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Abstract 19 
The SARS-CoV-2 driven disease, COVID-19, is presently a pandemic with increasing human 20 
and monetary costs. COVID-19 has put an unexpected and inordinate degree of pressure on 21 
healthcare systems of strong and fragile countries alike. In order to launch both containment 22 
and mitigation measures, each country requires accurate estimates of COVID-19 incidence as 23 
such preparedness allows agencies to plan efficient resource allocation and design control 24 
strategies. Here, we have developed a new adaptive, interacting, and cluster-based 25 
mathematical model to predict the granular trajectory COVID-19. We have analyzed 26 
incidence data from three currently afflicted countries of Italy, the United States of America, 27 
and India, and show that our approach predicts state-wise COVID-19 spread for each country 28 
with high accuracy. We show that R0 as the basic reproduction number exhibits significant 29 
spatial and temporal variation in these countries. However, by including a new function for 30 
temporal variation of R0 in an adaptive fashion, the predictive model provides highly reliable 31 
estimates of asymptomatic and undetected COVID-19 patients, both of which are key players 32 
in COVID-19 transmission. Our dynamic modeling approach can be applied widely and will 33 
provide a new fillip to infectious disease management strategies worldwide. 34 
 35 
Introduction 36 
Since the first reports from China1–3, COVID-19 has spread to all the continents resulting in 37 
the infection of more than 1.5 million people and a death toll of more than 100,0004,5. Due to 38 
the severity of the pandemic, many countries have implemented complete or partial 39 
lockdowns and international travel restrictions6–8 to stem disease transmission9,10. As the 40 
COVID-19 pandemic presents a very dire economic and humanitarian scenario for most 41 
countries worldwide, it is imperative that afflicted governments have ready access to highly 42 
reliable estimates of COVID-19 spread across their states and regions.  Such predictive 43 
incidence data will enable deployment of resource allocation strategies, development of new 44 
socio-economic policies and upgradation of healthcare facilities so as to minimize 45 
detrimental effects in each country7,8,11. 46 
 47 
Several studies have modeled the COVID-19 pandemic at the city, state, or country level6,8,12–48 
14 using the common Susceptible–Exposed–Infected–Removed (SEIR) model15 that can 49 
capture the dynamics of an infectious disease such as COVID-19. In this model, the 50 
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population is divided into four categories of which “susceptible” individuals may become 51 
“exposed” to the virus through “infected” people who will eventually be “removed” (that is, 52 
they can no longer infect others). Removed population refers to the individuals who have 53 
recovered or died. The traditional SEIR model when applied to model COVID-19, however, 54 
suffers from the following two major limitations: (i) it assumes homogeneity in a large 55 
population via keeping the basic reproduction number R0 a constant (i.e., local variations in 56 
the transmission dynamics within a large population are not accounted for) 15–17, and (ii) it 57 
assumes a “closed population” without demographic variation stemming from births, deaths 58 
or migration15.  59 
 60 
China reported its first case on 31 December 2019, with a peak in cumulative cases in an 61 
eight-week interval and thence a plateauing. Italy followed the same trajectory after ~11 62 
weeks and then the USA after ~13 weeks (of the first case in China). In India, cases rose after 63 
~12 weeks of the first case in China, and although both cases and deaths are still on the rise 64 
in the USA and India, Italy is already witnessing a decrease in daily new cases. To 65 
understand the trends of this epidemic, many studies in different countries have employed the 66 
R0 that was estimated from China.  As in other directly contagious diseases, COVID-19 67 
spreads primarily due to human transmission of the pathogen (coronavirus) from city-to-city, 68 
or state-to-state, or country-to-country, and this involves significant migration of 69 
humans6,12,13. The dynamics of disease spread, therefore, involves a few primary cases and an 70 
index case up to which point the R0 is limited in its value. Beyond this, when the infection 71 
starts to move from index cases to their contacts, the R0 assumes greater magnitude and then 72 
it can drive community transmission that is currently being witnessed in many countries and 73 
feared in others that are behind in their epidemic evolution. 74 
 75 
Although R0 is a measure of communicability of COVID-19, its upper range determines the 76 
speed of spread. Estimation of R0 assumes that everyone around a primary case is equally 77 
susceptible to the infection and thereby suggests that it is dependent on the causative agent 78 
alone. However, R0 is a function of direct and indirect interactions between the agent, host 79 
and environment. The hosts’ immune status, genetic makeup, comorbidities, gender and 80 
smoking can contribute towards disease transmission. Equally, the environment that supports 81 
transmission is dynamic via variations in temperature, humidity, population density, 82 
migration, adaptive interventions like quarantine/isolation/social distancing, socio-economic 83 
conditions and so on18–22. Hence, the use of a constant value for R0 cannot capture the 84 
evolving transmission dynamics accurately. To address this challenge, we first estimated the 85 
spatio-temporal variations of R0 in Italy, USA and India (see Figure 1). Specifically, we 86 
tracked COVID-19 spread in each state/region within these countries and then computed R0 87 
by explicitly solving the SEIR equations. Interestingly, we observed that R0 exhibited 88 
significant spatial and temporal variations (see Figure 1), and hence it was deemed 89 
inappropriate to be used as a constant for any large population.  90 
 91 
To address the granularity in R0, we developed a new adaptive, interacting, cluster-based 92 
SEIR (AICSEIR) model that, we show, can capture the transmission dynamics of the 93 
COVID-19 pandemic within a heterogeneous population to high accuracy (Figure 2).  94 
Hereon, the term state represents a subpopulation (or a cluster) in a country. State, therefore, 95 
corresponds to the geo-administrative boundaries within India and the USA, and regions in 96 
Italy. Our new model divided any given country’s entire population into multiple, interacting 97 
clusters that mingled stochastically. This enabled us to predict the trajectories of COVID-19 98 
transmission in three heterogeneous populations of Italy, USA, and India up to the 99 
state/region level. Typically, R0 is estimated by fitting an exponential curve in the early 100 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20074211doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20074211
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

