medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040642; this version posted April 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

The Effect of Large-Scale Anti-Contagion Policies
on the Coronavirus (COVID-19) Pandemic

Solomon Hsiang"?, Daniel Allen', Sébastien Annan-Phan'?, Kendon Bell***, Tan
Bolliger'”®, Trinetta Chong!, Hannah Druckenmiller’®, Luna Yue Huang!'?®, Andrew
Hultgren'?, Emma Krasovich!, Peiley Lau'?, Jaecheol Lee', Esther Rolf!,

Jeanette Tseng!, and Tiffany Wu!

LGlobal Policy Laboratory, Goldman School of Public Policy, UC Berkeley
2National Bureau of Economic Research & Centre for Economic Policy Research
3 Agricultural & Resource Economics, UC Berkeley
4Manaaki Whenua — Landcare Research
SEnergy & Resources Group, UC Berkeley
SElectrical Engineering & Computer Science Department, UC Berkeley

First version of text: March 21, 2020

This version of text: April 23, 2020
Data updated: April 6, 2020

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.


https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040642; this version posted April 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

1 Abstract

2 Governments around the world are responding to the novel coronavirus (COVID-19) pandemic'
3 with unprecedented policies designed to slow the growth rate of infections. Many actions,
4 such as closing schools and restricting populations to their homes, impose large and visible
5 costs on society. In contrast, the benefits of these policies, in the form of infections that
6 did not occur, cannot be directly observed and are currently understood through process-based
7 simulations.?* Here, we compile new data on 1,659 local, regional, and national anti-contagion
8 policies recently deployed in the ongoing pandemic across localities in China, South Korea, Iran,
9 Italy, France, and the United States (US). We then apply reduced-form econometric methods,
10 commonly used to measure the effect of policies on economic growth, to empirically evaluate
1 the effect that these anti-contagion policies have had on the growth rate of infections. In the
12 absence of any policy actions, we estimate that early infections of COVID-19 exhibit exponential
13 growth rates of roughly 42% per day. We find that anti-contagion policies collectively have had
14 significant effects slowing this growth. Our results suggest that similar policies may have
15 different impacts on different populations, but we obtain consistent evidence that the policy
16 packages now deployed are achieving large, beneficial, and measurable health outcomes. We
17 estimate that, to date, current policies have already prevented or delayed on the order of 62
18 million infections across these six countries. These findings may help inform whether or when
19 these ongoing policies should be lifted or intensified, and they can support decision-making in
20 the other 180+ countries where COVID-19 has been reported.®
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» Introduction

» The 2019 novel coronavirus! (COVID-19) pandemic is forcing societies around the world to make
23 consequential policy decisions with limited information. After containment of the initial outbreak
2 failed, attention turned to implementing large-scale social policies designed to slow contagion of
s the virus,® with the ultimate goal of slowing the rate at which life-threatening cases emerge so as
% to not exceed the capacity of existing medical systems. In general, these policies aim to decrease
27 opportunities for virus transmission by reducing contact among individuals within or between pop-
;s ulations, such as by closing schools, limiting gatherings, and restricting mobility. Such actions are
2 not expected to halt contagion completely, but instead are meant to slow the spread of COVID-19
0 to a manageable rate. These large-scale policies are informed by epidemiological simulations? 4 717
u and a small number of natural experiments in past epidemics.!® However, the actual effects of
2 these policies on infection rates in the ongoing pandemic are unknown. Because the modern world
13 has never experienced a pandemic from this pathogen, nor deployed anti-contagion policies of such
s scale and scope, it is crucial that direct measurements of policy impacts be used alongside numerical
s simulations in current decision-making.

3 Populations across the globe are currently weighing whether, or when, the health benefits of
s anti-contagion policies are worth the costs they impose on society. Many of these costs are plainly
s seen; for example, restrictions imposed on businesses are increasing unemployment,'® travel bans
» are bankrupting airlines,2° and school closures may have enduring impacts on affected students.?!
w0 It is therefore not surprising that some populations hesitate before implementing such dramatic
s policies, particularly when these costs are visible while their health benefits — infections and deaths
2 that would have occurred but instead were avoided or delayed — are unseen. Our objective is to
s measure the direct health benefits of these policies; specifically, how much these policies slowed the
« growth rate of infections. We treat recently implemented policies as hundreds of different natural
s experiments proceeding in parallel. Our hope is to learn from the recent experience of six countries
% where early spread of the virus triggered large-scale policy actions, in part so that societies and

«  decision-makers in the remaining 180+ countries can access this information.
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a8 Here we directly estimate the effects of 1,659 local, regional, and national policies on the growth
w rate of infections across localities within China, France, Iran, Italy, South Korea, and the US (see
so Figure 1 and Supplementary Table 1). We compile publicly available subnational data on daily
st infection rates, changes in case definitions, and the timing of policy deployments, including (1)
2 travel restrictions, (2) social distancing through cancellations of events and suspensions of educa-
3 tional/commercial/religious activities, (3) quarantines and lockdowns, and (4) additional policies
s« such as emergency declarations and expansions of paid sick leave, from the earliest available dates
s to April 6, 2020 (see complete descriptions in the Supplementary Information, also Extended Data
ss Fig. 1). During this period, populations in these countries remained almost entirely suscepti-
s7 ble to COVID-19, causing the natural spread of infections to exhibit almost perfect exponential
s growth.” 1422 The rate of this exponential growth may change daily and is determined by epidemi-
so ological factors, such as disease infectivity and contact networks, as well as policies that induce
o behavior changes.” 822 We cannot experimentally manipulate policies ourselves, but because they
e1 are being deployed while the epidemic unfolds, we can estimate their effects empirically. We exam-
2 ine how the daily growth rate of infections in each locality changes in response to the collection of
63 ongoing policies applied to that locality on that day.

23,24

64 ‘We employ well-established “reduced-form” econometric techniques commonly used to mea-

25,26 27

s sure the effects of policies or other events (e.g., wars?” or environmental changes®®) on economic
e growth rates. Similarly to early COVID-19 infections, economic output generally increases exponen-
o7 tially with a variable rate that can be affected by policies and other conditions. Unlike process-based
¢ epidemiological models,” % 12:22:29:30 the reduced-form statistical approach to inference that we ap-
e ply does not require explicit prior information about fundamental epidemiological parameters or
70 mechanisms, many of which remain uncertain in the current pandemic. Rather, the collective influ-
7 ence of these factors is empirically recovered from the data without modeling their individual effects
» explicitly (see Methods). Prior work on influenza,?' for example, has shown that such statistical
7z approaches can provide important complementary information to process-based models.

74 To construct the dependent variable, we transform location-specific, subnational time-series data

» on infections into first-differences of their natural logarithm, which is the per-day growth rate of
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7 infections (see Methods). We use data from first- or second-level administrative units and data on
77 active or cumulative cases, depending on availability (see Supplementary Information). We then
s employ widely-used panel regression models?? 24 to estimate how the daily growth rate of infections
7 changes over time within a location when different combinations of large-scale social policies are
s enacted (see Methods). Our econometric approach accounts for differences in the baseline growth
a1 rate of infections across sub-national locations, which may be affected by time-invariant charac-
&2 teristics, such as demographics, socio-economic status, culture, and health systems; it accounts for
s systematic patterns in growth rates within countries unrelated to policy, such as the effect of the
s work-week; it is robust to systematic under-surveillance specific to each sub-national unit; and it
ss accounts for changes in procedures to diagnose positive cases (see Methods and Supplementary
s Information). The reduced-form statistical techniques we use are designed to measure the total
s magnitude of the effect of changes in policy, without attempting to explain the origin of baseline
ss growth rates or the specific epidemiological mechanisms linking policy changes to infection growth
s rates (see Methods). Thus, this approach does not provide the important mechanistic insights
« generated by process-based models; however, it does effectively quantify the key policy-relevant re-
o1 lationships of interest using recent real-world data, when fundamental epidemiological parameters

o2 are still uncertain.

» Results

w  We estimate that in the absence of policy, early infection rates of COVID-19 grow 42% per day on
s average (Standard Error [SE] = 7%), implying a doubling time of approximately 2 days. Country-
o specific estimates range from 24% per day in China (SE = 9%) to 69% per day in Iran (SE =
o 5%). Growth rates in South Korea, Italy, France, and the US are very near the 42% average
e value (Figure 2a). These estimated values differ from observed growth rates because the latter are
o confounded by the effects of policy. These growth rates are not driven by the expansion of testing or
wo increasing rates of case detection (see Methods and Extended Data Fig. 2) and are not dependent

i on data from any particular region of any country (Extended Data Fig. 3).
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102 Some prior analyses of pre-intervention infections in Wuhan suggest slower growth rates (dou-

)32:33

w3 bling every 5-7 days using data collected before national standards for diagnosis and case

s definitions were first issued by the Chinese government on January 15, 2020.34

However, case data
s in Wuhan from before this date contains multiple irregularities:** the cumulative case count de-
ws creased on January 9; no new cases were reported between January 9 and January 15; and there
w7 were concerns over whether information about the outbreak was actively suppressed®® (see Supple-
s mentary Table 2). When we remove these problematic data, utilizing a shorter but more reliable
0o pre-intervention time series from Wuhan (January 16-21, 2020), we recover a growth rate of 43%
uo  per day (SE = 3%, doubling every 2 days) consistent with results from all other countries (Figure 2a
w  and Supplementary Table 3), except Iran.

112 During the early stages of an epidemic, a large proportion of the population remains suscepti-
uz  ble to the virus, and if the spread of the virus is left uninhibited by policy or behavioral change,
us  exponential growth will continue until the fraction of the susceptible population declines meaning-
us  fully.”2? This decline results from members of the population leaving the transmission cycle, due
us  to either recovery or death.?? After correcting for estimated rates of case-detection,®® we compute
w7 that the minimum susceptible population in any of the administrative units in our sample is ap-
us proximately 78.0% of the total population (Cremona, Italy: roughly 79,000 total infections in a
ue population of 360,000) and 86% of administrative units across all six countries would likely be in
o a regime of uninhibited exponential growth (susceptible fraction of population > 95%) if policies
121 were removed on the last date of our sample.

122 Consistent with predictions from epidemiological models,? '8 37 we find that the combined effect
123 of policies within each country reduces the growth rate of infections by a substantial and statistically
s significant amount (Figure 2b, Supplementary Table 3). For example, a locality in France with a
s baseline growth rate of 0.34 (national average) that fully deployed all policy actions used in France
s would be expected to lower its daily growth rate by —0.28 to a growth rate of 0.06. In general, the
127 estimated total effects of policy packages are large enough that they can in principle offset a large
s fraction of, or even eliminate, the baseline growth rate of infections—although in several countries,

e many localities are not currently deploying the full set of policies used in that country. Overall, the
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1w estimated effects of all policies combined are generally insensitive to dropping regional (i.e. state-
1w or province-level) blocks of data from the sample (Extended Data Fig. 3).

132 In China, only two policies were enacted across 116 cities early in a seven week period, providing
133 us with sufficient data to empirically estimate how the effects of these policies evolve over time
1 without making any assumptions about the timing of these effects (see Methods and Fig. 2b). We
135 estimate that the combined effect of these policies significantly reduced the growth rate of infections
s by —0.14 (SE = 0.031) in the first week immediately following their deployment (also see Extended
w Data Fig. 5a), with effects doubling in the second week to —0.30 (SE = 0.040), and stabilizing in
s the third week at —0.34 (SE = 0.036). In other countries, we lack sufficient data to estimate these
e temporal dynamics explicitly and only report the average pooled effect of policies across all days
1w following their deployment (see Methods). If other countries were to exhibit transient responses
w similar to that observed in China, we would expect effects in the first week following deployment to
12 be smaller in magnitude than the average effect for all post-deployment weeks. Below, we explore
13 how our estimates would change if we impose the assumption that policies cannot affect infection
us  growth rates until after a fixed number of days, but we do not find evidence this improves model
us  fit (Extended Data Fig. 5b).

146 The estimates described above (Figure 2b) capture the superposition of all policies deployed
w7 in each country, i.e., they represent the average effect of policies on infection growth rates that
us  we would expect to observe if all policies enacted anywhere in each country were implemented
1o simultaneously in a region of that country. We also estimate the effects of individual policies or
10 clusters of policies that are grouped either based on their similarity in goal (e.g., library closures and
151 museum closures are grouped) or timing (e.g., policies that are generally deployed simultaneously
12 in a certain country). In many cases, our estimates for these effects are statistically noisier than
153 the estimates for all policies combined because we are estimating multiple effects simultaneously.
15« Thus, we are less confident in the individual estimates and in their relative rankings. Estimated
15 effects differ between countries, and policies are neither identical nor perfectly comparable in their
156 implementation across countries or, in many cases, across different localities within the same coun-

157 try. Nonetheless, despite a higher level of variability in these values, 28 out of 34 point estimates
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158 indicate that individual policies are likely contributing to reducing the growth rate of infections
1ss  (Figure 2¢). Six policies (one in South Korea, two in Italy, and three in the US) have point esti-
o mates that are positive, five of which are small in magnitude (< 0.1) and not statistically different
e from zero (5% level). Consistent with greater overall uncertainty in these dis-aggregated estimates,
12 some in China, France, Italy, and South Korea are somewhat more sensitive to dropping regional
s blocks of data (Extended Data Fig. 4). The estimated effects of individual policies are broadly
1« robust to assuming a constant delayed effect of all policies (Extended Data Fig. 5c¢).

165 We combine the estimates above with our data on the timing of the 1,659 policy deployments
166 to estimate the total effect of all policies across the dates in our sample. To do this, we use our
167 estimates to predict the growth rate of infections in each locality on each day, given the policies
s in effect at that location on that date (Figure 3, blue markers). We then use the same model
10 to predict what counterfactual growth rates would be on that date if all policies were removed

w  (Figure 3, red markers), which we refer to as a

‘no-policy scenario.” The difference between these
m two predictions is our estimated effect that all anti-contagion policies actually deployed had on
2 the growth rate of infections. We estimate that since the beginning of our sample, on average,
73 all anti-contagion policies combined have slowed the average daily growth rate of infections by
e —0.156 per day (+0.015,p < 0.001) in China, —0.248 (£0.089,p < 0.001) in South Korea, —0.241
ws (£0.068,p < 0.001) in Italy, —0.362 (£0.069,p < 0.001) in Iran, —0.139 (£0.038,p < 0.001) in
ws  France and —0.092 (+0.033,p < 0.05) in the US. Taken together, these results suggest that anti-
77 contagion policies currently deployed in all six countries are achieving their intended objective of
s slowing the pandemic, broadly confirming epidemiological simulations. These results are robust to
o modeling the effects of policies without grouping them (Extended Data Fig. 6a and Supplementary
1w Table 4) or assuming a delayed effect of policy on infection growth rates (Supplementary Table 5).
181 At a particular moment in time, the total number of COVID-19 infections depends on the growth
12 rate of infections on all prior days. Thus, persistent decreases in growth rates have a compounding
183 effect on total infections, at least until a shrinking susceptible population slows growth through a
18 different mechanism. To provide a sense of scale and context for our main results in Figs. 2 and 3,

15 we integrate the growth rate of infections in each locality from Figure 3 to estimate the total number
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s of infections to date, both with actual anti-contagion policies and in the no-policy counterfactual
17 scenario. To account for the declining size of the susceptible population in each administrative unit,
188 we couple our econometric estimates of the effects of policies with a simple Susceptible-Infected-
1w Removed (SIR) model of infectious disease dynamics” 2?2 that adjusts the susceptible population
w0 based on previously estimated case-detection rates®® (see Methods). This allows us to extend our
w1 projections beyond the initial exponential growth phase of infections, a threshold which our results
12 suggest would currently be exceeded in several countries in the no-policy scenario.

193 Our results suggest that ongoing anti-contagion policies have already substantially reduced the
e number of COVID-19 infections observed in the world today (Figure 4). Our central estimates
105 suggest that there would be roughly 27 million more cumulative confirmed cases in China, 20
s million more in South Korea, 2.7 million more in Italy, 5.4 million more in Iran, 530,000 more
17 in France, and 5.1 million more in the US had these countries never enacted any anti-contagion
108 policies since the start of the pandemic. The relative magnitudes of these impacts partially reflects
o the timing, intensity, and extent of policy deployment (e.g., how many localities deployed policies),
20 and the duration for which they have been applied. Several of these estimates are subject to large
201 statistical uncertainties (see intervals in Figure 4). Sensitivity tests that assume a range of plausible
22 alternative parameter values and disease dynamics, such as incorporating a Susceptible-Exposed-
203 Infected-Removed (SEIR) model, suggest that policies may have reduced the number of infections

20 by a total of 57-65 million confirmed cases over the dates in our sample (central estimates).

» 1DIscussion

26 Overall, our results indicate that large-scale anti-contagion policies are achieving their intended
207 objective of slowing the growth rate of COVID-19 infections. Because infection rates in the countries
208 we study would have initially followed rapid exponential growth had no policies been applied,
20 our results suggest that these ongoing policies are currently providing large health benefits. For
20 example, we estimate that there would be roughly 339x the current number of confirmed infections

au in China, 22x in Italy, and 15x in the US by the end of our sample if large-scale anti-contagion
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a2 policies had not already been deployed. Consistent with process-based simulations of COVID-19

2,4,10-12,14,17,29 oy empirical analysis of existing policies indicates that seemingly small

23 infections,
a1 delays in policy deployment likely produce dramatically different health outcomes.

