estimates of this 
value has important implications for our estimate of the total number of cases averted/delayed to 
date, as this number is primarily driven by the counterfactual number of cases we would expect to see 
in a world in which no anti-contagion policy was enacted. 
 
Figure 9 demonstrates that our model recovers unbiased estimates of the cumulative effect for a 
disease with very short latency. As the latency period increases, the model begins to slightly 
underestimate the true effect of policy (i.e. it predicts a less negative value), due to the decay time 
over which a shock to transmission rate propagates to a new steady-state growth rate. The 
underestimate is reduced in situations where we are able to directly observe active infections and is 
increased when we can only observe cumulative infections. Note that statistical uncertainty in these 
estimated parameters dominates potential biases, even in “worst case” data conditions.  
 
We conclude that biases (due to the use of an exponential model) in our estimates of  the  no-policy 
growth rate are essentially zero and are likely to be small and negative for our estimates of policy 

29 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 29, 2020. ; https://doi.org/10.1101/2020.03.22.20040642doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/


effectiveness.  If present in the data, such biases would cause us to modestly understate the 
effectiveness of anti-contagion policies. 

3. Sensitivity of estimates to changes in lag structure 
Existing evidence has not demonstrated whether policies should affect infection growth rates in the 
days immediately following deployment. It is therefore  not clear ex ante  whether the policy variables 
in Eq. 7 should be encoded as “on” immediately following a policy deployment.  As a robustness 
check, we estimate “fixed-lag” models in which a fixed delay between a policy’s deployment and its 
effect is assumed. Specifically, we assume that policies cannot influence infection growth rates for L 
days, recoding a policy variable at time t as zero if a policy was implemented fewer than L days before 
t. We re-estimate Equation (7) for each value of L and present results in Extended Data Figure 5 and 
Supplementary Table 5. If a delay model is more consistent with real world infection dynamics, these 
fixed lag models should recover larger estimates for the impact of policies and exhibit better model fit. 
 
Panel b of Extended Data Figure 5 displays the associated with each country-level fixed lag modelR2  
with fixed lag lengths ranging from no fixed lags up to a 15 day fixed lag. In-sample fit generally 
declines or remains unchanged if policies are assumed to have a delay longer than 4 days. Panel c of 
Extended Data Figure 5 plots the estimated effects for no lag (the model reported in the main text) and 
for fixed-lags between one and five days. Estimates generally are unchanged or shrink towards zero 
(e.g. Home isolation in Iran), consistent with mis-coding of post-policy days as no-policy days. 
 
In Supplementary Table 5, we show our estimates of the effect of all policy interventions in each 
country (analogous to the average difference between red and blue markers in Figure 3 of the main 
text) using a fixed lag of up to 5 days. The estimated effects are broadly consistent across different lag 
lengths; however, the magnitude of the effect size declines slightly with increasing lag lengths. If 
policies take several days to impact infection growth rates, we would expect effect sizes to increase 
rather than decrease with lag lengths. Our finding of declining effect sizes is  more consistent with 
contamination of the “control” group, where  policies are incorrectly encoded as zeros after they have 
been deployed. 

4. Sensitivity of estimates to withholding of data 
To ensure that the estimates from our regression model are robust to the withholding of data, we 
re-estimate our main model number of times for each country, where is the number of first levelkc kc  
administrative units (“Adm1,” i.e. state or province) in country c. In each of the regressions forkc  
country c, we withhold data from one Adm1 unit when we estimate the effects of policy interventions 
on growth rates. The results of this exercise are displayed in Extended Data Figures 3 and 4.  
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5. Sensitivity of estimated growth rates to changes in policy groupings 
In our main regression model, due to the limited length of our time series data and instances where 
multiple policies are deployed on the same date, we group certain policy interventions together. We 
group policies together that have similar objectives (e.g. “travel_ban_local” and “transit_suspension” 
would be one group, “event_cancel” and “no_gathering” would be another) and keep certain policies 
separate (i.e. “business_closure,” “school_closure,” “home_isolation”) where possible.  
 