3 

infection stages following the assumption that 𝐼(𝑡) ≈ 𝐼(0)𝑒([#!$%]'().  However, due to the 101 
paucity of new cases in the early phases, the dynamics can be highly stochastic and 102 
influenced by large, noisy fluctuations, which together cause R0 estimates to be 103 
unreliable15,16,23. By the time stochastic fluctuations become negligible, the epidemic 104 
behavior will tend to be nonlinear due to recoveries or deaths in infected populations 105 
rendering the exponential approximation invalid15. In such cases, the exponential approach 106 
will lead to a significant underestimation of R0 due to the removed population (as it is not 107 
accounted for in the exponential model). To address these caveats, we computed R0 by 108 
optimizing predictions from the SEIR model for each state within a country as a function of 109 
time (see Methods). This new approach is able to capture the time dynamics of R0 that 110 
emanate as a result of public health interventions in a given country.  In particular, we 111 
decided to re-estimate R0 on a fortnightly interval in order to capture its variability.  112 
 113 
Methodology 114 

(i) Dataset 115 
The datasets used for the study include the following. (i) The total number of COVID-19 116 
active, and removed cases in three countries—Italy, the USA, and India, along with the state-117 
/region-wise details. These data are obtained from the WHO and the respective government 118 
databases4,24–29. (ii) Population data of each of the states-/regions in the three countries. (iii) 119 
Distance between the capital cities of the states in each of the countries is directly calculated 120 
from the latitude and longitude of the respective cities. Complete data used in the study are 121 
provided in the Supplementary Material. 122 
 123 

(ii) Adaptive interacting cluster-based SEIR (AICSEIR) model 124 
Herein,  we present the proposed AICSEIR model (Eq. (1) – Eq. (8)), developed by suitably 125 
extending the heterogeneous SIR model15 that captures the coupling dynamics between 126 
populations residing at different geographical locations:   127 
 128 

𝑑𝑋**
𝑑𝑡 = 𝜈** − 𝛽*𝑋**

∑ 𝑌*++

∑ 𝑁*++
− 𝐶(2 𝑙+*𝑋**

+
+2 𝑟+*𝑋+*

+
) − 𝜇**𝑋** ,																											𝐸𝑞. (1) 129 

𝑑𝑋*+
𝑑𝑡 = 𝜈*+ − 𝛽*𝑋*+

∑ 𝑌*++

∑ 𝑁*++
+ 𝐶(𝑙*+𝑋++ − 𝑟*+𝑋*+) − 𝜇*+𝑋*+ ,																																									𝐸𝑞. (2) 130 