215 While the limited amount of currently available data poses challenges to our analysis, our aim
26 1s to use what data exist to estimate the first-order impacts of unprecedented policy actions in an
a7 ongoing global crisis. As more data become available, empirical research findings will become more
28 precise and may capture more complex interactions. For example, this analysis does not account for
38

20 potentially important interactions between populations in nearby localities,”3® nor the structure

20 of mobility networks.3 4> 10,12,17,39

Nonetheless, we hope the results we are able to obtain at this
a1 early stage of the pandemic can support critical decision-making, both in the countries we study
22 and in the other 180+ countries where COVID-19 infections have been reported.

23 A key advantage of our reduced-form “top down” statistical approach is that it captures the real-
24 world behavior of affected populations without requiring that we explicitly model all underlying
»s  mechanisms and processes. This property is useful in the current stage of the pandemic when
26 many process-related parameters remain unknown. However, our results cannot and should not be
27 interpreted as a substitute for process-based epidemiological models specifically designed to provide
»s guidance in public health crises. Rather, our results complement existing models, for example,
29 by helping to calibrate key model parameters. We believe both forward-looking simulations and
20 backward-looking empirical evaluations should be used to inform decision-making.

231 Our analysis measures changes in local infection growth rates associated with changes in anti-
22 contagion policies, treating each subnational administrative unit as if it were in a natural experi-
23 ment. Intuitively, each administrative unit observed just prior to a policy deployment serves as the
24 “control” for the same unit in the days after it receives a policy “treatment”. Thus, a necessary
25 condition for our estimates to be interpreted as the plausibly causal effect of these policies is that
2 the timing of policy deployment is independent of infection growth rates.?? Such an assumption is
2 supported by epidemiological theory, which predicts that infection totals in the absence of policy
2 will be near-perfectly exponential early in the epidemic,” implying that pre-policy infection growth

230 rates in this context should be constant. The policies we analyze are unlikely to have been de-

10
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a0 ployed in reaction to or anticipation of changes in growth rates, since epidemiological guidance to
2 decision-makers explicitly projected constant growth rates in the absence of anti-contagion mea-
22 sures.?2%40:41 Tp practice, decision-makers have tended to deploy policies in response to the count
23 of total infections in their locality, rather than their growth rate,? in response to outbreaks in other
2 Tegions or countries,*? or based on other arbitrary and exogenous factors, such as closing schools
25 on a Monday or after Spring Break.*?

246 Our analysis accounts for documented changes in the availability of and procedures for testing
27 for COVID-19 as well as differences in case-detection across locations; however, unobserved trends in
2 case-detection could affect our results (see Methods). For example, if growing awareness of COVID-
29 19 caused an increasing fraction of infected individuals to be tested over time, then unadjusted
»0  infection growth rates later in our sample would be biased upwards. Because an increasing number
s of policies are active later in these samples as well, this bias would cause our current findings to
»2  understate the overall effectiveness of anti-contagion policies. However, our analysis of estimated
s case-detection trends®® (Extended Data Fig. 2) suggests that the magnitude of this potential bias
25« is small, elevating our estimated no-policy growth rates by 0.022 (6%) on average.

255 It is also possible that changing public information during the period of our study has some
6 unknown effect on our results. If individuals alter their behavior in response to new information
»s7  unrelated to anti-contagion policies, such as news reports about COVID-19, this could alter the
s growth rate of infections and thus affect our estimates. Because the quantity of new information
9 18 increasing over time, if this information reduces infection growth rates, it would cause us to
x0 overstate the effectiveness of anti-contagion policies. We note, however, that if public information
1 18 increasing in response to policy actions, then it should be considered a pathway through which
x%2  policies alter infection growth, not a form of bias. Investigating these potential effects is beyond
»3  the scope of this analysis, but it is an important topic for future investigations.

264 While our analysis has focused on changes in the growth rate of infections, other outcomes,
»%s such as hospitalizations or deaths, are also of policy interest. Because these outcomes are more
x6 context- and state-dependent than infection growth rates, their analysis in future work may require

27 additional modeling approaches. Nonetheless, we experimentally implement our approach on the

11
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xs daily growth rate of hospitalizations in France, the only country in our sample where we were able
%0 to obtain hospitalization data at the granularity of this study. We find that the total estimated
oo effect of anti-contagion policies on the growth rate of hospitalizations is similar to our reported
an effect on the infection growth rate (Extended Data Fig. 6c).

2 Here we exclusively analyzed large-scale anti-contagion social policies to understand their effects
a3 on infection growth rates within a locality. However, contact tracing, international travel restric-
o tions, and medical resource management, along with many other policy decisions, will play key
s roles in the global response to COVID-19. Our results do not speak to the efficacy of these other
a6 policies.

217 Lastly, the results presented here are not sufficient on their own to determine which anti-
;s contagion policies are ideal for particular populations, nor do they speak to whether the social
a9 costs of individual policies are larger or smaller than the social value of their health benefits. Com-
20 puting a full value of health benefits also requires understanding how different growth rates of
2 infections and total active infections affect mortality rates, as well as determining a social value
22 for all of these impacts. Furthermore, this analysis does not quantify the sizable social costs of

23 anti-contagion policies, a critical topic for future investigations.

12
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Figure 3: Estimated infection growth rates based on actual anti-contagion policies and in a no-policy counterfac-
tual scenario. Predicted daily growth rates of active (China and South Korea) or cumulative (all others) COVID-19 infections
based on the observed timing of all policy deployments within each country (blue) and in a scenario where no policies were
The difference between these two predictions is our estimated effect of actual anti-contagion policies on the
growth rate of infections. Small markers are daily estimates for subnational administrative units (vertical lines are 95% CI).
Large markers are national averages. Black circles are observed daily changes in log(in fections), averaged across administrative

deployed (red).

units.

Legend

—_—— — -

Jan26 Feb05 Feb15 Feb25 Mar06 Mar16 Mar26 Apr05

“No policy” scenario
admin unit

“No policy” scenario
national avg

Actual policies (predicted)
admin unit

Actual policies (predicted)
national avg

Observed change

in log cases

national avg


https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040642; this version posted April 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Predicted cumulative Predicted cumulative Predicted cumulative Predicted cumulative Predicted cumulative

Predicted cumulative

cases

cases

cases

cases

cases

cases

10°1
10"
10°
10°
10*
10’

10°
,

China

s —_—J

R -

Mar 05: 79,832
confirmed cases

~27,000,000 fewer
estimated cases

10

10%1

South Korea

estimated cases

Apr 06: 9,924
confirmed cases

~2,700,000 fewer
estimated cases

]

Apr 06: 132,547
confirmed cases

V4 ]| ~5,400,000 fewer

estimated cases

Mar 22: 21,683
confirmed cases

Z5 ] ~530,000 fewer
. | estimated cases

Mar 25: 24,920
confirmed cases

~5,100,000 fewer

/’:
> estimated cases

Apr 06: 365,117
confirmed cases

P4

Jan 22 Feb 01 Feb 11 Feb 21 Mar 02 Mar 12 Mar 22 Apr 01

~20,000,000 fewer

Legend

=== "No policy" scenario

95% interval

70% interval

Actual policies (predicted)
95% interval

70% interval

Cumulative observed cases

Figure 4: Estimated cumulative confirmed COVID-19 infections with and without anti-contagion policies. The
predicted cumulative number of confirmed COVID-19 infections based on actual policy deployments (blue) and in the no-policy
counterfactual scenario (red). Shaded areas show uncertainty based on 1,000 simulations where empirically estimated parameters
are resampled from their joint distribution (dark = inner 70% of predictions; light = inner 95%). Black dotted line is observed
cumulative infections. Infections are not projected for administrative units that never report infections in the sample, but which
might have experienced infections in a no-policy scenario.
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w Methods

« Data Collection and Processing

w1 We provide a brief summary of our data collection processes here (see the Supplementary Notes
w2 for more details, including access dates). Epidemiological, case definition/testing regime, and pol-
w3 icy data for each of the six countries in our sample were collected from a variety of in-country
a0¢ data sources, including government public health websites, regional newspaper articles, and crowd-
ws sourced information on Wikipedia. The availability of epidemiological and policy data varied across
ws the six countries, and preference was given to collecting data at the most granular administrative
s07 unit level. The country-specific panel datasets are at the region level in France, the state level in
w0 the US, the province level in South Korea, Italy and Iran, and the city level in China. Due to data
w0 availability, the sample dates differ across countries: in China we use data from January 16 - March
a0 5, 2020; in South Korea from February 17 - April 6, 2020; in Italy from February 26 - April 6, 2020;
an in Iran from February 27 - March 22, 2020; in France from February 29 - March 25, 2020; and in
a2 the US from March 3 - April 6, 2020. Below, we describe our data sources.

a3 China We acquired epidemiological data from an open source GitHub project! that scrapes time
as  series data from Ding Xiang Yuan. We extended this dataset back in time to January 10, 2020 by
«s - manually collecting official daily statistics from the central and provincial (Hubei, Guangdong, and
w6 Zhejiang) Chinese government websites. We compiled policies by collecting data on the start dates
a7 of travel bans and lockdowns at the city-level from the “2020 Hubei lockdowns” Wikipedia page?,
sz the Wuhan Coronavirus Timeline project on Github,? and various other news reports. We suspect
a0 that most Chinese cities have implemented at least one anti-contagion policy due to their reported
a0 trends in infections; as such, we dropped cities where we could not identify a policy deployment date
o1 to avoid miscategorizing the policy status of these cities. Thus our results are only representative
w22 for the sample of 116 cities for which we obtained policy data.

23 South Korea We manually collected and compiled the epidemiological dataset in South Korea,
24 based on provincial government reports, policy briefings, and news articles. We compiled policy
s actions from news articles and press releases from the Korean Centers for Disease Control and
w26 Prevention (KCDC), the Ministry of Foreign Affairs, and local governments’ websites.

w2 Iran We used epidemiological data from the table “New COVID-19 cases in Iran by province”*

w28 in the “2020 coronavirus pandemic in Iran” Wikipedia article, which were compiled from the data
x9o  provided on the Iranian Ministry of Health website (in Persian). We relied on news media reporting
s and two timelines of pandemic events in Iran®  to collate policy data.

'https://github.com/BlankerL/DXY-COVID-19-Data
2https://en.wikipedia.org/wiki/2020_Hubei_lockdowns
3https://github.com/Pratitya/wuhan2020-timeline
dhttps://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Iran
Shttps://www.thinkglobalhealth.org/article/updated-timeline-coronavirus
Shttps://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in Iran
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s Italy We used epidemiological data from the GitHub repository” maintained by the Italian De-
s partment of Civil Protection (Dipartimento della Protezione Civile). For policies, we primarily
a3 relied on the English version of the COVID-19 dossier “Chronology of main steps and legal acts
s taken by the Italian Government for the containment of the COVID-19 epidemiological emergency”
s written by the Dipartimento della Protezione Civile,® and Wikipedia.®

s France We used the region-level epidemiological dataset provided by France’s government web-
w7 site'® and supplemented it with numbers of confirmed cases by region on France’s public health
s website, which was previously updated daily through March 25.'1 We obtained data on France’s
s policy response to the COVID-19 pandemic from the French government website,'? press releases
w0 from each regional public health site,'® and Wikipedia.'*

w1 United States We used state-level epidemiological data from usafacts.org,'® which they compile
w2 from multiple sources. For policy responses, we relied on a number of sources, including the U.S.
w3 Centers for Disease Control (CDC), the National Governors Association, as well as various executive
us orders from county- and city-level governments, and press releases from media outlets.

ws  Policy Data Policies in administrative units were coded as binary variables, where the policy
ws  was coded as either 1 (after the date that the policy was implemented, and before it was removed)
w7 or 0 otherwise, for the affected administrative units. When a policy only affected a fraction of
wus an administrative unit (e.g., half of the counties within a state), policy variables were weighted
wo by the percentage of people within the administrative unit who were treated by the policy. We
s0 used the most recent population estimates we could find for countries’ administrative units (see the
s Population Data section in the Appendix). Additionally, in order to standardize policy types across
42 countries, we mapped each country-specific policy to one of the broader policy category variables
53 in our analysis. In this exercise, we collected 137 policies for China, 59 for South Korea, 215 for
e Italy, 22 for Iran, 59 for France, and 1167 for the United States (see Supplementary Table 1).

s  Epidemiological Data We collected information on cumulative confirmed cases, cumulative
6 recoveries, cumulative deaths, active cases, and any changes to domestic COVID-19 testing regimes,
7 such as case definitions or testing methodology. For our regression analysis (Figure 2), we use
s active cases when they are available (for China and South Korea) and cumulative confirmed cases
w0 otherwise. We document quality control steps in the Appendix. Notably, for China and South
w0 Korea we acquired more granular data than the data hosted on the John Hopkins University (JHU)
w1 interactive dashboard;'® we confirm that the number of confirmed cases closely match between the

"https://github.com/pcm-dpc/COVID-19
Shttp://www.protezionecivile.it/documents/20182/1227694/Summary+of+measures+taken+against+
the+spread+of+C-19/c16459ad-4e52-4e90-90f3-c6a2b30c17eb
mttps://en.wikipedia.org/wiki/2020_Italy_coronavirus_lockdown
Onttps://wuw.data.gouv.fr/en/datasets/fr-sars-cov-2/
11https://www.santepubliquefrance.fr/maladies—et—traumatismes/maladies—et—infections—respiratoires
/infection-a-coronavirus/articles/infection-au-nouveau-coronavirus-sars-cov-2-covid-19-france-et-monde
2nttps://www.gouvernement . fr/info-coronavirus
Bhttps://www.ars.sante.fr/
Mhttps://fr.wikipedia.org/wiki/Pand%C3%A9mie_de maladie %C3%A0_coronavirus_de 2020_en France
5https://usafacts.org/visualizations/coronavirus-covid-19-spread-map
16https://github.com/CSSEGISandData/COVID-19

23


https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040642; this version posted April 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

w2 two data sources (see Extended Data Fig. 1). To conduct the econometric analysis, we merge the
w3 epidemiological and policy data to form a single data set for each country.

« Econometric analysis

w5 Reduced-Form Approach The reduced-form econometric approach that we apply here is a
ws  “top down” approach that describes the behavior of aggregate outcomes y in data (here, infection
w  rates). This approach can identify plausibly causal effects®®2?* induced by exogenous changes in
ws independent policy variables z (e.g., school closure) without explicitly describing all underlying
w0 mechanisms that link z to y, without observing intermediary variables x (e.g., behavior) that might
a0 link 2 to y, or without other determinants of y unrelated to z (e.g., demographics), denoted w. Let
a f(+) describe a complex and unobserved process that generates infection rates y:

Y= f(xl(zla "'7ZK)7 "'7xN(Zla '~'7ZK)awla 7wM) (1)

a2 Process-based epidemiological models aim to capture elements of f(-) explicitly, and then simulate
a3 how changes in z, x, or w affect y. This approach is particularly important and useful in forward-
an looking simulations where future conditions are likely to be different than historical conditions.
w5 However, a challenge faced by this approach is that we may not know the full structure of f(-), for
a6 example if a pathogen is new and many key biological and societal parameters remain uncertain.
a7 Crucially, we may not know the effect that large-scale policy (z) will have on behavior (z(z)) or
w8 how this behavior change will affect infection rates (f(-)).

479 Alternatively, one can differentiate Equation 1 with respect to the k™" policy z:

dy _x~ Oy O

— 2
0z, Ox; 0z, @)

Jj=1

w0  which describes how changes in the policy affects infections through all N potential pathways
s mediated by x1,...,zy. Usefully, for a fixed population observed over time, empirically estimating
s an average value of the local derivative on the left-hand-side in Equation 2 does not depend on

3 explicit knowledge of w. If we can observe y and z directly and estimate changes over time g—zyk
s with data, then intermediate variables x also need not be observed nor modeled. The reduced-form

w5 econometric approach?? 24 thus attempts to measure 8‘9—3’ directly, exploiting exogenous variation
Zk

a6 in policies z.

s Model Active infections grow exponentially during the initial phase of an epidemic, when the
w8 proportion of immune individuals in a population is near zero. Assuming a simple Susceptible-
@ Infected-Recovered (SIR) disease model (e.g., ref. [*?]), the growth in infections during the early

490 period is
dl

— =(SB—Lk s

o (8T Q)

—1

w1 where I; is the number of infected individuals at time ¢, 5 is the transmission rate (new infections
w2 per day per infected individual), v is the removal rate (proportion of infected individuals recovering
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w3 or dying each day) and S is the fraction of the population susceptible to the disease. The second
w4 equality holds in the limit S — 1, which describes the current conditions during the beginning
a5 of the COVID-19 pandemic. The solution to this ordinary differential equation is the exponential
w6 function I

Zta _ Lge(ta—t1) 4
It € ? ( )

1

w7 where Iy, is the initial condition. Taking the natural logarithm and rearranging, we have

log(I1,) —log(It,) = g - (t2 — ta). (5)

«s  Anti-contagion policies are designed to alter g, through changes to 3, by reducing contact between
a0 susceptible and infected individuals. Holding the time-step between observations fixed at one day
s (ta —t1 = 1), we thus model g as a time-varying outcome that is a linear function of a time-varying
son  policy

gr = log(Iy) —log(I1—1) = 0y + 6 - policy; + e, (6)

sio  where 6 is the average growth rate absent policy, policy; is a binary variable describing whether a
so3  policy is deployed at time ¢, and 6 is the average effect of the policy on growth rate g over all periods
se  subsequent to the policy’s introduction, thereby encompassing any lagged effects of policies. ¢ is
sos  a mean-zero disturbance term that captures inter-period changes not described by policy;. Using
soo this approach, infections each day are treated as the initial conditions for integrating Equation 4
sor  through to the following day.