To test the sensitivity of our results to the grouping of policy interventions, we also estimate a model 
where the policies are estimated without grouping. Extended Data Figure 6 panel a shows the 
estimated infection growth rates and no-policy counterfactual growth rates using the model with 
disaggregated policies. Additionally, in Supplementary Table 4, we compare the effect of policy 
interventions in each country when the effect of all policies are estimated separately (“Disaggregated 
Model”) and when they are grouped into policy packages as in our preferred specification (“Main 
Specification”).  We find the estimated impact of policy interventions on case growth rates is robust to 
this alternative specification.  
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Supplementary Tables 

Supplementary Table 1 | Number of unique anti-contagion policies in this study tabulated by 
administrative divisions of each country.  

 
 

Country  Adm0  Adm1  Adm2  Adm3  Total 

China  0  4  133  0  137 

France  8  1  50  0  59 

Iran  5  17  0  0  22 

Italy  14  29  95  77  215 

South Korea  20  39  0  0  59 

United States  36  682  418  31  1167 

Total  83  772  696  108  1659 

 
 
This table reports the policy data that have been collected at various levels of administrative divisions in each country. “Adm0” represents the country level, and 
higher “Adm*” numbers indicate smaller administrative subdivisions, which are specific to each country. Each policy is counted at the highest resolution 
administrative unit in which the policy is applied differentially. For example, if a country has ten regions at the “Adm1” level, and a policy is applied across five of 
those regions, the policy is counted as five separate “Adm1” policies rather than a single “Adm0” policy. National policies are counted only once as “Adm0.” 
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Supplementary Table 2 | Estimates of no-policy infection growth rates and case doubling time 
using different samples from Wuhan, China. 

(1)  (2)  (3)  (4)  (5)  (6) 

Date 
(used as start of 

sample) 

Raw case  
data on date in (1) 
Source: Wu et al. 

(2020)  163

Raw case 
data on date in (1) 

Estimates using 
1/22/20 as sample  

end date 

Estimates using 
1/22/20 as sample  

end date  Notes 

Cumulative 
confirmed cases  Active cases 

Estimated infection 
growth rate 

Case doubling time 
(days) 

12/10/19  1  1  0.12  5.69  ← Wu et al. (2020)  and Li et al. (2020)   164

12/11/19  1  1  0.12  5.56      sample begins 
12/12/19  1  1  0.13  5.42   
12/13/19  1  1  0.13  5.29   
12/14/19  2  2  0.12  5.96   
12/15/19  4  4  0.10  6.88   
12/16/19  6  6  0.09  7.51   
12/17/19  6  6  0.09  7.30   
12/18/19  6  6  0.10  7.10   
12/19/19  6  6  0.10  6.89   
12/20/19  7  7  0.10  7.00   
12/21/19  8  8  0.10  7.08   
12/22/19  10  10  0.09  7.40   
12/23/19  11  11  0.09  7.40   
12/24/19  11  11  0.10  7.15   
12/25/19  13  13  0.09  7.34   
12/26/19  13  13  0.10  7.07   
12/27/19  13  13  0.10  6.80   
12/28/19  14  14  0.10  6.72   
12/29/19  18  18  0.10  7.17   
12/30/19  21  21  0.09  7.37   
12/31/19  22  22  0.10  7.20   

1/1/20  28  28  0.09  7.78   
1/2/20  34  34  0.08  8.30   
1/3/20  44  44  0.07  9.39   
1/4/20  44  44  0.08  8.87  ← Li et al. (2020) sample ends 
1/5/20  59  59  0.06  10.71   
1/6/20  59  59  0.07  10.04   
1/7/20  59  59  0.07  9.37   
1/8/20  59  59  0.08  8.70   
1/9/20  41  41  0.12  5.94  ← Official cumulative cases decreases  