𝑑𝑊**

𝑑𝑡 = 𝛽*(𝑡)𝑋**
∑ 𝑌*++

∑ 𝑁*++
− 𝜎𝑊** − 𝐶(2 𝑙+*𝑊**

+
+2 𝑟+*𝑊+*

+
) − 𝜇**𝑊** ,																					𝐸𝑞. (3) 131 

𝑑𝑊*+

𝑑𝑡 = 𝛽*(𝑡)𝑋*+
∑ 𝑌*++

∑ 𝑁*++
− 𝜎𝑊*+ + 𝐶(𝑙*+𝑊++ − 𝑟*+𝑊*+) − 𝜇*+𝑊*+ ,																																			𝐸𝑞. (4) 132 

𝑑𝑌**
𝑑𝑡 = 𝜎𝑊** − 𝛾𝑌** − 𝐶(2 𝑙+*𝑌**

+
+2 𝑟+*𝑌+*

+
) − 𝜇**𝑌** ,																																			𝐸𝑞. (5) 133 

𝑑𝑌*+
𝑑𝑡 = 𝜎𝑊*+ − 𝛾𝑌*+ + 𝐶(𝑙*+𝑌++ − 𝑟*+𝑌*+) − 𝜇*+𝑌*+ ,																																																	𝐸𝑞. (6) 134 

𝑑𝑁**
𝑑𝑡 = 𝜈** − 𝐶(2 𝑙+*𝑁**

+
+2 𝑟+*𝑁+*

+
) − 𝜇**𝑁** ,																																																						𝐸𝑞. (7) 135 

𝑑𝑁*+
𝑑𝑡 = 𝜈*+ + 𝐶(𝑙*+𝑁++ − 𝑟*+𝑁*+) − 𝜇*+𝑁*+ ,																																																																				𝐸𝑞. (8) 136 

In the above equations, 	𝑋** , 𝑌** ,𝑊** , 𝑁** , 𝜈** , 𝜇** 	denote the number of susceptible, infected, 137 
exposed, total hosts, births, and deaths, respectively, in a subpopulation (cluster) ‘i’ that live 138 
in subpopulation ‘i’ and 𝑋*+ , 𝑌*+ ,𝑊*+ , 𝑁*+ , 𝜈*+ , 𝜇*+ denote the number of susceptible, infected, 139 
exposed, total hosts, births, and deaths in subpopulation ‘i’ that live in subpopulation ‘j’, 140 
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respectively. In this study, it is assumed that the number of births and deaths compared to the 141 
number of susceptible, infected, exposed, total hosts are negligibly small for the time-period 142 
considered and therefore set to zero.  143 
 144 
The parameter 𝛾 is called the removal or recovery rate, defined as the reciprocal of the 145 
average infectious period. In this study, the average infectious period is considered to be 146 
three days. 𝛽*(𝑡) the parameter indicates the cluster-wise spread of the disease as a function 147 
of time. 𝛽* (𝑡)is evaluated as 𝛽*(𝑡) = 𝛾𝑅*,(𝑡) where 𝑅*,(𝑡) is the time-varying basic 148 
reproductive ratio, a key measure that governs the spread of the epidemic. 𝜎 parameter is the 149 
inverse of the average latent period or average incubation period. In this study, the average 150 
incubation period is assumed to be seven days8,30.  151 
 152 
The variable 𝑙*+ measures the rate at which individuals leave their home population ‘j’ and to 153 
subpopulation ‘i’, and 𝑟*+ measures the rate at which individuals leave the subpopulation ‘i’ 154 
and to their home population ‘j’. We have assumed that during the onset of an epidemic, any 155 
individual in the home population would choose to stay there and a fraction of the individuals 156 
that live in population ‘i’, may return to their home population ‘j’. Therefore, we have 157 
considered 𝑙*+ to be zero in the model, while 𝑟*+ is modeled as a stochastic parameter. To this 158 
extent, we have assumed that the fraction of the home going migrant population from each 159 
subpopulation ‘j’ per day will be capped to a fraction ‘frac’ of the subpopulation.  Hence, the 160 
matrix 𝑟 is generated as a 𝑆 × 𝑆 matrix, where 𝑆	denotes the total number of states in a 161 
country, with each element 𝑟*+ 	is sampled from  𝑟*+ ∼ 𝑈[0, 𝑓𝑟𝑎𝑐], where 𝑈 is the Uniform 162 
distribution, with a restriction of 𝑚𝑎𝑥S𝑟*+T = 	𝑓𝑟𝑎𝑐. In the study, without loss of generality, 163 
frac is set to be 0.10. 164 
 165 
Once 𝑟*+ is frozen, the next step is to calculate 𝑋** and 𝑋*+. This involves the allocation of the 166 
home going migrant population from a native subpopulation to (𝑠 − 1) other native 167 
subpopulations. To this extent, we have assumed that the home of the migrant population is 168 
distributed to (𝑠 − 1) other subpopulations in a ratio directly proportional to the population 169 
of the receiver state and inversely proportional to the distance between them. Further, for 170 
simplicity, we assume the state capitals are the point of entry and exit points of the migrant 171 
population. If we denote 𝑆* be the total population of state 𝑖, then 𝑋** = (1 − 𝑟**)𝑆* and 𝑋*+ =172 