508 We compute the first differences log(I;) —log(l;—1) using active infections where they are avail-
so0  able, otherwise we use cumulative infections, noting that they are almost identical during this early
s period (except in China, where we use active infections). We then match these data to policy vari-
su  ables that we construct using the novel data sets we assemble and apply a reduced-form approach
sz to estimate a version of Equation 6, although the actual expression has additional terms detailed
53 below.

su - Estimation To estimate a multi-variable version of Equation 6, we estimate a separate regression
sis for each country c. Observations are for subnational units indexed by ¢ observed for each day
s t. Because not all localities began testing for COVID-19 on the same date, these samples are
si7 unbalanced panels. To ensure data quality, we restrict our analysis to localities after they have
sis  reported at least ten cumulative infections.

519 We estimate a multiple regression version of Equation 6 using ordinary least squares. We
s0 include a vector of subnational unit-fixed effects 6y (i.e., varying intercepts captured as coefficients
s2 to dummy variables) to account for all time-invariant factors that affect the local growth rate of
s2 infections, such as differences in demographics, socio-economic status, culture, and health systems.2*
s3 We include a vector of day-of-week-fixed effects ¢ to account for weekly patterns in the growth rate
s2  of infections that are common across locations within a country, however, in China, we omit day-
ss of-week effects because we find no evidence they are present in the data — perhaps due to the fact
s that the outbreak of COVID-19 began during a national holiday and workers never returned to
sz work. We also include a separate single-day dummy variable each time there is an abrupt change
s2  in the availability of COVID-19 testing or a change in the procedure to diagnose positive cases.
s20  Such changes generally manifest as a discontinuous jump in infections and a re-scaling of subsequent
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s infection rates (e.g., See China in Figure 1), effects that are flexibly absorbed by a single-day dummy
sn  variable because the dependent variable is the first-difference of the logarithm of infections. We
s denote the vector of these testing dummies pu.

533 Lastly, we include a vector of P, country-specific policy variables for each location and day.
s These policy variables take on values between zero and one (inclusive) where zero indicates no
s35 policy action and one indicates a policy is fully enacted. In cases where a policy variable captures
s1  the effects of collections of policies (e.g., museum closures and library closures), a policy variable is
s7. computed for each, then they are averaged, so the coefficient on this type of variable is interpreted
s:s  as the effect if all policies in the collection are fully enacted. There are also instances where multiple
530  policies are deployed on the same date in numerous locations, in which case we group policies that
s00  have similar objectives (e.g., suspension of transit and travel ban, or cancelling of events and no
s gathering) and keep other policies separate (i.e., business closure, school closure). The grouping of
se2 policies is useful for reducing the number of estimated parameters in our limited sample of data,
ss  allowing us to examine the impact of subsets of policies (e.g. Fig. 2c¢). However, policy grouping
s does not have a material impact on the estimated effect of all policies combined nor on the effect
ses  of actual policies, which we demonstrate by estimating a regression model where no policies are
ses  grouped and these values are recalculated (Supplementary Table 4, Extended Data Fig. 6).

547 In some cases (for Italy and the US), policy data is available at a more spatially granular level
ss  than infection data (e.g., city policies and state-level infections in the US). In these cases, we code
ss9  binary policy variables at the more granular level and use population-weights to aggregate them to
sso  the level of the infection data. Thus, policy variables may take on continuous values between zero
ss1 and one, with a value of one indicating that the policy is fully enacted for the entire population.
ss2 Given the limited quantity of data currently available, we use a parsimonious model that assumes
553 the effects of policies on infection growth rates are approximately linear and additively separable.
sse However, future work that possesses more data may be able to identify important nonlinearities or
555 interactions between policies.

556 For each country, our general multiple regression model is thus
P
Geit = log(]cit) - 1Og(]ci7t71) = 90,ci + 5ct + Meit + Z (gcp : poucypcit) + €cit (7)
p=1

ss7 - where observations are indexed by country ¢, subnational unit ¢, and day t. The parameters of
s interest are the country-by-policy specific coeflicients 6.,. We display the estimated residuals €.
s0 in Extended Data Fig. 10, which are mean zero but not strictly normal (normality is not a require-
s0o  ment of our modeling and inference strategy), and we estimate uncertainty over all parameters
se by calculating our standard errors robust to error clustering at the day level.22> This approach
ss2  allows the covariance in e.;; across different locations within a country, observed on the same day,
3 t0 be nonzero. Such clustering is important in this context because idiosyncratic events within a
s country, such as a holiday or a backlog in testing laboratories, could generate nonuniform country-
sss  wide changes in infection growth for individual days not explicitly captured in our model. Thus,
sss  this approach non-parametrically accounts for both arbitrary forms of spatial auto-correlation or
so7  systematic misreporting in regions of a country on any given day (we note that it generates larger
s estimates for uncertainty than clustering by ¢). When we report the effect of all policies combined
0 (e.g., Figure 2b) we are reporting the sum of coefficient estimates for all policies 25;1 Ocp, ac-
s counting for the covariance of errors in these estimates when computing the uncertainty of this
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571 SUIN.

Note that our estimates of # and 6y in Equation 7 are robust to systematic under-reporting
of infections, a major concern in the ongoing pandemic, due to the construction of our dependent
variable. This remains true even if different localities have different rates of under-reporting, so
long as the rate of under-reporting is relatively constant. To see this, note that if each locality ¢
has a medical system that reports only a fraction v; of infections such that we observe fit = Yl
rather an actual infections I;;, then the left-hand-side of Equation 7 will be

log(1i) — log(I;i—1) = log(vili) — log(¥il; 1—1)
= log (i) — log(¥s) + log(Ii) — log(i,t—1)

= log(li¢) —log(lit—1) = g¢

s and is therefore unaffected by location-specific and time-invariant under-reporting. Thus systematic
s;3 - under-reporting does not affect our estimates for the effects of policy 6. As discussed above, potential
st biases associated with non-systematic under-reporting resulting from documented changes in testing
sis - regimes over space and time are absorbed by region-day specific dummies pu.
However, if the rate of under-reporting within a locality is changing day-to-day, this could bias
infection growth rates. We estimate the magnitude of this bias (see Extended Data Fig. 2), and
verify that it is quantitatively small. Specifically, if I = 1 L;+ where 1;; changes day-to-day, then

log(Iit) — log(Ii—1) = log(1i) — log(wis—1) + gt (8)

sis  where log (1) —log(t; 1—1) is the day-over-day growth rate of the case-detection probability. Disease
sz surveillance has evolved slowly in some locations as governments gradually expand testing, which
s would cause v;; to change over time, but these changes in testing capacity do not appear to
sro significantly alter our estimates of infection growth rates. In Extended Data Fig. 2, we show one
s set of epidemiological estimates3® for log(t;¢) — log(t); +—1). Despite random day-to-day variations,
s which do not cause systematic biases in our point estimates, the mean of log(v;) — log(t; —1)
sz 1s consistently small across the different countries: 0.047 in China, 0.066 in Iran, 0.008 in South
ss3 Korea, —0.053 in France, 0.028 in Italy, and 0.036 in the US. The average of these estimates is 0.022,
ss«  potentially accounting for 6.2% of our global average estimate for the no-policy infection growth
s rate (0.35). These estimates of log(;) — log(1;:—1) also do not display strong temporal trends,
sss  alleviating concerns that time-varying under-reporting generates sizable biases in our estimated
se7  effects of anti-contagion policies.

sss  Transient dynamics In China, we are able to examine the transient response of infection growth
ss0  rates following policy deployment because only two policies were deployed early in a seven-week
soo  sample period during which we observe many cities simultaneously. This provides us with sufficient
san data to estimate the temporal structure of policy effects without imposing assumptions regarding
seo  this structure. To do this, we estimate a distributed-lag model that encodes policy parameters
s3  using weekly lags based on the date that each policy is first implemented in locality ¢. This means
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s the effect of a policy implemented one week ago is allowed to differ arbitrarily from the effect of
ss  that same policy in the following week, etc. These effects are then estimated simultaneously and
ss are displayed in Fig. 2 (also Supplementary Table 3). Such a distributed lag approach did not
sov  provide statistically meaningful insight in other countries using currently available data because
ss there were fewer administrative units and shorter periods of observation (i.e. smaller samples), and
s9 more policies (i.e. more parameters to estimate) in all other countries. Future work may be able
eo to successfully explore these dynamics outside of China.

601 We also explore the day-by-day response to the first anti-contagion policies in a limited number
2 Chinese cities using an event study approach.** We examine the 36 cities in which five days of
603 infection growth data immediately before and after deployment of the first anti-contagion policy
s« (home isolation) are available (similar samples were unavailable in the other countries we study).
es Pooling these data, we then estimate average rates of infection growth five days before deployment,
ws four days before, etc., shown in Extended Data Fig. 5a. In this limited sample of cities, we find
e7 that infection growth rates separate from the average pre-policy growth rate within the first three
os days following deployment of the policy.

609 As a robustness check, we examine whether excluding the transient response from the estimated
e effects of policy substantially alters our results. We do this by estimating a “fixed lag” model,
en  where we assume that policies cannot influence infection growth rates for L days, recoding a policy
sz variable at time ¢ as zero if a policy was implemented fewer than L days before t. We re-estimate
sz Equation 7 for each value of L and present results in Extended Data Fig. 5 and Supplementary
e Table 5.

sis  Alternative disease models Our main empirical specification is motivated with an SIR model
e1s  Of disease contagion, which assumes zero latent period between exposure to COVID-19 and infec-
617 tiousness. If we relax this assumption to allow for a latent period of infection, as in a Susceptible-
s FExposed-Infected-Recovered (SEIR) model, the growth of the outbreak is only asymptotically ex-
a0 ponential.?? Nonetheless, we demonstrate that SEIR dynamics have only a minor potential impact
e0 on the coefficients recovered by using our empirical approach in this context. In Extended Data
e Figs. 8 and 9 we present results from a simulation exercise which uses Equations 9-11, along with
2 a generalization to the SEIR model?? to generate synthetic outbreaks (see Supplementary Methods
23 Section 2). We use these simulated data to test the ability of our statistical model (Equation 7) to
s recover both the unimpeded growth rate (Extended Data Fig. 8) as well as the impact of simulated
s2s policies on growth rates (Extended Data Fig. 9) when applied to data generated by SIR or SEIR
e dynamics over a wide range of epidemiological conditions.

o Projections

es Daily growth rates of infections To estimate the instantaneous daily growth rate of infections
&0 if policies were removed, we obtain fitted values from Equation 7 and compute a predicted value for
so the dependent variable when all P, policy variables are set to zero. Thus, these estimated growth
e rates g, " °liey capture the effect of all locality-specific factors on the growth rate of infections (e.g.,
2 demographics), day-of-week-effects, and adjustments based on the way in which infection cases are
63 reported. This counterfactual does not account for changes in information that are triggered by
¢4 policy deployment, since those should be considered a pathway through which policies affect out-

¢35 comes, as discussed in the main text. When we report an average no-policy growth rate of infections
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s (Figure 2a), it is the average value of these predictions for all observations in the original sample.
e Location-and-day specific counterfactual predictions (§7°"Y), accounting for the covariance of

¢ errors in estimated parameters, are shown as red markers in Figure 3.

Cumulative infections To provide a sense of scale for the estimated cumulative benefits of
effects shown in Figure 3, we link our reduced-form empirical estimates to the key structures in a
simple SIR system and simulate this dynamical system over the course of our sample. The system
is defined as the following;:

ds,

ditt = *ﬂtStIt (9)
dl,

(T; = (8BSt — 7)1+ (10)
dR,

e 1 (11)

69 where Sy is the susceptible population and R; is the removed population. Here 5, is a time-evolving
s0 parameter, determined via our empirical estimates as described below. Accounting for changes in S
s1  becomes increasingly important as the size of cumulative infections (I; + R;) becomes a substantial
ez fraction of the local subnational population, which occurs in some no-policy scenarios. Our reduced-
3 form analysis provides estimates for the growth rate of active infections (§) for each locality and
«s day, in a regime where Sy ~ 1. Thus we know

dI,

=t =g =p — 12
dt 't s Gt =Pr —~ (12)
but we do not know the values of either of the two right-hand-side terms, which are required to
simulate Equations 9-11. To estimate -, we note that the left-hand-side term of Equation 11 is

dR d
d—tt R a(cumulativejecoveries + cumulative_deaths)

sss  which we can observe in our data for China and South Korea. Computing first differences in these
s6  two variables (to differentiate with respect to time), summing them, and then dividing by active
a7 cases gives us estimates of v (medians: China=0.11, Korea=0.048). These values differ slightly from
es  the classical SIR interpretation of v because in the public data we are able to obtain, individuals are
69 coded as “recovered” when they no longer test positive for COVID-19, whereas in the classical SIR,
sso  model this occurs when they are no longer infectious. We adopt the average of these two medians,
1 setting v = .079. We use medians rather than simple averages because low values for I induce a
62 long right-tail in daily estimates of v and medians are less vulnerable to this distortion. We then
3 use our empirically-based reduced-form estimates of § (both with and without policy) combined
e with Equations 9-11 to project total cumulative cases in all countries, shown in Figure 4. We
s simulate infections and cases for each administrative unit in our sample beginning on the first day
ess  for which we observe 10 or more cases (for that unit) using a time-step of 4 hours. Given we observe
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67 confirmed cases, rather than true infections, in our data, we seed each simulation by assuming I; on
ess the first day is equal to the number of observed cases divided by country-specific estimates of the
s proportion of infections confirmed.?® We assume R; = 0 on the first day. To maintain consistency
so with the reported data, we report our output in confirmed cases by multiplying our simulated
s1 Iy + Ry values by the aforementioned proportion of infections confirmed. We estimate uncertainty
e2 by resampling from the estimated variance-covariance matrix of all parameters. In Extended Data
o3 Fig. 7, we show sensitivity of this simulation to the estimated value of v as well as to the use of
see & Susceptible-Exposed-Infected-Recovered (SEIR) framework (see Supplementary Methods Section
665 1)
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Additional Information

Supplementary Information is available for this paper. Correspondence and requests for materials
should be addressed to Solomon Hsiang (shsiang@berkeley.edu). All data and code used in
this analysis are available at https://github.com/bolliger32/gpl-covid. Updates posted at
http://www.globalpolicy.science/covid19.
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Extended Data Figure 1 | Validating disaggregated epidemiological local administrative units that are more spatially granular than the data in
data against aggregated data from the Johns Hopkins Center for the JHU CSSE database. a, In China, we aggregate our city-level data to
Systems Science and Engineering. Comparison of cumulative confirmed the province level, and b, in Korea we aggregate province-level data up to
cases from a subset of regions in our collated epidemiological dataset to the country level. Small discrepancies, especially in later periods of the
the same statistics from the 2019 Novel Coronavirus COVID-19 outbreak, are generally due to imported cases (international or domestic)
(2019-nCoV) Data Repository by the Johns Hopkins Center for Systems that are present in national statistics but which we do not assign to
Science and Engineering (JHU CSSE).* We conduct this comparison for particular cities (in China) or provinces (in Korea).

Chinese provinces and South Korea, where the data we collect are from

1 https://github.com/CSSEGISandData/COVID-19 (access date: April 7,
2020)
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Extended Data Figure 2 | Estimated trends in case detection over time
within each country. Systematic trends in case detection may potentially
bias estimates of no-policy infection growth rates (see Equation 8). We
estimate the potential magnitude of this bias using data from the Centre
for Mathematical Modelling of Infectious Diseases.? Markers indicate daily
first-differences in the logarithm of the fraction of estimated symptomatic

?Russell, T., Joel Hellewell, and S. Abbot. “Using a delay-adjusted case
fatality ratio to estimate under-reporting.” Centre for Mathematical
Modelling of Infectious Diseases Repository (2020). URL:
https://cmmid.github.io/topics/covid19/severity/global cfr_estimates.ht
ml (access date: April 18, 2020)

Iran (Mean: 0.066)

]
1_
| ]
L}
el 8
By lll " 8 & Bgfs g8 L
0- i L] ...ll.l-l'. .l .. 3
B
-1+
-2+
]
Feb 15 Mar 01 Mar 15
France (Mean: -0.053)
[ ]
14 [
g ! [l nt®
| ] 5 .
M M ] 2t
D- L] - N L | - L |
| ]
] s | ® .
[ ]
L}
-1+
a L}
5.8

Feb24  Mar02  Mar09  Mar16  Mar23

United States (Mean: 0.036)

T T 1 T T
Feb 24 Mar 02 Mar 09 Mar 16 Mar 23

cases reported for each country over time. The average value over time
(solid line and value denoted in panel title) is the average growth rate of
case detection, equal to the magnitude of the potential bias. For
example, in the main text we estimate that the infection growth rate in
the United States is 0.30 (Figure 2A), of which growth in case detection
might contribute 0.036 (this figure).
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Extended Data Figure 3 | Robustness of the estimated no-policy growth rate
of infections and the combined effect of policies to withholding blocks of
data from entire regions. For each country, we re-estimated Eq. 7 using real
data k times, each time withholding one of the k first-level administrative
regions (“Adm1,” i.e. state or province) in that country. Each gray circle is either
(a) the estimated no-policy growth rate or (b) the total effect of all policies
combined, from one of these k regressions. Red and blue circles show estimates

0
Estimated effect of combined policy on daily growth rate

from the full sample, identical to results presented in panels A and B of Figure 2,
respectively. For each country panel, if a single region is influential, the
estimated value when it is withheld from the sample will appear as an outlier.
Some regions that appear influential are highlighted with an open pink circle. As
in Figure 2B of the main text, we estimate a distributed lag model for China and
display each of the estimated weekly lag effects (red circle is the same “without
Hubei” sample for lags).
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Extended Data Figure 5 | Evidence supporting models where policies
affect infection growth rates in the days following deployment.
Existing evidence has not demonstrated whether policies should affect
infection growth rates in the days immediately following deployment. It is
therefore not clear ex ante whether the policy variables in Eq. 7 should be
encoded as “on” immediately following a policy deployment. We
estimate “fixed-lag” models in which a fixed delay between a policy’s
deployment and its effect is assumed (see Supplementary Methods 3). If a
delay model is more consistent with real world infection dynamics, these
fixed lag models should recover larger estimates for the impact of policies
and exhibit better model fit. a, Because data from China cover a longer
period with fewer policies that are each implemented early in the sample,
we estimated an explicit distributed lag model in the main article (Figure
2), finding evidence of policy impacts in the first week of deployment and

Home isclation, business closure

Local travel ban, suspension transit

Legend:
Daily estimated impact of the
home isolation policy

Estimated impact of policy on
the growth rate of
Confirmed . [‘\I%ﬂy?d lag
. ay lag
piscious cases & zdays s
- Active cases . 4 d:;: ]:g
—e Italy (GHN KOR) 5 days lag
ira
United
States Hospitalization @ Ne fixed lag
Souith (FRA oniy) o 1daylag
” o 2dayslag
ores. o 3dayslag
4 days lag
(') 5‘ 1‘0 15 5 days lag

Fixed lags length

France

School closure

¢
Other social distancing
measures

Home isolation

Business closure

School closure

Work from home

United States

Paid sick leave EE =
[P
Quarantine positive cases +I

—$—=

Other social distancing 1

measures
°
—
No gathering, event cancel —2F
T
-4 -2 o] 2

Estimated effect on daily growth rate

evidence that these effects increase in the following weeks. Using a
reduced sample of 36 Chinese cities where at least five days of infection
data are available before and after the first policy (home isolation) is
deployed, we implement an event study.? Orange markers show the
average infection growth rate in the five days immediately prior to and
following the first policy deployment. b, R-squared values associated
with fixed-lag lengths varying from zero to fifteen days. In-sample fit
generally declines or remains unchanged if policies are assumed to have a
delay longer than four days (whiskers are 95% CI computed through
resampling). ¢, Estimated effects for no lag (the model reported in the
main text) and for fixed-lags between one and five days. Estimates
generally are unchanged or shrink towards zero (e.g. Home isolation in
Iran), consistent with mis-coding of post-policy days as no-policy days.