1/10/20  41  38  0.13  5.17  ← No new official cases 
1/11/20  41  34  0.16  4.37  ← No new official cases 
1/12/20  41  33  0.18  3.86  ← No new official cases 
1/13/20  41  33  0.20  3.43  ← No new official cases 
1/14/20  41  33  0.23  3.00  ← No new official cases 
1/15/20  41  27  0.30  2.29  ← National standards for diagnosis issued 
1/16/20  45  28  0.36  1.95  ← Testing available in Hubei  
1/17/20  62  41  0.35  1.98      Our sample begins (see the 
1/18/20  121  94  0.35  1.98       Supplementary Notes on Epi. Data  
1/19/20  198  170  0.27  2.58       in China) 
1/20/20  258  228  0.26  2.70   
1/21/20  365  329  0.15  4.72   
1/22/20  425  381  -  -  ← Wu et al. (2020) and our sample for 

              estimating no-policy growth rate end 
 
This table reports the raw epidemiological data in Wuhan, China and our estimates of infection growth rates and case doubling times prior to the city-wide                                                 
lockdown on January 22, 2020, utilizing different sample periods to estimate these values. Column (1) provides the dates of observations. Columns (2) and (3)                                               
show raw official epidemiological data: the number of cumulative cases and the number of active cases (= cumulative cases - recoveries - deaths ), respectively.                                               

163Wu, J.T., Leung, K., Bushman, M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine 26, 506–510 
(2020). https://doi.org/10.1038/s41591-020-0822-7 
164Li, Qun, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruiqi Ren et al. "Early transmission dynamics in Wuhan, China, of novel 
coronavirus–infected pneumonia." New England Journal of Medicine (2020). 
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We show data from Wu et al. (2020), which match our data in the overlapping periods; in the interest of space, we do not display raw data used in Li et al.                                                               165

(2020), but they are similar with small differences. Columns (4) and (5), report estimates of pre-policy infection growth rates and case doubling times (in days)                                       

using different start dates, respectively. Specifically, we set the sample start date as the date in column (1) and the end date of the sample (used for estimating our                                                    
no-policy growth rate) fixed at January 22, 2020 (the day prior to city-wide lockdown), using the time series data between these two dates to estimate the                                                   
parameters in columns (4) and (5). Column (6) provides notes on these data. Using a start date of 12/10/19, the same as Wu et al (2020), we obtain an estimated                                                           
case doubling time of 5.7 days, similar to their estimated 5.2 days (they use an alternative structural modeling approach). As described in our Supplementary                                               
Notes on Epidemiological Data in China, we only use data in China beginning 1/16/20 because the first national guidelines for diagnosis were issued on 1/15/20.                                                 
Prior to that date, there did not exist a consistent case definition to identify the earliest 41 confirmed cases in Wuhan. Additionally, the documented lack of                                                   166

testing capacity in the province of Hubei before 1/16/20 raises concern about data quality during that time period. These concerns about data quality appear                                               167

consistent with irregularities in the official record of cumulative cases (column 2). For example, official cumulative cases decreased on 1/9/20, which should not                                             
be possible. Additionally, no new cases were reported between 1/9/20 and 1/15/20, when at least roughly five new cases per day should have been reported if                                                   
case doubling time actually was 5.2 days. The reliability of these official reports during the 1/9/20-1/15/20 period has been called into question, with news                                               
sources suggesting that people who were likely to have been infected by COVID-19 in that period of time (and deaths attributed to the disease) were not counted                                                     
in the official tally. , These data quality concerns motivate our use of the 1/16/20 start data for our sample in China, which provide an infection growth rate of                                                       168 169

0.36 and case doubling time of 1.95 days (gray) using only the time series in Wuhan. These estimates are broadly consistent with our estimates from all other                                                     
countries we examine, except Iran, and the global average growth rate of 0.37 we estimate  (see Figure 2A in the main text). 