W-"#
."#
X r/0(1 − 𝑆*), where a/0	is the fraction of the population of the receiver state normalized 173 

with the population of remaining (𝑠 − 1) states and b/0 is the fraction distance between 174 
capital cities from the feeder state’s capital normalized  with distance to the capital cities of 175 
the remaining (𝑠 − 1) states.  176 
 177 
The infected population matrix 𝑌 is initialized with 𝑌** is equal to the actual number of cases 178 
reported in the state 𝑖 at the start of the simulation day and  𝑌*+ set to zero for all the states. 179 
Also, the exposed population matrix 𝑊 is initialized identically to that of the infected 180 
population matrix 𝑌 to start the simulation. Further, we add an inter-cluster restriction 181 
parameter 𝐶 to tune effect of restrictions imposed, as the result of various interventions 182 
enforced by the state/central administrations, on the mobility of the migrant population from 183 
feeder state to receiver state with C = 0 representing zero mobility, and C = 1 representing 184 
restriction-free mobility. 185 

(iii) Computation of R0 186 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.21.20074211doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20074211
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

5 

In this study, 𝑅, is computed by directly fitting the observations to the proposed model by 187 
minimizing the prediction of infections. The optimization formulation for computing 𝑅,is 188 
given below: 189 
																						β*(𝑡) = 𝑎𝑟𝑔1$(&)S𝑌** − 𝑌**

23456758T9 𝑄S𝑌** − 𝑌**23456758T	                               Eq. (9) 190 
																																							𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜:			(𝑖)	𝐸𝑞(1) − 𝐸𝑞(8)  and      Eq. (10) 191 

   (𝑖𝑖)	β(𝑡) ∈ 𝑅:                                                      Eq. (11) 192 
Here, 𝑌** , 𝑌**23456758 , 𝑄, 𝑅: are infections predicted by the model, observed infections, a 193 
suitable weight, and a set of real numbers, respectively. Once β*(𝑡) is computed, 194 
𝑅*,(𝑡)	𝑖𝑠	𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑	𝑎𝑠	𝛽*(𝑡) = 𝛾𝑅*,(𝑡). However, a key point is that due to various 195 
interventions of state-wise and country-wise interventions 𝑅*,(𝑡) would be varying over time. 196 
Hence, to make our study realistic, we adaptively re-estimate 𝑅*,(𝑡) using every 14 days data 197 
by employing Eq. (9)–Eq. (11). 198 
 199 

(iv) Model correction using real-time observations 200 
It is imperative to reconcile the model predictions of AICSEIR model with clinically 201 
diagnosed infected case due to the following reasons: (i) Model predictions will be 202 
overestimating the total number of infected cases as predictions only depend on 𝑅, and the 203 
initial infected population. (ii) Clinically diagnosed cases will be underestimating the total 204 
number of infected cases due to the testing limits or saturation. Hence, a realistic estimate of 205 
the total number of infected cases will be following a middle ground between the two. To this 206 
extent, we propose a weighted prediction correction strategy motivated by Kalman filter 207 
estimates: 208 
 209 

𝑌54(*;<(5(𝑡) = 𝑌(𝑡) + 𝐿g𝑌23456758(𝑡) − 𝑌(𝑡)h      Eq. (12) 210 
 211 
Here, 𝑌23456758(𝑡) is the clinically diagnosed infected cases, 𝑌54(*;<(5(𝑡) is a realistic 212 
estimate of infected cases, and 𝐿 is the weighting factor with  |𝐿| 	 ∈ [0,1] and can be tuned 213 
based on the real scenarios. L value of 0 implies 100% confidence in the model, while an L 214 
value of 1 implies 100% confidence in the observation31. 215 
  216 
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Results 217 
(i) Basic reproduction number of COVID-19 218 