* For a canonical example, see: Jacobson, L. S., LaLonde, R. J., & Sullivan,
D. G. (1993). Earnings losses of displaced workers. The American Economic
Review, 685-709.
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Extended Data Figure 6 | Estimated infection or hospitalization 3in the main text, but using hospitalization data from France rather than
growth rates with actual anti-contagion policies and in a “no policy” cumulative cases, since the French government stopped reporting the
counterfactual scenario. a, The estimated daily growth rates of active latter after March 25, 2020. For all panels, the difference between the
(China, South Korea) or cumulative (all others) infections based on the with- and no-policy predictions is our estimated effect of actual
observed timing of all policy deployments within each subnational unit anti-contagion policies on the growth rate of infections (or

(blue) and in a scenario where no policies were deployed (red). Identical hospitalizations). The markers are daily estimates for each subnational
to Figure 3 in the main text, but using an alternative disaggregated administrative unit (vertical lines are 95% confidence intervals). Black
encoding of policies that does not group any policies into policy circles are observed changes in log(infections) (or diamonds for
packages. b, Same as Figure 3 in the main text, but Eq. 7 is implemented log(hospitalizations)), averaged across the same administrative unit.

for a single example administrative unit, Wuhan, China. ¢, Same as Figure
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Extended Data Figure 7 | Sensitivity of estimated averted/delayed actual policies. ¢, The difference between (a) and (b), which are the total
infections to the choice of 7> and o in an SIR/SEIR framework. This number of averted/delayed infections. d, Same as (c), buton a
figure displays the sensitivity of total averted/delayed cases presented in logarithmic scale similar to Figure 4 in the main text (a-c are on a linear
Figure 4 of the main text to alternative modeling assumptions. We scale, trimmed to show details). Figure 4 in the main text uses 7 =0.079,
compute total cases across the respective final days in our samples for the which we calculate using empirical recovery/death rates in countries
six countries presented in our analysis. The figure displays how these where we observe them (China and South Korea, see Methods). If we
totals vary with eight values of 7 (0.05-0.4) and four values of ¢ (0.2, assume a 14-day delay between infected individuals becoming
0.33, 0.5, ), where the final value of o (=) corresponds to the SIR model. non-infectious and being reported as “recovered” in the data, we would
a, The simulated total number of infections under no policy. b, Same, but calculate » =0.18. Figure 4 in the main text assumes g =oco,

using
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Extended Data Figure 8 | Simulating reduced form estimates for the
no-policy growth rate of infections for different population regimes and
disease dynamics. We examine the performance of reduced form
econometric estimators through simulations in which different underlying
disease dynamics are assumed (see Supplementary Information Section 3).
Each histogram shows the distribution of econometrically estimated values
across 1,000 simulated outbreaks. Estimates are for the no-policy infection
growth rate (analogous to Figure 2A) when three different policies are
deployed at random moments in time. The black line shows the correct value
imposed on the simulation and the red histogram shows the distribution of
estimates using the regression in Eq. 7, applied to data output from the
simulation. The grey dashed line shows the mean of this distribution. The 12
subpanels describe the results when various values are assigned to the mean

Estimated daily growth rate

Estimated daily growth rate

latency period ( 7) and mean infectious period ( 0%) of the disease. “ 0" = ”
is equivalent to SIR disease dynamics. In each panel, S,,,, is the minimum
susceptible fraction observed across all 1,000 45-day simulations shown in
each panel. For reference, in the real datasets used in the main text, after
correcting for country-specific underreporting, S,,;,, across all units analyzed
is 0.78 and 95% of the analyzed units finish with S, > 0.93. “Bias” refers to
the distance between the dashed grey and black line as a percentage of the
true value. a, Simulations in near-ideal data conditions in which we observe
active infections within a large population (such that the susceptible fraction
of the population remains high during the sample period). For example,
these conditions are similar to those in our real data for Chongging, China. b,
Simulations in a non-ideal data scenario where we are only able to observe
cumulative infections in a small population. For example, these conditions
are similar to those in our real sample of data for Cremona, Italy.
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Extended Data Figure 9 | Simulating reduced form estimates for estimates are for the combined effect of three different policies
anti-contagion policy effects for different population regimes and (analogous to Figure 2B) that are deployed at random moments in time.

assumed disease dynamics. Same as Extended Data Figure 8, but
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plots (right) show quantiles of the cumulative density function (y-axis)
plotted against the same quantiles for a Normal Distribution. For
additional details, see the full model under the Methods - Econometric

Extended Data Figure 10 | Regression residuals for the growth rates of
COVID-19 by country. These plots show the estimated residuals from

Equation 7 for each country-specific econometric model. Histograms (left)
show the estimated unconditional probability density function. Quantile analysis section as well as the results in Figure 3 of the main paper.
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The Supplementary Information contains three sections: Supplementary Notes, Supplementary
Methods, and Supplementary Tables.

The Supplementary Notes section describes the data acquisition and processing procedure for the
epidemiological and policy data used in this paper. The sources for both types of data come from a
variety of in-country data sources, which include government public health websites, regional
newspaper articles, and Wikipedia crowd-sourced information. We have supplemented this data with
international data compilations. A list of the epidemiological and policy data compiled for this
analysis can be found here.

The Supplementary Methods section describes sensitivity analyses and simulations performed to
verify the robustness of our model, including: the sensitivity of our regression model and
counterfactual projections to varying epidemiological parameters; and the sensitivity of our estimates
to alternative lag structures, withholding of data, and differing policy groupings.

The Supplementary Tables section contains tables detailing: 1) the number of anti-contagion policies
tabulated by administrative division in each country; 2) epidemiological data in Wuhan prior to policy
intervention, and estimates of the initial infection growth rate and case doubling times; and 3) the
main regression results estimating the effect of policy on growth rates.
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Supplementary Notes

Epidemiological Data

The epidemiological datasets and sources used in this paper are described below. The main health
variables of interest are:
1. “cum_confirmed_cases”: The total number of confirmed positive cases in the administrative
area since the first confirmed case.
“cum_deaths”: The total number of individuals that have died from COVID-19.
“cum_recoveries: The total number of individuals that have recovered from COVID-19.
“cum_hospitalized”: The total number of hospitalized individuals.
“cum_hospitalized_symptom”: The total number of symptomatic hospitalized individuals.
“cum_intensive_care” : The total number of individuals that have received intensive care.
“cum_home_confinement”: The total number of individuals that have been self-quarantined in
their homes as a result of a positive test.
8. “active_cases”: The number of individuals who currently still test positive on the date of the
observation.
9. “active_cases_new”: The number of new active cases since the previous date.
10. “cum_tests”: The total number of tests (includes both positive and negative results)
conducted in an administrative unit.

No ok~ wn

Additional metadata accompanying the health outcome variables:

1. “date”: The date of observation.

2. “adm0_name”: The ISO3 (country) code to which this observation belongs.

3. “adml_name”: The name of the “Adm1” region (typically state or province) to which this
observation belongs.

4. “adm2_name”: If the dataset contains observations at the “Adm2” level, then this is the name
of the “Adm2” region to which this observation belongs (e.g. counties in the United States).

5. “adm[1,2]_id”: Any alphanumeric ID scheme to identify different administrative units (e.g. FIPS
code in the United States).

6. “lat”: The latitude of the centroid of the administrative unit.

7. “lon”: The longitude of the centroid of the administrative unit.

8. “policies_enacted”: The number of active policies that are in place for the administrative unit
as of that date. This variable is not population weighted.

9. “testing_regime”: A categorical variable used to identify when an administrative region
changed their COVID-19 testing regime. This is zero-indexed, with the ordering only indicating
chronological progression (there is no external meaning to Regime 2 vs. Regime 1 vs. Regime
0, and there is no consistency enforced for coding across countries). For example, if China
changes their testing regime twice, all observations prior to the first regime change would be
coded “testing_regime=0,” all observations in between the two changes would be coded
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“testing_regime=1,” and all observations after the second change would be coded
“testing_regime=2."

10. “population”: The population of the administrative unit.

11. “pop_is_imputed”: A binary variable equal to 1 if the population is imputed, and 0 otherwise.
Used for imputing the population of some cities in China.

Data Imputation:

In instances where health outcome observations are missing or suffer from data quality issues, we
have imputed to fill in the missing values. Imputed health outcome variables are denoted by
“[health_outcome]_imputed.” For the majority of our analyses we do not use imputed data; France is
the exception where we impute two days of missing data. We do this to ensure we have variation in
policy variables for use in the analysis.

We impute by:
1. Takingthe natural log of the non-missing observations pertaining to that health outcome
variable.

2. Linearly interpolating over the missing dates for that health outcome variable.
3. Exponentiating the interpolated values back into levels and rounding to the nearest integer.

China

We have collated a city-level time series health outcome dataset in China for 339 cities from January
10, 2020 to April 7, 2020.

For data from January 24, 2020 onwards, we relied on the public dataset Ding Xiang Yuan' (DXY) that
reports daily statistics across Chinese cities. Since DXY only publishes the most recent
(cross-sectional) statistics (and not the historical data), we used the time series dataset scraped from
DXY in an open source GitHub project®. The web scraper program checks for updates at least once a
day for the statistics published on DXY and records any changes in the number of cumulative
confirmed cases, cumulative recoveries or cumulative deaths.

We assumed that no updates to the statistics meant there had been no new cases. We dropped a small
number of cases that had been recorded but not assigned to a specific city (many of these cases are
imported ones from other cities). We also dropped confirmed cases in prison populations (we
assumed the spread of COVID-19 in prisons was not affected by the implementation of city-level
lockdowns or travel ban policies).

For city level health outcomes prior to January 24, 2020, we manually collected official daily statistics
from the central® and provincial (Hubei,* Guangdong,® and Zhejiang®) Chinese government websites.
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We did not collect city level health outcomes recorded prior to January 24, 2020 in provinces that had
fewer than ten confirmed cases at that date. We made this decision since our analysis dropped
observations with fewer than ten cumulative confirmed cases to prevent noisy data during the early
transmission phase from disproportionately biasing the estimated results.

After merging the two datasets, we conducted a few quality checks:

(1) We checked that cumulative confirmed cases, cumulative recoveries, and cumulative deaths were
increasing over time. In instances when cumulative outcomes decreased over time, we assumed that
the recent numbers were more reliable, and treated the earlier number of cumulative cases as missing
(this was often due to data entry errors or cases where patients that were reported to have been
diagnosed with COVID-19, but were later found out to actually have tested negative). The magnitude
of these errors was relatively small. We filled in any missing data with the imputation methodology
described in the health data overview section.

(2) We validated our city-level dataset by aggregating observations up to the provincial level and
comparing the time trends from the aggregated dataset to that of the provincial dataset collated by
Johns Hopkins University.” We confirmed that the two datasets matched very closely (see Figure A2
Panel A).

Testing Regime Changes:

During our sample period starting January 16, 2020, the criteria for being diagnosed with COVID-19
changed five times in China.? On January 18, 2020, China began using the reverse transcription
polymerase chain reaction (RT-PCR) test in addition to genome sequencing to confirm the SARS-CoV-2
infection in suspected cases.’ China also no longer required failure in antibiotic treatment and began
considering patients who were not exposed to markets in Wuhan but had contact with symptomatic
persons from Wuhan.* On January 28, 2020, China began considering patients not necessarily linked
to Wuhan with at least two out of the previous three required clinical manifestations.' On February
13,2020, China created a separate “clinically confirmed” case definition for the Hubei province, which
counted patients who met clinical criteria through chest imaging and may not have had
epidemiological links or a positive PCR test."> On February 20, 2020, China reversed this decision and
removed the separate “clinically confirmed” case definition for Hubei."* On March 4, 2020, China
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expanded the possible laboratory confirmation tests for SARS-CoV-2 to include serology.** We
included this information in the dataset because it could have potentially changed the levels and
short-term growth rates of the number of confirmed cases.

The testing regime date changes are encoded within the data cleaning script.

France

We have collated a regional-level time series confirmed cases dataset in France from February 15,
2020 to March 25, 2020, and regional-level time series hospitalization data from March 3, 2020 to April
6,2020.

We used the number of confirmed COVID-19 cases by région from France’s government website.” The
sources listed for this dataset were the French public health website,'® the Ministry of Solidarity and
Health,'” French newspapers that reported government information,'® and regional public health
websites." Given that these data were not published on a daily basis, we supplemented the dataset by
scraping the number of confirmed cases by région on the French public health website through March
25,2020, which is the last date the subnational case data are made publicly available.”

Hospitalization data come from the same source ** (Santé Publique France) as the case data . Santé
Publique France announced they would stop posting regional-level case data because they were not
reliable, and only provide hospitalization data instead.

Testing Regime Changes:

The one testing regime change in France occurred on March 13, 2020 with the beginning of the
epidemic “stade 3”, when the government started to give severe cases in hospitals priority for testing.
2 The testing regime date changes are encoded within the data cleaning script.

South Korea

We have collated a provincial-level time series health outcome dataset in South Korea from January
20, 2020 to April 6, 2020.

Most provinces in South Korea have been publishing data on their number of confirmed coronavirus
cases. Seoul,” Daegu,* Gyeongsangbuk-do,” Jeollabuk-do,*® and Sejong®’ provinces have been
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reporting the number of confirmed cases on a daily basis. For these provinces, we recorded this
published health data.

Given that the province of Gangwon-do*® does not report provincial-level health data, we refer to the
daily number of new cases reported by each of its counties (Chuncheon-si,” Wonju-si,* Gangneung-si,
*! Taebaek-si,*” Sokcho-si,* and Samcheok-si**). As a result, we manually collected the number of new
confirmed cases from each county’s webpage and aggregated the numbers to the provincial level.

The remaining provinces (Gyeonggi-do,* Incheon,® Busan,* Ulsan,*® Gwangju,*
Chungcheongnam-do,* Chungcheongbuk-do,* Gyeongsangnam-do,* Jeju,” and Jeollanam-do*) did
not explicitly publish the number of cumulative confirmed cases. However, they did publish
patient-level data, including the date when patients had tested positive. For these provinces, we
constructed the measure of cumulative confirmed cases by counting the number of daily confirmed
cases and adding it to the previous date’s total.

Most provinces did not publish the number of deaths. Instead, we checked the daily policy briefings
posted on the government homepages mentioned in the footnotes and manually collected mortality
data. In instances when mortality data were not found in the briefings, we obtained the mortality data
from other sources, such as through social media sources (e.g. Facebook) and blogs maintained by
local governments. Lastly, we supplemented these sources with mortality data reported in news
articles.

Testing regime changes:

We collected information on testing regime changes using press releases from the Korean Center for
Disease Control and Prevention (KCDC). In the press release menu, the KCDC uploaded daily briefing
announcements which contained information on testing criteria and changes to its testing regime.*
Initially, the South Korean government only tested people who: 1) demonstrated respiratory
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symptoms within 14 days after visiting Wuhan South China Seafood Wholesale Market and 2) those
who had pneumonia symptoms within 14 days after returning from Wuhan.*

As the outbreak spread, the KCDC broadened the criteria for testing. Starting January 28, 2020, the
agency isolated 1) those who had fever or respiratory symptoms upon returning from Hubei province
and 2) those who had symptoms of pneumonia upon returning from mainland China.*"* We coded
this as the first change in the testing regime.