165 Wu, J.T., Leung, K., Bushman, M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine 26, 506–510 
(2020). https://doi.org/10.1038/s41591-020-0822-7 
166Impact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China Affiliation 
167 武汉肺炎：疫情从可控到失控的三十天 (Wuhan pneumonia: 30 days from outbreak to out of control) 
168 Warning against cover-up as China virus cases jump 
169 As families tell of pneumonia-like deaths in Wuhan, some wonder if China virus count is too low 
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Supplementary Table 3 | Country level regression results estimating the effect of policy 
interventions on COVID-19 infection growth rates. 
 
a. China 
Dependent variable: growth rate of active cases (Δlog cases per day)    Effect of all policies combined 

Variables   Coefficient Std Error     Coefficient  Std. Error 

Policy variables:        Week 1  -0.136***  0.031 
Travel ban, Week 1  -0.041  0.028    Week 2  -0.299***  0.040 
Travel ban, Week 2   -0.164*** 0.036   Week 3  -0.341***  0.036 
Travel ban, Week 3 -0.189*** 0.034   Week 4  -0.336***  0.034 
Travel ban, Week 4 -0.177*** 0.032   Week 5  -0.339***  0.035 
Travel ban, Week 5 -0.178*** 0.032        
Home isolation, Week 1 -0.095*** 0.017        
Home isolation, Week 2 -0.135*** 0.016        
Home isolation, Week 3 -0.153*** 0.016        
Home isolation, Week 4 -0.159*** 0.016        
Home isolation, Week 5 -0.161*** 0.019        

Testing regime dummy variables:             
Testing regime change on Jan. 18,  2020  0.495*** 0.031        
Testing regime change on Jan. 28, 2020  0.144*** 0.020        
Testing regime change on Feb. 06, 2020 -0.024*** 0.006        
Testing regime change on Feb. 13, 2020 -0.002 0.003        
Testing regime change on Feb. 20, 2020 -0.008*** 0.001        
Testing regime change on Mar. 05, 2020  0.003 0.004        

Observations  3,698      
R-squared  0.52      
*** p<0.01, ** p<0.05, * p<0.1 
This regression includes city fixed effects and clustered standard errors at the day  
level. 
 
 
b. South Korea 

Dependent variable: Growth rate of active cases (Δlog cases per day)    Effect of all policies combined 

Variables Coefficient Std. Error   Coefficient  Std. Error 

Policy variables:        -0.494***  0.150 

Social distance (optional) -0.083** 0.038      

Social distance (mandatory) -0.304** 0.151      

Emergency declaration -0.127*** 0.047      

Quarantine positive cases  0.0202 0.019      

Testing regime dummy variables:           

Testing regime change on Feb 20, 2020  0.0742 0.087      

Testing regime change on Feb 29, 2020  0.040** 0.019      

Testing regime change on Mar 22, 2020 -0.010 0.023      

Testing regime change on Mar 27, 2020 -0.039 0.038      

Observations  595     
R-squared  0.28     
*** p<0.01, ** p<0.05, * p<0.1     
This regression includes province fixed effects, day-of-week fixed effects, and 
clustered standard errors at the day level.  
"Social distance (optional)" includes recommended policies related to social 
distancing, e.g. no gathering, work from home, and closing businesses such as 
karaoke and cyber cafes. 

   

"Social distance (mandatory)" includes prohibiting rallies, closing churches, 
and closing welfare service facilities. 
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c. Italy 
Dependent variable: Growth rate of cumulative confirmed cases (Δlog cases per day)   Effect of all policies combined 
Variables Coefficient Std. Error   Coefficient Std. Error 
Policy variables:        -0.409***  0.119 

Other social distance   0.148**  0.067       

School closure  -0.106  0.070       

Travel  ban  -0.303**  0.147       

Quarantine positive cases  -0.076  0.051       

Business closure  -0.142  0.107       

Home isolation   0.069  0.060       

Observations  2,898     
R-squared  0.29     
*** p<0.01, ** p<0.05, * p<0.1       
This regression includes province fixed effects, day-of-week fixed effects, and  
clustered standard errors at the day level.  
"Other social distance" includes policies for working from home, maintaining 1 meter  
distance from others in public, and prohibiting public and private events. 