To validate our approach, we used the SEIR model to fit actual COVID-19 incidence data for 219 
Lombardia of Italy (Figure 1(a), see Methods), and then computed its R0 values4,24–29. The 220 
high R2 value associated with the fit suggests that the derived R0 values are reliable for the 221 
time-period considered (Figure 1(a) and Supplementary Material). We then proceeded to do 222 
this for all the 30 states within India, 45 within the USA and 20 regions of Italy (Figures 223 
1(b)–(e)). While in few cases, the R2 fits were poor due to low initial infection load, most 224 
states in the three countries produced highly reliable R0 values (Figures 1(c)–(e) and 225 
Supplementary Material). It was noted that states with high incidence returned very robust R2 226 
values and thus, we considered all R0 values with R2 > 0.8. For the few other states, R0 was 227 
assumed to be the country average. Such analyses resulted in a dynamic R0 profile for each of 228 
the three countries in the early stages of the COVID-19 outbreak (Figure 1(b)). Interestingly, 229 
we observed that for both Italy and the USA, the R0 values exhibited significantly broader 230 
distribution ranging from ~2-14 and ~4-12, respectively (detailed state-wise plots for 231 
estimating R0 along with the exact R0 scores are provided as Supplementary Material). On the 232 
contrary, in the case of India, we observed that R0 values ranged from ~ 2-6 (Figure 1(b)). 233 
This evident variation in the ranges of R0 values is in congruence with the observed slower 234 
rate of early COVID-19 spread in India when compared to the USA and Italy despite the fact 235 
that all three countries reported their first COVID-19 case at the end of January 2020. 236 
 237 
We next analyzed the temporal variations in R0 as it is significantly altered due to many 238 
factors, including travel restrictions, state-wise lockdowns (as in part of USA) and 239 
countrywide lockdown (as for Italy and India). We, therefore, calculated R0 for Italy prior to 240 
lockdown (that is before 9 March 2020), two weeks into lockdown and four weeks into 241 
lockdown (Figure 1(c)). For the USA, we estimated R0 with a two-week interval period 242 
(Figure 1(d)). Moreover, in the case of India, due to the delayed onset of the spread of 243 
disease, we computed a single R0 (Figure 1(e)). These data provide the R0 landscape as a 244 
choropleth map for each country (Figure 1(c)–(e). As is evident, the R0 for Italy decreased 245 
significantly due to its lockdown routines (Figure 1(c)). Indeed, enforcement of stricter 246 
mobility restrictions has reduced Italian R0 values closer to unity thereby controlling the 247 
growth of the epidemic (Figure 1(c)). For the USA, it is clear that only the states that 248 
implemented substantial restrictions have managed to reduce their R0 values (Figure 1(d)). 249 
For India, the strict screening of incoming international travelers and early imposition of 250 
lockdown resulted in reduced R0 values in comparison to Italy and the USA. These analyses 251 
therefore immediately reveal the benefits of public health interventions, and such modeling 252 
approaches may be used widely and routinely for assessment of intervention outcomes. 253 
 254 
 255 
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 256 
 257 
Figure 1. Basic reproduction number R0. (a) SEIR model fitted against the observed data 258 
(from 24 February 2020 to 9 March 2020) for Lombardia (Italy) to compute its R0. Similar 259 
approach was applied to all the states for different time periods (see Supplementary 260 
Material). (b) Histogram of R0 values for Italy (24 February to 9 March), USA (4 March to 261 
18 March), and India (10 March to 24 March) in the early stages of the COVID-19 pandemic. 262 

(a)

(c)
9 March

24 March
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(d)

5 April
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(b)

Color scheme
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(e)
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(c) R0 in different regions of Italy on 9 March, 24 March and 5 April 2020. (d) R0 in different 263 
states of the USA on 18 March and 5 April 2020. (e) R0 in different states of India on 4 April 264 
2020. The coloring scheme for (c), (d), and (e) is common and is shown in the legend. Grey 265 
regions represent the states for which R0 cannot be estimated reliably due to the low number 266 
of cases. 267 
 268 
 269 