The second testing regime change occurred on February 4, 2020, when the KCDC announced that
people who had had any “routine contacts” with confirmed cases were required to self quarantine for
a 14-day period. The agency defines two categories of contacts: close contacts and routine contacts.
The former is defined as a person who has been within two meters of, in the same room as, or exposed
to any respiratory secretions of an infected individual. The latter refers to whether the individual
conducted any activity in the same place and at the same time as the infected person. Prior to this
regime change, the KCDC separated those two cases and applied different quarantine policies;
starting February 4, 2020, any routine contacts were also required to be self-quarantined. *

Shortly thereafter, South Korea aggressively expanded the scope of their testing. Starting February 7,
2020, the KCDC broadened the definition of suspected cases to 1) anyone who developed a fever or
respiratory symptoms within 14 days after returning from China, 2) anyone who developed a fever or
respiratory symptoms within 14 days after being in close contact with a confirmed case, and 3) anyone
suspected of contracting COVID-19 based on their travel history to affected countries and their clinical
symptoms.*® Moreover, the KCDC announced that the test would be free for all suspected cases and
confirmed cases.” As a result of these efforts, KCDC announced that they would begin to test 3,000
people daily, a marked increase from only 200 people a day previously.>

The KCDC revised their guidelines on February 20, 2020 in order to test more people. Their press
release stated: “Suspected cases with a medical professional’s recommendation, regardless of travel
history, will get tested. Additionally, those who are hospitalized with unknown pneumonia will also be

tested. Lastly, anybody in contact with a diagnosed individual will need to self-isolate, and will only be
253

released when they test negative on the thirteenth day of isolation.

“8 NB: The KCDC English website explains the testing regime change in a more condensed format: “Any citizens identified
with a fever or respiratory symptoms and have visited Wuhan will be isolated and tested at a nationally designated isolation

hospital, and any foreigners staying in Korea will be conducted in cooperation with police.” Urges cooperation in preventing
the spread 0f 2019-nCoV in community | Press Release | News Room : KCDC
votals HE X2 LIISE 7" AMES FIZ2LIHIO|AHA ZEE CSX|E Qe H4Zd (Revision in the Guidance Documents for

NB: The date of this press release is February 8, 2020, but the definition of “suspected cases” was effective starting from
February 7,2020.

51 NB: The testing fee was already somewhat affordable; a person needed to pay 160,000 KRW (about $130 USD). A related
article can be found here: %ﬂﬂm&&%ﬂwﬁm&lﬁﬂmﬂﬁ

2AEJ2UHHIOIBAZPEE ZAAI TS ESE My 2 2|= (22 IOl) (Daily briefing on COVID-19, February 7)
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As the number of patients grew rapidly, the KCDC decided to focus on more vulnerable groups. In their
February 29, 2020 press release, the agency stated: “The KCDC has asked local government and health
facilities to focus on tests and treatment, especially targeting those aged 65+ and those with
underlying conditions who need early detection and treatment.” This change was coded as our next
testing regime change in the dataset.”

On March 22,2020, the KCDC began conducting COVID-19 diagnostic testing for every inbound
traveler entering from Europe. This was coded as another testing regime change. Of the 1,442 inbound
travelers from Europe arriving March 22, 2020, 152 were symptomatic and were quarantined and
tested at an airport quarantine facility. The remaining 1,290 travelers were asymptomatic and were
moved to a temporary living facility to be tested.”

On March 27, 2020, this policy was expanded, where all inbound travellers from the US with symptoms
(regardless of nationality) were required to be tested at the airport.® We code this as our final testing
regime change.

The data on the testing regime date changes are in the “KOR_policy_data_sources.csv.”

Italy

We have collated a regional and provincial level time series health outcome dataset in Italy from
February 24,2020 to April 7, 2020.

This data came from the GitHub repository maintained by the Italian Department of Civil Protection
(Dipartimento della Protezione Civile). Health outcomes included the number of confirmed cases, the
number of deaths, the number of recoveries, and the number of active cases. These figures have been
updating daily at 5 or 6 pm (Central European Time). The regional-level dataset was pulled directly
from “dati-regioni/dpc-covid19-ita-regioni.csv,” and the provincial-level dataset was pulled from
“dati-province/dpc-covid19-ita-province.csv.”

Testing regime changes:

The testing regime change in Italy occurred when the Director of Higher Health Council announced on
February 26,2020 that COVID-19 testing would only be performed on symptomatic patients, as the
majority of the previous tests performed were negative.

The data on the testing regime date changes are in the “/ITA_policy_data_sources.csv.”

Iran

We have collated a provincial-level time series health outcome dataset in Iran from February 19, 2020
to March 22, 2020.
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The Iranian government had been announcing its new daily number of COVID-19 confirmed cases at
the provincial level on the Ministry of Health’s website. This data has been compiled daily in the table
"New COVID-19 cases in Iran by province"’ located in the “2020 coronavirus pandemic in Iran” article
on Wikipedia.

We spot-checked the data in the Wikipedia table against the Iranian Ministry of Health
announcements® using a combination of Google Translate and a comparison® of the numbers in the
announcements (which were written in Persian script) to the Persian numbers.

Testing regime changes:

On March 6, 2020, the Ministry of Health announced® a national coronavirus plan, which included
contacting families by phone to identify potential cases, along with the disinfecting of public places.
The plan was to begin in the provinces of Qom, Gilan, and Isfahan, and then would be rolled out
nationwide. On March 13,2020, the government announced a military-enforced home isolation policy
throughout the nation.®* This announcement included nationwide disinfecting of public places. While
a follow-up announcement of the March 6 high testing regime stating its complete rollout was not
found, the March 13 announcement did reference the implementation of the public spaces
component of the earlier plan across the country. We thus assumed that the high testing regime had
also been fully rolled out on March 13, 2020.

The data on the testing regime date changes are in the “/RN_policy_data_sources.csv.”

United States

We have collated a state-level time series health outcome dataset in the United States from January
22,2020 to April 7, 2020.

The data come from the Github repository associated with the usafacts.org interactive dashboard. As
of the time of writing, the data are available here. The repository and dashboard are updated
essentially in real-time, at least daily.

Testing regime changes:

To determine the testing regime, we used estimated daily counts of the cumulative number of tests
conducted in every state, as aggregated by the largely crowdsourced effort named "The Covid
Tracking Project" (covidtracking.com). We estimated the total number of tests as the sum of
confirmed positive and negative cases. For some states and some days, there have been no negative
case counts, in which case we utilize just the confirmed positive cases. We also ensured that the
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confirmed number of positive cases agreed with the counts in the John Hopkins University COVID-19
»4dataset.®

We programmatically determined possible testing regime changes by filtering for any consecutive
days during which the testing rate increased at least 250% from one day to the next, and where this
jump was an increase of at least 150 total tests over one day. After visually inspecting the candidates,
we confirmed that the automatically detecting testing regime changes represent visually
distinguishable changes in testing rates. The testing regime date changes are encoded within the data
cleaning script.

Policy Data

The policy events, datasets, and sources used in this paper are described below. For each country, the
relevant country-specific policies identified were then mapped to a harmonized policy categorization
used across all countries.

The policy categories are by default coded as binary variables, where “[policy_variable]” = 0 before the
policy is implemented in that area, and “[policy_variable]” = 1 on the date the policy is implemented
(and for all subsequent dates until the policy is lifted). There are instances when the value of the policy
variable is between 0 and 1; for further details, refer to the Policy Intensity subsection.

The main policy categories identified across the six different countries fall into four broad classes:

1. Restricting travel:

a. “travel_ban_local” : A policy that restricts people from entering or exiting the
administrative area (e.g county or province) treated by the policy.

b. “travel_ban_intl_in”: A policy that either bans foreigners from specific countries from
entering the country, or requires travelers coming from abroad to self-isolate upon
entering the country.

c. “travel_ban_intl_out”: A policy that suspends international travel to specific foreign
countries that have high levels of COVID-19 outbreak.

d. “travel_ban_country_list”: A list of countries for which the national government has
issued a travel ban or advisory. This information supplements the policy variable
“travel_ban_intl_out.”

e. “transit_suspension”: A policy that suspends any non-essential land-, rail-, or
water-based passenger or freight transit.

2. Distancing through cancellation of events and suspension of
educational/commercial/religious activities:

a. “school_closure”: A policy that closes school and other educational services in that
area.
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“business_closure”: A policy that closes offices, non-essential businesses, and
non-essential commercial activities in that area. “Non-essential” services are defined
by area. This policy also includes the limiting of business hours and reducing restaurant
and bar operations.

“religious_closure”: A policy that prohibits gatherings at a place of worship, specifically
targeting locations that are epicenters of the COVID-19 outbreak. See the section on
Korean policy for more information on this policy variable.

“work_from_home”: A policy that requires people to work remotely. This policy may
also include encouraging workers to take holiday/paid time off.

“event_cancel”: A policy that cancels a specific pre-scheduled large event (e.g. parade,
sporting event, etc). This is different from prohibiting all events over a certain size.
“no_gathering”: A policy that prohibits any type of public or private gathering.
(whether cultural, sporting, recreational, or religious). Depending on the country, the
policy can prohibit a gathering above a certain size, in which case the number of
people is specified by the “no_gathering_size” variable.

“no_gathering_inside”: A policy that specifically prohibits indoor gatherings. See the
section on French policy for more information on this policy variable.
“no_demonstration”: A policy that prohibits protest-specific gatherings. See the
section on Korean policy for more information on this policy variable.
“social_distance”: A policy that encourages people to maintain a safety distance (often
between one to two meters) from others. This policy differs by country, but includes
other policies that close cultural institutions (e.g. museums or libraries), or encourage
establishments to reduce density.

“welfare_services_closure”: A policy that mandates the closure of social welfare
facilities, specifically mental rehabilitation facilities, social welfare centers, and
homeless use facilities. See the section on Korean policy for more information on this
policy variable.

3. Quarantine and lockdown:

a.

“pos_cases_quarantine”: A policy that mandates that people who have tested positive
for COVID-19, or subject to quarantine measures, have to confine themselves at home.
The policy can also include encouraging people who have fevers or respiratory
symptoms to stay at home, regardless of whether they tested positive or not.
“home_isolation”: A policy that prohibits people from leaving their home regardless of
their testing status. For some countries, the policy can also include the case when
people have to stay at home, but are allowed to leave for work- or health-related
purposes.

4. Additional policies

a.

“emergency_declaration”: A decision made at the city/municipality, county,
state/provincial, or federal level to declare a state of emergency. This allows the
affected area to marshal emergency funds and resources as well as activate
emergency legislation.
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b. “paid_sick_leave”: A policy where employees receive pay while they are not working
due to theillness.

Optional policies:

In the cases when the aforementioned policies are optional, we denote this as “[policy_variable]_opt.”

Population weighting of policy variables:

In cases where only a portion of the administrative unit (e.g. half of the counties within the state) are
affected by the implementation of the policy, we weight the policy variable by the percentage of
population within the administrative unit that is treated by the policy. This is denoted as
“[policy_variable]_popwt,” and the value that this variable can take on is a continuous number
between 0 and 1. Sources for the population data are detailed in a later section.

Policy intensity:

“policy_intensity” is a continuous value between 0 and 1 that modulates the intensity/restrictiveness
of a policy. By default this value is 0 when the policy has not been implemented and 1 when the policy
is implemented (i.e. the policy variables are treated as indicator variables). However, in instances
when a policy has evolved over time, then earlier (less restrictive) implementations of the policy are
weighted by a “policy_intensity” value that is between 0 and 1, and the most recent (more restrictive)
version of the policy has a value of 1.

For simplicity, if a given policy has undergone one version change, then the “policy_intensity” of the
first edition is equal to 0.5, and the value of the second edition is equal to 1. If there have been two
version changes, then the “policy_intensity” of the first edition is equal to 0.33, the value of the second
edition is equal to 0.67, and the value of the last edition is equal to 1, etc.

We compute ‘policy_intensity’ using this approach:

1. For non population-weighted policy variables: For a given policy category on a specific date
(e.g. “business_closure” on March 15, 2020), take the maximum of the mandatory policy
intensities for all units lower (e.g. AdmO) than, equal to, and higher (e.g. Adm2) than the
analysis unit (e.g. Adm1). Assign this maximum “policy_intensity” value to the unit of analysis.
If there is no mandatory version of the policy that applies to the unit of analysis, then take the
maximum of the optional policy intensities and assign it to the optional policy variable for the
analysis unit.

2. For population-weighted policy variables: Take the maximum of the mandatory policy
intensities for all units lower (e.g. AdmO) than and equal to the analysis unit (e.g. Adm1), and
assign that as the default mandatory intensity for all units higher (e.g. Adm2). If the policy is
not mandatory at the analysis or lower unit, then assign the maximum of the optional
“policy_intensity” value as the default optional intensity for all higher units. For any higher unit
that has a specific policy, assign the appropriate version (mandatory or optional) of the policy
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variable at that higher unit the maximum of that intensity and the default intensity, with
mandatory always taking priority over optional. For all that don't have a specific policy, assign
them the default intensity (again, assigning this to the optional or mandatory version as
appropriate). Then calculate the population-weighting at the analysis unit level (e.g. Adm1),
separately for both optional and mandatory variables. Each higher unit should only have a
non-zero intensity for optional or for mandatory (or neither), but not both.

3. For broadly defined policy variables like “social_distance” that could encompass a variety of
country-specific policies: The “policy_intensity” assignment differs by country. If the specific
policies employed at the various administrative levels are the same policy, then the approach
in (1) is used. If they are different policies within the same broad category, then we add
instead of taking the maximum, allow for both optional and mandatory policies, and and
otherwise follow the approach of (1). This addition is appropriate across different
administrative divisions because of (1). If some policies are the same and some are different,
we use a combination of addition and taking the maximum over the “policy_intensity” values.
For instances when we add the “policy_intensity” values, once the processed dataset has been
constructed and formatted, the last step is to normalize each variable such that it takes values
between 0 and 1 (e.g. if the maximum from addition of sub-policies is 1.4, divide that entire
column by 1.4). This standardization should again be done separately for each mandatory and
optional version of each policy.

China

We obtain data on China’s policy response to the COVID-19 pandemic by culling data on the start
dates of travel bans and lockdowns at the city-level from the “2020 Hubei lockdowns” Wikipedia page,
% the Wuhan Coronavirus Timeline project on Github,* and various news reports.

To combat the spread of COVID-19, the Chinese government imposed travel restrictions and
quarantine measures, starting with the lockdown of the city of Wuhan, the origin of the pandemic, on
January 23, 2020. Immediately following the Wuhan lockdown, neighboring cities followed suit,
banning travel into and out of their borders, shutting down businesses, and placing residents under
household quarantine. The same policy measures were implemented in cities across China for the
next three weeks.

Some lockdowns occurred during the national Chinese New Year holiday (January 24-30, 2020) when
schools and most workers were on break. On January 27, 2020, China extended the official holiday to
February 2, 2020, while many additional provinces delayed resuming work and opening schools for
even longer.® The Chinese New Year holiday is analogous to containment policies such as school
closures and restrictions on non-essential work. We do not specifically estimate the effect of this
holiday extension, as most cities were in lockdown during the extended holiday, and a lockdown is a
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more restrictive containment measure. A lockdown requires all residents to stay home, except for
medical reasons or essential work, and only allows one person from each household to go outside
once every one to five days (exact policy varied by city).

France

We obtain data on France’s policy response to the COVID-19 pandemic from the French government
website, press releases from each regional public health site, and Wikipedia.

The French government website contains a timeline of all national policy measures.® Each regional
public health agency (I’Agence Régionale de Santé) in France posts press releases with information on
the policies the région or départements within the région will implement to mitigate the spread and
impact of the COVID-19 outbreak.®” The Wikipedia page on the 2020 coronavirus pandemic in France
has collated information on the major policy measures taken in response to the COVID-19 pandemic.®®

Starting February 29, 2020, France banned mass gatherings of more than 5,000 people nationwide,
while some major sporting events were cancelled and a handful of schools closed to mitigate the
spread of the virus. As more COVID-19 cases were confirmed during the following week, additional
sporting events were canceled, more schools decided to close, and certain cities and départements
limited mass gatherings to no more than 50 people, excluding shops, business, restaurants, bars,
weddings, and funerals. Some régions closed early childhood establishments (e.g. nurseries, daycare
centers) and prohibited visitors to elderly care facilities. On March 8, 2020, France banned mass
gatherings of more than 1,000 people nationwide. Other schools, cities, and départements followed
suit with additional school closures and limiting mass gatherings. On March 11, 2020, France
prohibited all visits to elder care establishments. Starting March 16, 2020, France closed all schools
nationwide. Between March 17,2020 - March 23, 2020, governments at both the national level and
région level implemented more restrictive lockdown policies, which included shelter-in-place
measures,” the closing of public places,” and banning of outside markets and severely restricting
movement outside of the house.™

We have coded various policies that cancel events and large gatherings as such: any cancellations of
professional sporting and other specific pre-scheduled events as the policy variable “event_cancel.”
The “no_gathering” policy variable represents policy measures that banned all events or mass
gatherings of a certain size, e.g. no gatherings of over 1,000 people. The “social_distance” policy
variable includes measures preventing visits to elder care establishments, closures of public pools and
tourist attractions, and teleworking plans for workers.
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South Korea

We obtained data on South Korea’s policy response to the COVID-19 pandemic from various news
sources, as well as press releases from the Korean Centers for Disease Control and Prevention (KCDC),
the Ministry of Foreign Affairs, and local governments’ websites. The policy variables coded in the
dataset are: “welfare_services_closure,” “business_closure_opt,” “emergency_declaration,”
“no_demonstration,” “religious_closure,” “event_cancel,” “school_closure,” “social_distance_opt,”
“travel_ban_intl_in_opt,” “travel_ban_intl_out_opt,”, “work_from_home_opt, and
pos_cases_quarantine”.