   

 
d. Iran      
Dependent variable: Growth rate of cumulative confirmed cases (Δlog cases per day)   Effect of all policies combined 
Variables Coefficient Std. Error   Coefficient Std. Error 
Policy variables:        -0.436***  0.068 

Travel ban (opt), work from home, school closure -0.285*** 0.079      

Home isolation -0.151*** 0.033      

Testing regime dummy variable:           

Testing regime change on Mar 13, 2020 -0.075 0.096      

Observations  548     
R-squared  0.30     
*** p<0.01, ** p<0.05, * p<0.1     
This regression includes province fixed effects, day-of-week fixed effects, and 
clustered standard errors at the day level.  
"Travel ban (opt), work from home, school closure" policies were enacted March 1-5, 
2020 which overlaps with missing provincial case data in Iran on March 2-3, 2020. 

   

 
e. France      
Dependent variable: Growth rate of cumulative confirmed cases (Δlog cases per day)   Effect of all policies combined 
Variables Coefficient Std. Error   Coefficient Std. Error 
Policy variables:        -0.279***  0.058 

Other social distance -0.227*** 0.070      

School closure -0.005 0.039      

National lockdown -0.048* 0.025      

Testing regime dummy variable:           

Testing regime change on Mar 15, 2020 -0.032** 0.015      

Observations  270     
R-squared  0.31     
*** p<0.01, ** p<0.05, * p<0.1 
This regression includes province fixed effects, day-of-week fixed effects, and 
clustered standard errors at the day level.  
“National lockdown" policies include business closures and home isolation. 
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f. United States      
Dependent variable: Growth rate of cumulative confirmed cases (Δlog cases per day)  Effect of all policies combined 
Variables Coefficient Std. Error   Coefficient Std. Error 
Policy variables:        -0.347***  0.061 

No gathering, event cancel -0.105 0.066      

Other social distance -0.117*** 0.040      

Quarantine positive cases -0.110*** 0.029      

Paid sick leave  0.075* 0.038      

Work from home  0.015 0.017      

School closure  0.038* 0.021      

Travel ban -0.016 0.024      

Business closure -0.057** 0.026      

Home isolation -0.070*** 0.014      

Testing regime dummy variables:           

Testing regime change on Mar 13, 2020 in NY -0.100** 0.041      

Testing regime change on Mar 16, 2020 in CA  0.015 0.029      

Testing regime change on Mar 18, 2020 in NC  0.165*** 0.041      

Testing regime change on Mar 19, 2020 in CT, NV, UT  0.087** 0.034      

Testing regime change on Mar 20, 2020 in IA -0.233*** 0.026      

Testing regime change on Mar 21, 2020 in TN  0.188*** 0.034      

Testing regime change on Mar 22, 2020 in AL -0.019 0.024      

Testing regime change on Mar 23, 2020 in HI -0.055* 0.028      

Testing regime change on Mar 24, 2020 in KS, NJ -0.017 0.018      

Testing regime change on Mar 25, 2020 in OH  0.007 0.027      

Testing regime change on Mar 27, 2020 in AZ  0.042 0.036      

Testing regime change on Mar 28, 2020 in MD, MO -0.004 0.034      

Testing regime change on Mar 30, 2020 in DE -0.014 0.032      

Observations  1,235     
R-squared  0.28     
*** p<0.01, ** p<0.05, * p<0.1 
This regression includes state fixed effects, day-of-week fixed effects, and clustered 
standard errors at the day level.  
"Other social distance" includes policies such as closing libraries, maintaining 6 feet 
distance from others in public, and limiting visits to long term care facilities.     
 
 
 
These regression tables a-f display the results from our main model estimating the effect of policy on daily COVID-19 infection growth rates in China, South 
Korea, Italy, Iran, France, and the United States. The regression model is estimated separately for each country, allowing for the policy type to have different 
average treatment effects for each country.  
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Supplementary Table 4 | Estimated Effect of Actual Policies on Infection Growth Rates With and 
Without Grouping Policies 

 
 Main Specification (policies grouped)  Disaggregated Model (policies separate) 

Country   Effect size 95% CI   Effect size 95% CI 
China -0.156 (-.187, -.126) -0.156 (-.187, -.126) 