(ii) Adaptive interacting cluster-based SEIR (AICSEIR) model  270 

 271 
Figure 2. Countrywide spread of COVID-19. Evolution of the pandemic in (a) Italy (b) the 272 
USA and (c) India with respect to time. This is based on the traditional SEIR (single cluster) 273 
and AICSEIR models with C = 1.0, 0.5, 0.1. C represents the inter-cluster mobility of the 274 
population where C = 0 represents zero mobility and C = 1 representing restriction-free 275 
mobility. INSET for (a), (b), and (c) show fit of model predictions and observed infected 276 
cases (square markers). We noted that the variance in comparison to the mean trajectory is 277 
significantly small, and it was hence omitted in these figures. The best estimates considering 278 
the error between model and observation for (c) Italy, (d) the USA, and (e) India with L = 279 
0.25, 0.50, and 0.75. Note that a lower value of L suggests increased confidence in the 280 
observation, while a higher value of L suggests increased confidence in the model. Time T = 281 
0 corresponds to 24 February 2020 for Italy, 4 March 2020 for the USA and 10 March 2020 282 
for India.  283 
 284 
Based on revised R0 profiles, we then used our AICSEIR model (see Methods for details) to 285 
predict COVID-19 spread in Italy, the USA, and India. For this, our model required total state 286 
population, values of distance between the capital cities of two-states, initial infected number 287 
(it could be zero) and the temporal variations in R0 (as estimated in the previous section, see 288 
Methods). The total population of any state was divided into native and migrant categories 289 
(latter was set to 10%). It was assumed that the distribution of a state’s migrants was directly 290 
proportional to the population of the home state and was inversely proportional to the inter-291 

(a) (b) (c)

(d) (e) (f)
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capital distance. Therefore, two implicit assumptions in these analyses are: (a) people are 292 
prone to migration from a highly populated state, and (b) the likelihood of choosing a nearby 293 
state for migration is higher. Further, indirect measures of migration, such as airline/train/bus 294 
data and the number of tourists, were ignored.  295 
 296 
We then compared directly the trajectories of infection prevalence in Italy, the USA, and 297 
India using both the traditional SEIR model (represented as single in Figure. 2(a)–(c)) and 298 
our new AICSEIR model (Figure 2(a)–(c)).  A new parameter C was introduced wherein 299 
values of 1.0, 0.5, and 0.1 represent the inter-cluster interaction restrictions (C of 0 and 1 300 
denote the absence of migration versus free migration, see Methods for details). All presented 301 
models were run extensively with multiple random seed values to account for the stochastic 302 
parameter 𝑟*+ that models migration as a random event (see Methods). Using this, a direct 303 
comparison of the predictive robustness of SEIR and AICSEIR models in the context of true 304 
incidence in the three countries is possible (Figure 2(a)–(c)). We observed SEIR significantly 305 
overestimates the peak-infected population (five-fold for Italy and up to 1.8 fold the USA and 306 
India). In contrast, the AICSEIR provided a significantly closer estimation of infected cases 307 
(Figure 2(a)–(c)). Thus, our approach was able to recapitulate the epidemiological trends both 308 
qualitatively and quantitatively not only on a countrywide scale but also for its constituent 309 
states/regions. 310 
 311 
It is noteworthy that the model provides a prediction for total infected, but the observations 312 
are based on clinically detected cases. Therefore, both these estimates suffer from the 313 
following deficiencies. The clinically detected cases will always underestimate the number of 314 
infected cases as the number of tests conducted limits the detection. Besides, all 315 
asymptomatic infections shall be missed. On the other hand, our model might still 316 
overestimate the total number of cases (but not as much as the SEIR approach) as it is based 317 
on the initial conditions and infection dynamics as per R0 values. Indeed, there are a host of 318 
other confounding factors that can govern R0 such as the climatic conditions, host genetics, 319 
immune status, age, gender and co-morbidities. Therefore, the best estimate of total infected 320 
population lies between model predictions and actual observation (Figure (d)–(f)). While 321 
their difference could be small in the early stages, the disparity could be staggering at later 322 
stages. To account for this unreliability, we have added a model correction factor L, inspired 323 
by the Kalman filter that provides an estimate of the infected population33. Here, the estimate 324 
of the infected population at any time 𝑡 is computed as the sum of the infected population in 325 
the previous timestep 𝑡 − 1 and the difference between observed and model prediction at 𝑡 326 
weighted with L (see Methods). |L| resides between 0 and 1 based on the confidence of the 327 
model and observation: L value of 0 implies 100% confidence in the model, while a value of 328 
1 implies 100% confidence in the observation. We suggest that former (L = 0) can be used in 329 
countries with a scarce level of COVID-19 testing while the latter (L = 1) can be used where 330 
there is ample testing capacity (Figures 2(d)–(f)). In this scenario, the real observations 331 
provide a lower bound of the infected cases while our AICSEIR model provides the upper 332 
bound. This, in turn, allows the estimation of infections that may be undetected or 333 
asymptomatic, as both play major roles in the transmission of the infections.  334 
 335 