” « ” o«

On February 28 2020, the KCDC recommended the closure of 14 types of social welfare facilities to
reduce the spread of infection among vulnerable groups in the population.” These include childcare
centers, vocational rehabilitation centers for the disabled, senior citizen centers, mental
rehabilitation facilities, and homeless use facilities. We code this in the variable
“welfare_services_closure”. Even though it was technically a recommendation, we did not code this
policy as optional because a majority of facility types listed in the press release (senior citizen centers,
job centers, childcare centers, etc.) are under public administration, so these facilities likely would
have followed recommendations. Indeed, some news articles have reported that all children’s centers
in Busan are closed” as well as over 3,600 facilities in Seoul.™

We created another variable, “business_closure_opt”, which applies to two provinces: Seoul and
Gyeonggi-do. On March 11, 2020, the mayor of Seoul advised that popular commercial establishments
such as karaoke places, clubs, and cyber cafes be closed.” Seven days later, the governor of
Gyeonggi-do issued an executive order limiting the usage of commonly frequented commercial
establishments and requiring a higher standard of cleanliness.” We coded this as an optional business
closure given that the policy discourages usage of these facilities but did not explicitly order them to
shut down.

Daegu and Gyeongsangbuk-do have been two of the regions hardest hit by COVID-19. The government
of South Korea declared an emergency for those two areas on March 15, 2020.”" We incorporated this
information into the variable “emergency_declaration.”

The variable “no_demonstration” reflects the efforts of some regions limiting any protests calling for
slowing the spread of the outbreak. On February 24,2020, Incheon stopped a protest in front of the
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Incheon Metropolitan City Hall.” Two days later, Seoul prohibited protests in downtown areas where
massive demonstrations used to take place.”

Many province level COVID-19 policies have targeted religious gatherings at Shincheonji Church of
Jesus, since its religious gatherings have been linked to the explosion in the number of cumulative
confirmed cases. Provincial governments tried to shut down Shincheonji-related places of worship,
and the related policy implementation is encoded in the variable “religious_closure.” The regions
which utilized this policy option are: Daegu,® Gyeongsangbuk-do,* Seoul,** Jeju,* Gyeonggi-do,*
Jeollanam-do,* Gyeongsangnam-do,* Incheon,®” Ulsan,® Busan,® Jeollabuk-do,”
Chungcheongbuk-do,” Gwangju,* Chungcheongnam-do,” and Daejeon.*

Many provinces have also canceled public events organized by local administrative agencies . We code
this policy in the variable “event_cancel”. The regions which exercised this policy are: Seoul®, Daegu®
Gangwon-do”, Chungcheongbuk-do®, Chungcheongnam-do®, Sejong'®, Daejeon'®
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Gyeongsangbuk-do'®?, Gyeongsangnam-do'®, Jeju'®, Gyeonggi-do'®, Ulsan'®, Gwangju'®’, Busan'®,

Incheon'®, Jeollanam-do'*°, and Jeollabuk-do'.

The policy variable “school_closure” has been turned on for the entirety of the Korean time series
dataset. This is because all schools were already on vacation during the beginning of the outbreak,
and the government then postponed their start dates. At the time of writing, the Ministry of Education
announced that schools would be kept closed until April 3, 2020."2 Therefore, this policy variable is
always equal to 1 in the dataset.

“social_distance_opt” has been turned on from February 29, 2020, when KCDC recommended social
distancing as one of the main tools to deal with the outbreak. In their press release, they
recommended that “people maintain personal hygiene and practice ‘social distancing’ until the
beginning of March, an important point of this outbreak.”™* In the case of Daegu, the hardest-hit
region in the country, we coded the variable as 1 starting from February 22, 2020, based on the
statement, “It is recommended for residents in Daegu to minimize gathering events and outdoor
activities.”**

The first travel restriction for incoming travelers (“travel_ban_intl_in_opt”) was implemented on
January 28, 2020. It is worth noting that it was not a total prohibition of incoming visitors; rather, it
means inbound travellers were subject to COVID-19 specific emergency measures. KCDC mentioned
that starting on January 28, 2020 “any travellers depart[ing] from China [would] be a subject to
strengthened screening and quarantine measures.”™® On February 12,2020, KCDC broadened the list
of countries subject to the stricter measures to include Hong Kong and Macau.™® Subsequently, KCDC
added Italy and Iran (on March 11, 2020);'"" France, Germany, Spain, UK, and Netherlands (on March
15,2020);"** and any remaining European countries (March 15, 2020)"* to their country list. On March
19, 2020, the policy was expanded to include all travelers arriving at port regardless of country of
origin.**®
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This restriction was not limited to inbound travellers. The government also issued advisories on
countries where the number of infections had increased, which has been encoded as the variable
“travel_ban_intl_out_opt.” The first outbound travel alert due to COVID-19 was announced on January
28, 2020: The Ministry of Foreign Affairs (MOFA) issued a Level 2 (Yellow) alert for any travel to
mainland China, Hong Kong, and Macau.' Later, MOFA added Italy on February 28, 2020,'** Japan on
March 9, 2020, and all European countries on March 16, 2020."** On March 18, 2020, KCDC strongly
called for the cancellation or delay of all international travel on non-urgent matters.** It should be
noted that the Level 2 alert does not enable the government to prohibit travel to these destinations,
which is why the policy was coded as “optional.”

There are four types of travel advisories distributed by the South Korean government: Level 1, Navy;
Level 2, Yellow; Level 3, Red; and Level 4, Black.'® Travel under the Level 4 alert is prohibited, and the
government utilizes legal instruments to enforce the restriction. If people leave the country under the
black alert, they will be subject to fines up to ten million KRW, or imprisonment up to a year. However,
there is no enforcement instrument for the advisories up to Level 3. In that sense, we stated above
that the banning policy does not mean prohibiting travel. Nevertheless, we coded the yellow alert as
the first travel ban in our dataset, since Level 2 alerts are issued relatively rarely, such as during a
significant demonstration™’ or military coup.™® As a result, we coded the Level 2 alert due to COVID-19
into the dataset for the policy analysis.

The policy variable “work_from_home_optional” indicates when KCDC began recommending that
people work from home. On March 15, 2020, the KCDC press release stated: “Since contact with
confirmed cases in an enclosed space increases the possibility of transmission, it is recommended to
work at home or adjust desk locations so as to keep a certain distance among people in the office.
More detailed guidelines for local governments and high-risk working environments will be
distributed soon.”'*

On March 22, 2020, the KCDC announced that all inbound travelers from Europe would be tested at
the airport and subject to quarantine measures."* Korean citizens and long-term visitors returning
from abroad needed to home-quarantine for 14 days (even if they test negative for COVID-19), while
short-term visitors would be actively monitored. Inbound travelers with no symptoms were required
to stay at temporary facilities while awaiting their test results.”® We coded this as the policy variable
“pos_cases_quarantine” modulated by “policy_intensity” = 0.25. When this policy was expanded on
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March 27,2020 to include all symptomatic travelers arriving from the US, *** we coded this variable
with a “policy_intensity” =0.5. On April 1,2020, these quarantine measures were extended to include
inbound travelers arriving from all countries, with exceptions allowed only for limited cases
(diplomatic missions etc.)."® This variable was then coded with “policy_intensity” = 0.75. Lastly,
starting on April 5, 2020, the KCDC announced that inbound travelers who fail to comply with
quarantine regulations are subject to imprisonment of up to 1 year or a fine of up to 10 million won for
the violation of the Infectious Disease Control and Prevention Act. In addition, persons of foreign
nationality who fail to comply may be subject to measures including deportation and entry ban in
accordance with the Immigration Act."** We then coded this variable with the “policy_intensity” = 1.

ltaly

We have obtained data on Italy’s policy responses to the COVID-19 pandemic primarily from the
English version of the COVID-19 dossier “Chronology of main steps and legal acts taken by the Italian
Government for the containment of the COVID-19 epidemiological emergency”™* written by the
Department of Civil Protection (Dipartimento della Protezione Civile), most recently updated on March
12, 2020. This dossier details the majority of the municipal, regional, provincial, and national policies
rolled out between the start of the pandemic to present-day. We have supplemented these policy
events with news articles that detail which administrative areas were specifically impacted by the
additional policies.

The first major policy rollout was on February 23, 2020, when 11 municipalities across two provinces in
Northern Italy were placed on lockdown. These policies included closing schools, cancelling public
and private events and gatherings, closing museums and other cultural institutions, closing
non-essential commercial activities, and prohibiting the movement of people into or out of the
municipalities.

The second major policy rollout was on March 1, 2020, when two provinces and three regions in
Northern Italy were placed on partial lockdown. These policies also included closing schools,
cancelling public and private events and gatherings, closing museums, closing non-essential
commercial activities, as well as limiting the number of people at places of worship, restricting
operating hours of bars and restaurants, and encouraging people to work remotely.

The third major policy roll-out was on March 5, 2020, when all schools across the country were closed.

The fourth major policy roll-out was on March 8, 2020 when the region of Lombardy and 13 provinces
in Northern Italy were placed on lockdown. These policies included the cancellation of public and
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private events and gatherings, closing of museums, encouraging people to work remotely, limiting the
number of people at places of worship, restricting opening hours of bars and restaurants, mandating
quarantine of people who tested positive for COVID-19, prohibiting the movement of people into or
out of the affected area, and restricting movement within the affected area to only work or
health-related purposes. Commercial activities were still allowed, as long as they maintained a safety
distance of one meter apart per person within the establishment. All civil and religious ceremonies,
including weddings and funerals, were suspended. During this same policy roll-out, the rest of the
country faced less stringent policies: cancelling public and private events, closing museums, and
requiring restaurants and commercial establishments to maintain a safety distance of one meter
apart per person within the establishment.

The fifth major policy roll-out was announced on March 9, 2020, and went into effect on March 10,
2020, when lockdown policies applied to Northern Italy were rolled out to the entire country. Lastly,
on March 11, 2020, the lockdown was changed to also cover the closing of any non-essential
businesses and further restricted people from leaving their home.

After the death toll in Italy surpassed that of China on March 21, 2020, the Italian government
increased the severity of their existing policies. Effective March 22, 2020, all non-essential industrial
production and factories would be shut down across the country.”*® Domestic travel was further
restricted; people were not permitted to leave the municipality they were currently in except for
urgent matters or emergencies.”’ Lastly, in the hard-hit northern region of Lombardy, the regional
government increased lockdown restrictions by banning all individual outdoor exercise or sporting
activity.'®

Policy Intensity: We have modified the policy intensity of three different policy variables:
“home_isolation,” “business_closure,” and “travel_ban_local.”

The “home_isolation” policy underwent three policy revisions:

1. The least restrictive version of the policy applies to when people were allowed to leave the
house for work, health, and essential reasons (“policy_intensity” of “home_isolation” = 0.33).

2. The moderate version of the policy applies to when people were allowed to leave the house
only for health and essential reasons (which includes the ability to go outdoors for individual
exercise/sporting activities) (“policy_intensity” of “home_isolation” = 0.67).

3. The most restrictive version of the policy applies to when people were allowed to leave the
house only for health and essential reasons, but were no longer allowed to leave the house for
individual exercise/sporting activities (“policy_intensity” of “home_isolation” = 1).

The “business_closure” policy underwent three policy revisions:
1. The least restrictive version of the policy applies to the limiting of restaurant hours (but other
commercial activities were permitted) (“policy_intensity” of “business_closure” = 0.33),
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2. the moderate version of the policy applies to the closing of all non-essential businesses,
(“policy_intensity” of “business_closure” = 0.67),

3. and the most restrictive version of the policy applies to the closing of all non-essential
industrial production and factories, in addition to the closing of non-essential businesses
(“policy_intensity” of “business_closure” = 1).

Lastly, the “travel_ban_local” policy underwent two policy revisions:
1. The least restrictive version of the policy applies to when people were not allowed to
enter/exit the affected administrative area, (“policy_intensity” of “travel_ban_local” =0.5),
2. and the most restrictive version of the policy applies to a more restrictive ban on domestic
travel that mandated that people had to stay in the municipality they were currently in
(“policy_intensity” of “travel_ban_local” = 1).

Iran

For Iran’s policy response to the COVID-19 pandemic, we relied on news media reporting as the
primary source of policy information (mostly due to translation restrictions). We also relied on two
timelines of pandemic events in Iran to help guide the policy search.'*® **°

The first major outbreak in Iran was connected to a major Shia pilgrimage in the city of Qom that
brought Shiite pilgrims from Iran and throughout the Middle East, where they came to kiss the Fatima
Masumeh shrine. It is possible that the disease was brought to Qom by a merchant traveling from
Wuhan, China.**" In addition, it is believed that the Iranian government knew of the COVID-19 outbreak
prior to its February 21, 2020 parliamentary elections, but downplayed the risks associated with the
disease as not to suppress voter turnout (given concerns that a low turnout would reflect poorly on its
legitimacy).*** The disease, initially centered in Qom and neighboring Tehran, spread rapidly
throughout the country.

As the number of cases grew, the Iranian government started to increase the stringency of its
response. The first case was reported on February 19, 2020 (two individuals who both were reported
to have died that day). The next day, school closures were announced in the province of Qom and
travel in the region was discouraged. By February 22, 2020 the government closed schools in 14
provinces and closed down major gathering sites such as football matches and theaters. By March 5,
2020 schools were closed nationwide and government employees were required to work from home.
Home isolation was implemented by the military on March 13, 2020, which the media described as
“the near-curfew follows growing exasperation among MPs that calls for Iranian citizens to stay at

home had been widely ignored, as people continued to travel before the Nowruz New Year holidays.”
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United States

For the United States’ policy response to the COVID-19 pandemic, we relied on a number of sources,
including the U.S. Center for Disease Control (CDC), the National Governors Association, individual
state health departments, as well as various press releases from county and city-level government or
media outlets. The CDC has posted and continually updated a Community Mitigation Framework that
encompasses both mandatory and recommended policies at a national level. " This framework was
interpreted by individual states as they each declared their own States of Emergency at various dates,
and subsequently released their own community mitigation plans or executive orders. Some of the
first states to release such plans include Massachusetts, California, Florida, Washington, and New
York.*® Each respective Community Mitigation Framework included both mandatory and optional
policies to prevent the COVID-19 spread. In addition the National Governors Association has served as
a resource for individual states’ policies in response to COVID-19, updating each states’ policy rollout
timelines as well as providing links to states’ Executive Orders and other official policy
documentation.’’ To supplement both national and state level policies and recommendations, data
was collected, when possible, for cities and counties that have also taken on the role of providing
guidance and implementing policies to mitigate the spread of COVID-19.

There have been a wide range in responses across states since the first case of COVID-19 was
announced in Washington State on January 14, 2020. As a result, the CDC began releasing guidance to
those at risk of being exposed to the virus. The initial recommendations included travel warnings for
specific countries with confirmed cases and sustained COVID-19 spread. Over the course of our
dataset, these warnings increased in intensity, changing from warning against inbound and outbound
travel to specific countries in both Europe and Asia to warning against travel at all.” International
travel restrictions were coded as “travel_ban_int_out” for outbound travel, and “travel_ban_int_in”
for inbound travel, with lists of the places to and from which travel was restricted also included. On
March 31, 2020, the US changed its global travel warning to Level 4, the highest warning level, which
the US Department of State defines as avoiding “all international travel due to the global impact of
COVID-19.”'* In addition to the national travel restrictions, individual states also implemented local
travel bans, coded as “travel_ban_local” as the spread continued to grow, such that anyone entering
specific states in which this policy was in effect were required to self-quarantine for 14 days. This
ultimately reflected the national policy as well, in that people could still technically travel under a
Level 4 warning, but upon arrival to the US, they would be put in a mandatory quarantine for 14 days.

In addition to travel restrictions, as COVID-19 prevalence increased in the world and within the US
borders, the CDC began to release additional guidance for healthcare workers, individuals at higher
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risk, as well as for state-level action (e.g. travel or social distancing policies).”*® These policies have
largely been implemented at the state-level rather than at the national level. Social distancing
policies, coded as “social_distance” have either recommended or mandated that individuals avoid
crowds, stay home as much as possible, delay elective medical procedures, limit or avoid visiting
vulnerable populations (such as long-term care facilities or prison facilities), wear masks when outside
the home, and stand at least six feet away from others in public spaces. The “social_distance” policy
category also encompasses the closing of government offices and other public facilities such as
libraries or museums.” Along the same line of social distance policies, a separate variable was
coded as “no_gathering” to represent policy measures that banned all events or mass gatherings of a
certain size, i.e. no gatherings over a certain number of people (where this number has varied by
region).

In addition to social distancing, many governors have mandated statewide school closures at the
private and public K-12 and higher education levels, while others have left it up to each school district
to decide.” School closures have been coded as “school_closure” and once implemented, have been
“turned on” for the remainder of our time series, as no schools have reopened since these policies
have been implemented.

Business closures, coded as “business_closure,” have also been recommended or mandated at the
state level. These policies have ranged from shutting down all non-essential businesses, reducing the
number of hours a business may be in operation, severely restricting the number of customers that
are allowed inside at one time, to prohibiting customers to enter a business, such as in the case of
bars and restaurants, where they were only allowed to operate or take-out and delivery services.
When business closures have involved shutting down all non-essential operations, “essential” has
been defined by each state but is largely similar between states, generally defining essential as food or
healthcare providers, as well as basic government operations (i.e. trash collection, mail, water
monitoring, etc). To support employees working remotely or staying home when sick, a number of
states have also mandated paid sick leave for those who are affected by COVID-19, which has been
coded as “paid_sick_leave.” There is a separate “work_from_home” category that includes measures
that require businesses to allow employees to telework, if possible, such that no workers except for
those who have essential functions are allowed to work in an office.