France -0.139 (-.214, -.064) -0.195 (-.373, -.018) 
Iran -0.362 (-.497, -.227) -0.305 (-.455, -.156) 
Italy -0.241 (-.373, -.108) -0.243 (-.379, -.106) 

South Korea -0.248 (-.423, -.073) -0.210 (-.377, -.044) 
United States -0.092 (-.158, -.027) -0.092 (-.165, -.018) 

 
Average effect of all policies on infection growth rates in our sample (analogous to the average difference between red and blue markers in Figure 3 of the main 
text) using our main specification, where the impact of grouped policy interventions are estimated jointly, compared to a disaggregated model where the effect 
of all policies are estimated simultaneously but without grouping them (See Supplementary Methods 5). In our main specification, policies are grouped due to 
limited data. We group policies that have similar objectives (e.g. “travel_ban_local” and “transit_suspension”) or are deployed very close in time. We keep other 
policies separate where possible (e.g. “school_closure” and “home_isolation”). In the disaggregated model,  no policies are grouped and individual policies 
estimates are noisier, however combined effects are similar.  
 
 

Supplementary Table 5 | Estimated Effect of Actual Policies Combined on Infection Growth Rates 
Using Alternative Models that Assume Lagged Effects Of Policies 

 
Country Statistic 0 Day Lag 1 Day Lag 2 Day Lag 3 Day Lag 4 Day Lag 5 Day Lag 

 Effect size -0.156 -0.146 -0.137 -0.134 -0.130 -0.122 
China 95% CI (-.187, -.126) (-.18, -.111) (-.171, -.103) (-.168, -.101) (-.158, -.102) (-.148, -.096) 

 R2  0.52 0.44 0.44 0.43 0.44 0.44 
 Effect size -0.139 -0.136 -0.131 -0.116 -0.101 -0.083 

France 95% CI (-.214, -.064) (-.21, -.061) (-.191, -.071) (-.155, -.077) (-.133, -.068) (-.105, -.061) 
 R2  0.31 0.32 0.33 0.31 0.30 0.31 
 Effect size -0.362 -0.358 -0.399 -0.379 -0.365 -0.285 

Iran 95% CI (-.497, -.227) (-.454, -.263) (-.512, -.286) (-.443, -.315) (-.417, -.313) (-.331, -.238) 
 R2  0.30 0.33 0.35 0.38 0.39 0.38 
 Effect size -0.241  -0.252  -0.219  -0.207  -0.192  -0.177 

Italy 95% CI (-.373, -.108)  (-.344, -.160)  (-.289, -.150)  (-.261, -.154)  (-.233, -.151)  (-.223, -.130) 
 R2  0.29  0.30  0.29  0.29  0.30  0.30 
 Effect size -0.248 -0.246 -0.23 -0.221 -0.20 -0.171 

South Korea 95% CI (-.423, -.073) (-.372, -.119) (-.337, -.123) (-.312, -.13) (-.282, -.113) (-.246, -.097) 
 R2  0.28 0.30 0.30 0.31 0.31 0.29 
 Effect size -0.092 -0.080 -0.082 -0.081 -0.078 -0.072 

United States 95% CI (-.158, -.027) (-.144, -.016) (-.127, -.038) (-.114, -.047) (-.106, -.049) (-.094, -.049) 
 R2  0.28 0.28 0.28 0.29 0.29 0.29 

 
Average effect of all policies on infection growth rates in our sample (analogous to the average difference between red and blue markers in Figure 3 of the main 
text) using models with different assumed delays of policy impact, ranging from a one day lag  to a five day lag. The “0 Day Lag” column corresponds to the 
estimates reported in the main text. For models with non-zero lag, the lag structure of the estimating equation is such that for a model with an L day lag, the 
policy intervention implemented on day t is assumed to have no impact on infection growth rates until day t+L. As in the main text, for China and Korea, the 
reported effect size is the policy impact on the growth rate of active cases, where in the other countries cumulative cases are used. See Supplementary Methods 
3 for a discussion of these results.  
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