(iii) Representative state-wise prediction of COVID-19 336 
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 337 
Figure 3. State-wise evolution of COVID-19. Mapping of the pandemic in three states (a) 338 
Calabria (Italy), (b) Idaho (the USA), and (c) Madhya Pradesh (India) with zero initial 339 
infections as predicted by AICSEIR model in comparison to the observed data. Progression 340 
of COVID-19 in three states (d) Veneto (Italy), (e) Washington (the USA), and (f) Uttar 341 
Pradesh (India) with non-zero initial infections. It is noteworthy that in both scenarios, our 342 
model is able to predict the observed trends to high statistical reliability.  343 
 344 
Another facet of our AICSEIR model is its ability to predict the evolution of the infection in 345 
state-wise or in clusters. Indeed, the country-wise predictions were computed as the 346 
summation of sub-populations (state-wise). To validate further, we selected two states from 347 
each country and mapped their COVID-19 burden (Figure 3). The initial, exposed, infected, 348 
and removed populations of Calabria and Veneto (Italy), Idaho and Washington (USA), 349 
Madhya Pradesh and Uttar Pradesh (India) were assessed (Figure 3). Note that for each 350 
country, at least one state chosen had zero initial infected population. For the initiation of 351 
infection in these virgin territories, the importation of infected persons would be required 352 
based on the cluster interaction term C (C = 0 would maintain zero infection). We observed 353 
that infection trajectories predicted by the model were in excellent agreement with the 354 
observed cases for states with zero initial infected population and finite infected population. 355 
In other words, through the cluster interaction term, the model is able to realistically predict 356 
the spread of COVID-19. We have provided detailed state-wise mapping of populations 357 
likely to be infected in future for each state in each of the countries (30 in India, 45 in the 358 
USA, and 20 Italy, Supplementary Material). These data will facilitate state-level and 359 
national authorities to devise plans for the allocation of public health resources judiciously at 360 
a granularity that addresses state-wise disease burden.  361 
 362 
 363 
 364 

(a) (b) (c)

(d) (e) (f)
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Conclusion 365 
To our knowledge, previous studies on the COVID-19 pandemic have used a constant value 366 
of R0 to assess disease spread 6,8,12,32. We have clearly demonstrated that R0 is not constant 367 
and indeed exhibits significant spatio-temporal variations. These fluctuations in R0 need to be 368 
incorporated in the development of robust and realistic epidemiological models. We show the 369 
utility of the SEIR model for estimating R0  wherein a simple exponential fit may, in the best 370 
case, lead to over-/under estimation of R0, and in the worst case, may simply be not valid due 371 
to the non-linear variations in disease spread. We propose that temporal variations in R0 372 
should be included in an adaptive fashion, while the spatial variations should be included in a 373 
granular, cluster-wise model. This approach is capable of capturing realistic infection 374 
dynamics across each nation or indeed worldwide. AICSEIR with its tunable interaction 375 
parameters, can indeed be applied to other infectious diseases.  376 
 377 
There are several outcomes of immediate public health value from our work: (i) we provide 378 
robust estimates of infection burden with timelines and this will facilitate proactive 379 
development of resource allocation strategies locally33,34, (ii) our model provides a caution 380 
for regions with low caseload presently as they are likely to follow trends of other highly 381 
affected areas in the absence of substantial mobility restrictions, (iii) we suggest a locally 382 
graded contextual interventional responses that can factor socio-economic factors and 383 
morbidity (note that complete longer-term lockdowns will have notable detrimental economic 384 
fallouts resulting in exaggerated impacts on society), (iv) our revised novel coronavirus 385 
burden estimates will help map the true extent of infection that includes undetected cases and 386 
asymptomatic infections. Although epidemic prediction models tend to discount pivotal 387 
contributions from the host and environmental confounders35,36, two useful extrapolations of 388 
our model are to assess case volumes that may require intensive care and to calculate the true 389 
case fatality rates (CFR)37,38.  The AICSEIR model can thus serve as a valuable tool for 390 
strategizing containment and for stemming mortality associated with the COVID-19 391 
pandemic.  392 
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