At the subnational level, many governors have implemented a statewide mandatory shelter-in-place
policy, requiring all individuals to self-isolate within their home or place of residence and limit
outdoor activity to essential functions only, which is defined by each state. Shelter-in-place laws have
been coded as “home_isolation,” and generally are enacted alongside a number of other policies,
including business closures, local travel bans, more restrictive gathering sizes, and enforceable social
distance rules. Again similar to business closures, the definition of “essential function” has been
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updated in subsequent policy editions to be more detailed and often stricter, allowing for less activity
out of the home.™

We coded various policies that cancel events and large gatherings as “event_cancel”, which is only
used when one specific event/gathering is cancelled, for example an election postponement, rather
than any event over a certain size, which would instead be coded with the “no_gathering” variable.
The “emergency_declaration” variable encompasses all declarations made indicating a “state of
emergency” at the city, county, state, and federal level. This declaration allows the affected area to
immediately marshal emergency funds and resources and activate emergency legislation, while also
giving the public an indication of the gravity of the situation.

Policy Intensity:

Policy intensity was coded to ensure consistency within the state level for US policy variables as
opposed to within the national level as was the case for other countries in our dataset. In the US,
policies have largely been enacted and enforced by state governments, with variability between
states’ versions of the same policy type as well as the timing of implementation. As a result, we code
policy intensity based on the number of editions of the same policy within a state. To demonstrate, we
include an example of how we code two different states’ implementing the same policy type below:

e 0n3/9/20,3/16/20, and 3/26/20: Connecticut enacted three editions of the “no_gathering”
policy, restricting public gathering to no more than 250, 50, and 5 people, respectively.

e 0On3/11/20: Florida enacted a “no_gathering” policy restricting public gathering to no more
than 1,000 people. This is the first and only edition of the “no_gathering” policy in Florida.

Thus, Connecticut and Florida’s policy intensities are assigned based only on the number of editions
within each of the states rather than comparing the details of the policy between the states (i.e., the
number of people allowed to gather). Florida’s “no_gathering” policy would therefore be assigned an
intensity of 1 since there is only one edition, while Connecticut’s three editions of the “no_gathering”
policy would be assigned intensities of 0.33, 0.67, and 1, respectively. We feel that assigning policy
intensity within a state allows us to better capture the context within which a policy is enacted, for
example due to different COVID-19 case loads or variation in population density, which may play a
significant role in determining the details and timing of a policy.

Population Data

In order to construct population weighted policy variables and to determine the susceptible fraction
of the population for disease projections under the realized and the no-policy counterfactual
scenarios, we obtained the most recent estimates of population for each administrative unit included
in our analysis. The sources of that population data are documented below.
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China

City-level population data have been extracted from a compiled dataset of the 2010 Chinese City
Statistical Yearbooks. We matched the city level population dataset to the city level COVID-19
epidemiology dataset. As the two datasets use slightly different administrative divisions, we only
matched 295 cities that exist in both datasets, and grouped the remaining 39 cities in our compiled
epidemiology dataset into "other" for prediction purposes. Cities grouped into "other" because of
mismatches have a total population of 114,000,000, or 8.5% of the total population in China.

For these 39 cities that we could not match, we imputed the population by taking the total remaining
population (114,000,000) and divided it evenly between these remaining cities. We flag the imputed
populations by using the binary variable “pop_is_imputed.”

France

Département-level populations are obtained from the National Institute of Statistics and Economic
database.” We used the most up to date estimation of the population in France as of January 2020.

South Korea

We downloaded the number of population by provinces from a webpage administered by the Korean
Statistical Information Service (KOSIS)."® The government agency recently updated the population
information of February, 2020, which we used for our analysis.

Italy

Region and province level population data come from the Italian National Institute of Statistics (Istat),
estimating total population on January 1,2019. The datasets for all Italian regions and provinces are
scraped from Istat’s website in get_adm_info.ipynb.

Iran

Province level population data for Iran comes from the 2016 Census, as listed on the City Population
website.” It is scraped in get_adm_info.ipynb.

United States

State- and county-level population data come from the 2017 American Community Surveys dataset,
and is downloaded via the census Python package®® in get_adm_info.ipynb.
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Supplementary Methods

In our Supplementary Methods, we describe several sensitivity analyses performed to assess the
robustness of our growth rate impacts and projections of cases averted/delayed.

This section is divided into five analyses:

1. Testing the sensitivity of projected averted/delayed cases to varying epidemiological
parameters
Testing the sensitivity of our regression model to varying epidemiological parameters
Testing the sensitivity of our regression model to changes in lag structure
Testing the sensitivity of our regression model to withholding of data
Testing the sensitivity of our regression model to changes in policy groupings

A S

1. Sensitivity of projected averted/delayed cases to the removal
rate y and the use of an SEIR framework

We compute the empirical removal rate using aggregated data from the countries for which we
observe active cases (i.e., China and South Korea) and estimate a value of » =0.079 (see the Methods
section of the main text). This value measures the inverse of the mean duration from being reported as
infected to being reported as recovered (or dead) and may differ from the fundamental
epidemiological parameter describing the rate of removal from the pool of infectious individuals.
While our estimate implies a recovery period (symptom onset to recovery) that is comparable to some
estimates in the literature (median time of 19-23 days, varying based on age group, sex, severity, and
mode of detection®®), we test the extent to which our simulation results in Figure 4 depend on this
value. One motivation for this exercise is that there may be an unknown delay between the time when
a patient becomes non-infectious in reality and the time in which they are recorded in the aggregate
data as recovered. Assuming a (likely high) value of 14 days average delay between true recovery and
recording this recovery generates an estimate of 7 =0.18, for example. Differential underreporting of
recoveries versus cases, for example, could also bias the estimation of .

In addition, the use of an SIR framework may misrepresent the true underlying disease dynamics, and
a more general SEIR framework, which includes representation of people exposed to the infection
without yet being infectious, may produce more realistic simulations of cases averted/delayed by
policy. We also test sensitivity to the use of the SEIR framework, as well as a key parameter in this
alternative framework -the assumed rate of transition from exposed to infectious ( 7).

We replicate the simulation underlying Figure 4 using an SEIR framework with values of > ={0.05, 0.1,
0.15,0.2,0.25,0.3,0.35,0.4} and 0 € {0.2,0.33,0.5, =}, with 0 = corresponding to the SIR
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framework we employ in the main simulation. We present our estimates of the total number of cases
under both the no-policy and policy scenarios, as well as the total number of cases averted/delayed
by policy. We sum simulated cases across all countries on the last dates of the countries’ respective
samples. Note that the simulation uses the growth rates derived from our empirical model such that
changesin 7 and o correspond to changes in the transmission rate 4. £ mustvary with 7 and o
as our data determine the underlying exponential growth rate. We show the results of this sensitivity
analysis in Extended Data Figure 7.

Panels (a) and (b) respectively show the simulated number of cases in the no-policy and with-policy
scenarios. The number of simulated no-policy cases is decreasing in 7 for high ¢ and increasingin »
forlow 0. The number of simulated no-policy cases isincreasing in o forlow » and nonmonotonic
in o for high 7. The number of simulated with-policy cases is increasingin 7 and decreasingin 0.
Panel (c) shows the number of cases averted due to policy and demonstrates that varying ¢ or » can
reduce our estimate of cases averted on the order of several million reported cases (up to 10%). Panel
(c) shows that higher values of 7 produce lower estimates of cases averted for the SIR model ( 0 = ),
but increasing estimates of cases averted for the lower values of o. Panel (d) plots the content of
Panel (c) on the log scale used in Figure 4 of the main text for comparison. For our simulation value of
7, decreasing o0 decreases our estimate of cases averted.

Overall, these results show that the basic order of magnitude of the number of cases averted is
preserved within this reasonable range of potential 7 valuesin the SIR framework and o valuesin
the SEIR framework.

2. Sensitivity of exponential regression model to varying
epidemiological parameters

The model we use to estimate the impacts of policy on growth rates assumes exponential growth,
which is typically valid for early-stage disease outbreaks. If growth is not exponential, there exists the
potential for bias in estimated coefficients. There are three primary reasons why an early-stage
outbreak could exhibit non-exponential growth in the absence of policy intervention:

1. Theinfection spread may progress quickly, lowering the susceptible fraction of the population
to a degree that materially affects the infection spread, transitioning the outbreak away from
the exponential “early stage” regime.

2. Inadisease with a substantial latent period, the growth of infections is only asymptotically
exponential.’®® At any given moment in time, the instantaneous growth rate may differ from a
steady-state exponential growth rate.

3. When analyzing growth in cumulative infections, as we do for countries where active infection
data are unavailable, growth is similarly only asymptotically exponential.
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In our dataset, 95% of administrative units have susceptible fractions above 0.93 on their last analysis
day and all have susceptible fractions above 0.78, indicating that the first reason is unlikely to induce
substantial bias in our results. When the transmission rate of a disease declines due to anti-contagion
policy, the growth rate in infections decreases with a lag due to the dynamics associated with the
latent period. Because of this, exponential models estimating the average treatment effect (ATE) of a
policy may underestimate the true reduction seen from a policy because they include days in which
the growth rate was still higher than the new steady state growth rate. Finally, in the early stages of an
outbreak, the number of active cases will dominate the number of recovered/deceased patients and
thus the differences in growth of active and cumulative cases is likely to be small.

To test the robustness of our regression approach, we construct simulated outbreaks in which we
control demographic, policy, and epidemiological parameters. We then use a variant of the regression
model (Eq. 7) from the main text to estimate the no-policy growth rates and the effects of each policy.
In this simulation, we do not include any fixed effects to control for day-of-week (8) and changing
testing regime () effects. These variables are not simulated as these are primarily measurement
controls and their effects would be directly absorbed by the corresponding regression parameters if
simulated. We compare the coefficient estimates to the “true” values used in the simulation.

To capture the impact of disease latency, we use an SEIR model framework to generate synthetic
outbreaks. We simulate 12,000 45-day outbreaks at hourly timesteps, starting with a no-policy
exponential growth rate of 0.4 (similar to those estimated in our main analysis) and a single exposed
individual. We adjust this asymptotic exponential growth rate to account for three synthetic policies
that turn on at random times, each with a known effect (-0.05, -0.1, and -0.2). For each subset of 1,000
simulations, we use one of four plausible values for the mean latency period, 6 (0, 2, 3, and 5 days),
and one of three plausible values for the mean infectious period, y* (3, 5, and 20 days). We choose a
wide range of these variables due to substantial uncertainty over the epidemiological characteristics
of the novel coronavirus,'** and a nonexistent latency period is included for comparison to an SIR-like
data generating process. The mean transmission rate per infected person per day, f, is derived from
the asymptotic growth rate, the mean latency period, and the mean infection period by solving for the
eigenvalues of a SEIR system,'®* which yields:

p = EnE)

(o}

We apply exponential noise to 3 for each simulation and at each timestep, and contribute additional
gaussian noise to o and y (standard deviations of 0.01 and 0.03, respectively). We add additional
gaussian “measurement noise” to the instantaneous growth rates after simulation but before running
our regression (standard deviation of 0.1). Cumulatively, this results in an average
root-mean-squared-error (RMSE) in regressions across all 12,000 simulations of ~0.11, which matches
the RMSE of daily growth rate values across all six countries in our main analysis.

The dynamic model outputs a time series of susceptible (S), exposed (E), infectious (I), and removed
(R) individuals, as a fraction of the total population. We use both | and I+R as the left-hand-side

61 MIDAS Network Online COVID-19 Portal: Parameter Estimates
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variables in our regression framework. The former corresponds to the analysis we run for countries in
which we observe active cases and the latter to countries in which we observe only cumulative cases.
We assume the majority of the “exposed but not infectious” population will not yet have been tested
and will not appear in any of the datasets used in the main analysis. Our right-hand-side variables
consist of the binary policy variables, allowing only for contemporaneous effects. This matches our
main specification for all countries except China (where data availability allows for the estimate of
lagged effects) and provides the most challenging environment in which to estimate the effect of
policy in a dynamic system.

Results are presented in Extended Data Figures 8 and 9. While it is possible to simulate outbreaks
consisting of innumerable parameter combinations and noise distributions, we display those that
seem most relevant for evaluating the robustness of our main analysis. Our associated GitHub
repository contains a Jupyter notebook for readers to further examine the effect of simulation
configurations on regression model robustness.

Figures 8 and 9 are each split into two panels (a) and (b). Panel (a) of each figure shows simulations in
near-ideal data conditions, in which we observe active infections within a large population. This
means that the susceptible fraction of the population remains high during the entire sample period.
For example, these conditions are similar to those in our real data for Chongging, China. Panel (b) of
each figure shows simulations in a non-ideal data scenario where we are only able to observe
cumulative infections in a small population. In these simulations, the susceptible fraction declines to
values as low as 33% of the population. For example, these conditions are similar to those in our real
sample of data for Cremona, Italy.

Figure 8 demonstrates that our model recovers unbiased estimates of the no-policy growth rate under
all conditions simulated. Because the growth rate prior to policy has likely approached its asymptotic
rate by the time we begin our regressions, variance in our no-policy growth rate estimates comes from
noise in the disease parameters and measurement. The ability to recover unbiased estimates of this
value has important implications for our estimate of the total number of cases averted/delayed to
date, as this number is primarily driven by the counterfactual number of cases we would expect to see
in a world in which no anti-contagion policy was enacted.

Figure 9 demonstrates that our model recovers unbiased estimates of the cumulative effect for a
disease with very short latency. As the latency period increases, the model begins to slightly
underestimate the true effect of policy (i.e. it predicts a less negative value), due to the decay time
over which a shock to transmission rate propagates to a new steady-state growth rate. The
underestimate is reduced in situations where we are able to directly observe active infections and is
increased when we can only observe cumulative infections. Note that statistical uncertainty in these
estimated parameters dominates potential biases, even in “worst case” data conditions.

We conclude that biases (due to the use of an exponential model) in our estimates of the no-policy
growth rate are essentially zero and are likely to be small and negative for our estimates of policy
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effectiveness. If present in the data, such biases would cause us to modestly understate the
effectiveness of anti-contagion policies.

3. Sensitivity of estimates to changes in lag structure

Existing evidence has not demonstrated whether policies should affect infection growth rates in the
days immediately following deployment. It is therefore not clear ex ante whether the policy variables
in Eq. 7 should be encoded as “on” immediately following a policy deployment. As a robustness
check, we estimate “fixed-lag” models in which a fixed delay between a policy’s deployment and its
effect is assumed. Specifically, we assume that policies cannot influence infection growth rates for L
days, recoding a policy variable at time t as zero if a policy was implemented fewer than L days before
t. We re-estimate Equation (7) for each value of L and present results in Extended Data Figure 5 and
Supplementary Table 5. If a delay model is more consistent with real world infection dynamics, these
fixed lag models should recover larger estimates for the impact of policies and exhibit better model fit.

Panel b of Extended Data Figure 5 displays the R? associated with each cou ntry-level fixed lag model
with fixed lag lengths ranging from no fixed lags up to a 15 day fixed lag. In-sample fit generally
declines or remains unchanged if policies are assumed to have a delay longer than 4 days. Panel c of
Extended Data Figure 5 plots the estimated effects for no lag (the model reported in the main text) and
for fixed-lags between one and five days. Estimates generally are unchanged or shrink towards zero
(e.g. Home isolation in Iran), consistent with mis-coding of post-policy days as no-policy days.

In Supplementary Table 5, we show our estimates of the effect of all policy interventions in each
country (analogous to the average difference between red and blue markers in Figure 3 of the main
text) using a fixed lag of up to 5 days. The estimated effects are broadly consistent across different lag
lengths; however, the magnitude of the effect size declines slightly with increasing lag lengths. If
policies take several days to impact infection growth rates, we would expect effect sizes to increase
rather than decrease with lag lengths. Our finding of declining effect sizes is more consistent with
contamination of the “control” group, where policies are incorrectly encoded as zeros after they have
been deployed.

4. Sensitivity of estimates to withholding of data

To ensure that the estimates from our regression model are robust to the withholding of data, we
re-estimate our main model k. number of times for each country, where %, is the number of first level

administrative units (“Adm1,” i.e. state or province) in country c. In each of the %, regressions for
country ¢, we withhold data from one Adm1 unit when we estimate the effects of policy interventions
on growth rates. The results of this exercise are displayed in Extended Data Figures 3 and 4.
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5. Sensitivity of estimated growth rates to changes in policy groupings

In our main regression model, due to the limited length of our time series data and instances where
multiple policies are deployed on the same date, we group certain policy interventions together. We
group policies together that have similar objectives (e.g. “travel_ban_local” and “transit_suspension”
would be one group, “event_cancel” and “no_gathering” would be another) and keep certain policies
separate (i.e. “business_closure,” “school_closure,” “home_isolation”) where possible.

To test the sensitivity of our results to the grouping of policy interventions, we also estimate a model
where the policies are estimated without grouping. Extended Data Figure 6 panel a shows the
estimated infection growth rates and no-policy counterfactual growth rates using the model with
disaggregated policies. Additionally, in Supplementary Table 4, we compare the effect of policy
interventions in each country when the effect of all policies are estimated separately (“Disaggregated
Model”) and when they are grouped into policy packages as in our preferred specification (“Main
Specification”). We find the estimated impact of policy interventions on case growth rates is robust to
this alternative specification.
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Supplementary Tables

Supplementary Table 1 | Number of unique anti-contagion policies in this study tabulated by

administrative divisions of each country.

Country AdmO Adm1l Adm?2 Adm3 Total
China 0 4 133 0 137
France 8 1 50 0 59
Iran 5 17 0 0 22
Italy 14 29 95 7 215
South Korea 20 39 0 0 59
United States 36 682 418 31 1167
Total 83 772 696 108 1659

This table reports the policy data that have been collected at various levels of administrative divisions in each country. “Adm0” represents the country level, and
higher “Adm*” numbers indicate smaller administrative subdivisions, which are specific to each country. Each policy is counted at the highest resolution
administrative unit in which the policy is applied differentially. For example, if a country has ten regions at the “Adm1” level, and a policy is applied across five of
those regions, the policy is counted as five separate “Adm1” policies rather than a single “Adm0” policy. National policies are counted only once as “Adm0.”

32


https://doi.org/10.1101/2020.03.22.20040642
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.03.22.20040642; this version posted April 29, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Supplementary Table 2 | Estimates of no-policy infection growth rates and case doubling time
using different samples from Wuhan, China.

(1) (2) (3) (4) (5) (6)

Raw case . . . .
R Estimates using Estimates using
Date data on datein (1) Raw cas§ 1/22/20 as sample 1/22/20 as sample
Source:Wuetal. dataondatein (1)
(used as start of (2020) end date end date Notes
sample) Cumulative 3 Estimated infection  Case doubling time
confirmed cases Active cases growth rate (days)

12/10/19 1 1 0.12 5.69 <« Wu et al. (2020) and Li et al. (2020)***
12/11/19 1 1 0.12 5.56 sample begins
12/12/19 1 1 0.13 5.42
12/13/19 1 1 0.13 5.29
12/14/19 2 2 0.12 5.96
12/15/19 4 4 0.10 6.88
12/16/19 6 6 0.09 7.51
12/17/19 6 6 0.09 7.30
12/18/19 6 6 0.10 7.10
12/19/19 6 6 0.10 6.89
12/20/19 7 7 0.10 7.00
12/21/19 8 8 0.10 7.08
12/22/19 10 10 0.09 7.40
12/23/19 11 11 0.09 7.40
12/24/19 11 11 0.10 7.15
12/25/19 13 13 0.09 7.34
12/26/19 13 13 0.10 7.07
12/27/19 13 13 0.10 6.80
12/28/19 14 14 0.10 6.72
12/29/19 18 18 0.10 7.17
12/30/19 21 21 0.09 7.37
12/31/19 22 22 0.10 7.20

1/1/20 28 28 0.09 7.78

1/2/20 34 34 0.08 8.30

1/3/20 44 44 0.07 9.39

1/4/20 44 44 0.08 8.87 « Lietal. (2020) sample ends
1/5/20 59 59 0.06 10.71

1/6/20 59 59 0.07 10.04

1/7/20 59 59 0.07 9.37

1/8/20 59 59 0.08 8.70

1/9/20 41 41 0.12 5.94 « Official cumulative cases decreases
1/10/20 41 38 0.13 5.17 < No new official cases
1/11/20 41 34 0.16 4.37 < No new official cases
1/12/20 41 33 0.18 3.86 < No new official cases
1/13/20 41 33 0.20 3.43 < No new official cases
1/14/20 41 33 0.23 3.00 < No new official cases
1/15/20 41 27 0.30 2.29 < National standards for diagnosis issued
1/16/20 45 28 0.36 1.95 < Testing available in Hubei
1/17/20 62 41 0.35 1.98 Our sample begins (see the
1/18/20 121 94 0.35 1.98 Supplementary Notes on Epi. Data
1/19/20 198 170 0.27 2.58 in China)

1/20/20 258 228 0.26 2.70

1/21/20 365 329 0.15 472

1/22/20 425 381 - - <« Wu et al. (2020) and our sample for

estimating no-policy growth rate end

This table reports the raw epidemiological data in Wuhan, China and our estimates of infection growth rates and case doubling times prior to the city-wide
lockdown on January 22, 2020, utilizing different sample periods to estimate these values. Column (1) provides the dates of observations. Columns (2) and (3)
show raw official epidemiological data: the number of cumulative cases and the number of active cases (= cumulative cases - recoveries - deaths), respectively.

163

Wu, J.T., Leung, K., Bushman, M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine 26, 506-510
(2020). https://doi.org/10.1038/541591-020-0822-7

164Li, Qun, Xuhua Guan, Peng Wu, Xiaoye Wang, Lei Zhou, Yeqing Tong, Ruigi Ren et al. "Early transmission dynamics in Wuhan, China, of novel
coronavirus-infected pneumonia." New England Journal of Medicine (2020).
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We show data from Wu et al. (2020),'* which match our data in the overlapping periods; in the interest of space, we do not display raw data used in Li et al.
(2020), but they are similar with small differences. Columns (4) and (5), report estimates of pre-policy infection growth rates and case doubling times (in days)
using different start dates, respectively. Specifically, we set the sample start date as the date in column (1) and the end date of the sample (used for estimating our
no-policy growth rate) fixed at January 22, 2020 (the day prior to city-wide lockdown), using the time series data between these two dates to estimate the
parameters in columns (4) and (5). Column (6) provides notes on these data. Using a start date of 12/10/19, the same as Wu et al (2020), we obtain an estimated
case doubling time of 5.7 days, similar to their estimated 5.2 days (they use an alternative structural modeling approach). As described in our Supplementary
Notes on Epidemiological Data in China, we only use data in China beginning 1/16/20 because the first national guidelines for diagnosis were issued on 1/15/20.
Prior to that date, there did not exist a consistent case definition to identify the earliest 41 confirmed cases in Wuhan.'* Additionally, the documented lack of
testing capacity in the province of Hubei before 1/16/20 raises concern about data quality during that time period.'” These concerns about data quality appear
consistent with irregularities in the official record of cumulative cases (column 2). For example, official cumulative cases decreased on 1/9/20, which should not
be possible. Additionally, no new cases were reported between 1/9/20 and 1/15/20, when at least roughly five new cases per day should have been reported if
case doubling time actually was 5.2 days. The reliability of these official reports during the 1/9/20-1/15/20 period has been called into question, with news
sources suggesting that people who were likely to have been infected by COVID-19 in that period of time (and deaths attributed to the disease) were not counted
in the official tally.'®'* These data quality concerns motivate our use of the 1/16/20 start data for our sample in China, which provide an infection growth rate of
0.36 and case doubling time of 1.95 days (gray) using only the time series in Wuhan. These estimates are broadly consistent with our estimates from all other
countries we examine, except Iran, and the global average growth rate of 0.37 we estimate (see Figure 2A in the main text).

*Wu, J.T., Leung, K., Bushman, M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nature Medicine 26, 506-510

(2020). https://doi.org/10.1038/s41591-020-0822-7

ZImpact of changing case definitions for COVID-19 on the epidemic curve and transmission parameters in mainland China Affiliation
TRONT % B M AT % / = + X (Wuhan pneumonia: 30 days from outbreak to out of control)

¥ Warning against cover-up as China virus cases jump

% As families tell of pneumonia-like deaths in Wuhan, some wonder if China virus count is too low
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Supplementary Table 3 | Country level regression results estimating the effect of policy
interventions on COVID-19 infection growth rates.

a. China
Dependent variable: growth rate of active cases (Alog cases per day) Effect of all policies combined
Variables Coefficient Std Error Coefficient  Std. Error
Policy variables: Week1l  -0.136*** 0.031
Travel ban, Week 1 -0.041 0.028 Week 2 -0.299*** 0.040
Travel ban, Week 2 -0.164*** 0.036 Week3  -0.341*** 0.036
Travel ban, Week 3 -0.189*** 0.034 Week 4 -0.336*** 0.034
Travel ban, Week 4 -0.177*** 0.032 Week 5 -0.339*** 0.035
Travel ban, Week 5 -0.178*** 0.032
Home isolation, Week 1 -0.095*** 0.017
Home isolation, Week 2 -0.135*** 0.016
Home isolation, Week 3 -0.153*** 0.016
Home isolation, Week 4 -0.159*** 0.016
Home isolation, Week 5 -0.161*** 0.019
Testing regime dummy variables:
Testing regime change on Jan. 18, 2020  0.495*** 0.031
Testing regime change on Jan. 28,2020  0.144*** 0.020
Testing regime change on Feb. 06,2020  -0.024*** 0.006
Testing regime change on Feb. 13,2020  -0.002 0.003
Testing regime change on Feb. 20,2020  -0.008*** 0.001
Testing regime change on Mar. 05,2020  0.003 0.004
Observations 3,698
R-squared 0.52

*** p<0.01, ** p<0.05, * p<0.1
This regression includes city fixed effects and clustered standard errors at the day
level.

b. South Korea

Dependent variable: Growth rate of active cases (Alog cases per day) Effect of all policies combined
Variables Coefficient Std. Error Coefficient Std. Error
Policy variables: -0.494*** 0.150

Social distance (optional) -0.083** 0.038

Social distance (mandatory) -0.304** 0.151

Emergency declaration -0.127*** 0.047

Quarantine positive cases 0.0202 0.019

Testing regime dummy variables:

Testing regime change on Feb 20,2020  0.0742 0.087
Testing regime change on Feb 29,2020  0.040** 0.019
Testing regime change on Mar 22,2020  -0.010 0.023
Testing regime change on Mar 27,2020  -0.039 0.038
Observations 595
R-squared 0.28

*** p<0.01, ** p<0.05, * p<0.1

This regression includes province fixed effects, day-of-week fixed effects, and
clustered standard errors at the day level.

"Social distance (optional)" includes recommended policies related to social
distancing, e.g. no gathering, work from home, and closing businesses such as
karaoke and cyber cafes.

"Social distance (mandatory)" includes prohibiting rallies, closing churches,
and closing welfare service facilities.
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c. Italy
Dependent variable: Growth rate of cumulative confirmed cases (Alog cases per day) Effect of all policies combined
Variables Coefficient Std. Error Coefficient Std. Error
Policy variables: -0.409*** 0.119
Other social distance 0.148** 0.067
School closure -0.106 0.070
Travel ban -0.303** 0.147
Quarantine positive cases -0.076 0.051
Business closure -0.142 0.107
Home isolation 0.069 0.060
Observations 2,898
R-squared 0.29

*** p<0.01, ** p<0.05, * p<0.1

This regression includes province fixed effects, day-of-week fixed effects, and
clustered standard errors at the day level.

"Other social distance" includes policies for working from home, maintaining 1 meter
distance from others in public, and prohibiting public and private events.

d.lIran
Dependent variable: Growth rate of cumulative confirmed cases (Alog cases per day) Effect of all policies combined
Variables Coefficient Std. Error Coefficient Std. Error
Policy variables: -0.436*** 0.068
Travel ban (opt), work from home, school closure -0.285*** 0.079
Home isolation -0.151*** 0.033

Testing regime dummy variable:

Testing regime change on Mar 13, 2020 -0.075 0.096
Observations 548
R-squared 0.30

*** p<0.01, ** p<0.05, * p<0.1

This regression includes province fixed effects, day-of-week fixed effects, and
clustered standard errors at the day level.

"Travel ban (opt), work from home, school closure" policies were enacted March 1-5,
2020 which overlaps with missing provincial case data in Iran on March 2-3, 2020.

e. France
Dependent variable: Growth rate of cumulative confirmed cases (Alog cases per day) Effect of all policies combined
Variables Coefficient Std. Error Coefficient Std. Error
Policy variables: -0.279*** 0.058
Other social distance -0.227*** 0.070
School closure -0.005 0.039
National lockdown -0.048* 0.025

Testing regime dummy variable:

Testing regime change on Mar 15, 2020 -0.032** 0.015
Observations 270
R-squared 0.31

*** p<0.01, ** p<0.05, * p<0.1

This regression includes province fixed effects, day-of-week fixed effects, and
clustered standard errors at the day level.

“National lockdown" policies include business closures and home isolation.
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f. United States

Dependent variable: Growth rate of cumulative confirmed cases (Alog cases per day)

Effect of all policies combined

Variables Coefficient Std. Error Coefficient Std. Error

Policy variables: -0.347*** 0.061
No gathering, event cancel -0.105 0.066
Other social distance -0.117*** 0.040
Quarantine positive cases -0.110*** 0.029
Paid sick leave 0.075* 0.038
Work from home 0.015 0.017
School closure 0.038* 0.021
Travel ban -0.016 0.024
Business closure -0.057** 0.026
Home isolation -0.070*** 0.014

Testing regime dummy variables:
Testing regime change on Mar 13,2020 in NY -0.100** 0.041
Testing regime change on Mar 16, 2020 in CA 0.015 0.029
Testing regime change on Mar 18,2020 in NC 0.165*** 0.041
Testing regime change on Mar 19,2020 in CT, NV, UT  0.087** 0.034
Testing regime change on Mar 20, 2020 in IA -0.233*** 0.026
Testing regime change on Mar 21,2020 in TN 0.188*** 0.034
Testing regime change on Mar 22,2020 in AL -0.019 0.024
Testing regime change on Mar 23,2020 in HI -0.055* 0.028
Testing regime change on Mar 24, 2020 in KS, NJ -0.017 0.018
Testing regime change on Mar 25, 2020 in OH 0.007 0.027
Testing regime change on Mar 27,2020 in AZ 0.042 0.036
Testing regime change on Mar 28, 2020 in MD, MO -0.004 0.034
Testing regime change on Mar 30, 2020 in DE -0.014 0.032

Observations 1,235

R-squared 0.28

*** p<0.01, ** p<0.05, * p<0.1

This regression includes state fixed effects, day-of-week fixed effects, and clustered

standard errors at the day level.

"Other social distance" includes policies such as closing libraries, maintaining 6 feet

distance from others in public, and limiting visits to long term care facilities.

These regression tables a-f display the results from our main model estimating the effect of policy on daily COVID-19 infection growth rates in China, South
Korea, Italy, Iran, France, and the United States. The regression model is estimated separately for each country, allowing for the policy type to have different

average treatment effects for each country.
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Supplementary Table 4 | Estimated Effect of Actual Policies on Infection Growth Rates With and
Without Grouping Policies

Main Specification (policies grouped) Disaggregated Model (policies separate)

Country Effect size 95% Cl Effect size 95% CI
China -0.156 (-.187,-.126) -0.156 (-.187,-.126)
France -0.139 (-.214,-.064) -0.195 (-.373,-.018)
Iran -0.362 (-.497,-.227) -0.305 (-.455, -.156)
Italy -0.241 (-.373,-.108) -0.243 (-.379, -.106)
South Korea -0.248 (-.423,-.073) -0.210 (-.377,-.044)
United States -0.092 (-.158,-.027) -0.092 (-.165,-.018)

Average effect of all policies on infection growth rates in our sample (analogous to the average difference between red and blue markers in Figure 3 of the main
text) using our main specification, where the impact of grouped policy interventions are estimated jointly, compared to a disaggregated model where the effect
of all policies are estimated simultaneously but without grouping them (See Supplementary Methods 5). In our main specification, policies are grouped due to
limited data. We group policies that have similar objectives (e.g. “travel_ban_local” and “transit_suspension”) or are deployed very close in time. We keep other
policies separate where possible (e.g. “school_closure” and “home_isolation”). In the disaggregated model, no policies are grouped and individual policies
estimates are noisier, however combined effects are similar.

Supplementary Table 5 | Estimated Effect of Actual Policies Combined on Infection Growth Rates

Using Alternative Models that Assume Lagged Effects Of Policies

Country Statistic 0 Day Lag 1DaylLag 2Daylag 3 Daylag 4 Day Lag 5Day Lag
Effect size -0.156 -0.146 -0.137 -0.134 -0.130 -0.122
China 95% Cl (-.187,-.126) (-.18,-.111) (-.171,-.103) (-.168,-.101) (-.158,-.102) (-.148,-.096)
R’ 0.52 0.44 0.44 0.43 0.44 0.44
Effect size -0.139 -0.136 -0.131 -0.116 -0.101 -0.083
France 95% Cl (-.214, -.064) (-.21,-.061) (-.191,-.071) (-.155,-.077) (-.133,-.068) (-.105, -.061)
R? 0.31 0.32 0.33 0.31 0.30 0.31
Effect size -0.362 -0.358 -0.399 -0.379 -0.365 -0.285
Iran 95% Cl (-.497,-.227) (-.454,-.263) (-.512,-.286) (-.443,-.315) (-.417,-.313) (-.331,-.238)
R 0.30 0.33 0.35 0.38 0.39 0.38
Effect size -0.241 -0.252 -0.219 -0.207 -0.192 -0.177
Italy 95% Cl (-.373,-.108) (-.344,-.160) (-.289,-.150) (-.261,-.154) (-.233,-.151) (-.223,-.130)
R? 0.29 0.30 0.29 0.29 0.30 0.30
Effect size -0.248 -0.246 -0.23 -0.221 -0.20 -0.171
South Korea 95% Cl (-.423,-.073) (-.372,-.119) (-.337,-.123) (-.312,-.13) (-.282,-.113) (-.246, -.097)
R? 0.28 0.30 0.30 0.31 0.31 0.29
Effect size -0.092 -0.080 -0.082 -0.081 -0.078 -0.072
United States 95% Cl (-.158, -.027) (-.144,-.016) (-.127,-.038) (-.114,-.047) (-.106, -.049) (-.094, -.049)
R? 0.28 0.28 0.28 0.29 0.29 0.29

Average effect of all policies on infection growth rates in our sample (analogous to the average difference between red and blue markers in Figure 3 of the main
text) using models with different assumed delays of policy impact, ranging from a one day lag to a five day lag. The “0 Day Lag” column corresponds to the

estimates reported in the main text. For models with non-zero lag, the lag structure of the estimating equation is such that for a model with an L day lag, the
policy intervention implemented on day t is assumed to have no impact on infection growth rates until day t+L. As in the main text, for China and Korea, the

reported effect size is the policy impact on the growth rate of active cases, where in the other countries cumulative cases are used. See Supplementary Methods

3 for a discussion of these results.
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