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Abstract

The threat of the COVID-19 pandemic of SARS-CoV-2 virus has grown since its start late last
year. A customary response to a surge of a communicable disease is to separate healthcare
systems into cohorts, such that patients with other conditions can be treated safely without
risk of infection. A challenge with COVID-19 is the existence of currently asymptomatic
infections, which without aggressive testing and isolation might enter the non-COVID-19
cohort either through unknowingly infected patients or health care workers. Using stochastic
simulations we study the impacts of testing and personal protective equipment (PPE) use.
In the base case without testing or PPE, healthcare is rapidly overwhelmed, and becomes a
net contributor to the force of infection. We find that effective use of PPE by both HCW
and patients can prevent this situation, while testing alone is less effective. We also find that
even imperfectly effective use of PPE can provide substantial protection and decrease the
force of infection. This illustrates the importance of maintaining supplies of PPE throughout
healthcare systems.

1 Introduction

The pandemic of COVID-19 disease caused by SARS-CoV-2 is the most serious threat in
over a century to global healthcare. The global totals of infected individuals are in the
exponential growth phase, with some regions more affected than others as we write. While
comparatively extreme interventions in China, where the pandemic started in 2019, have
apparently successfully brought transmission under control [17], other locations have yet to
achieve this, and may not be able to given local conditions. Even in those regions that have
successfully eliminated the pandemic, for now, there remains the risk of re-introduction.

Early reports from Wuhan indicated a relatively large proportion of cases among health
care workers, who have also been disproportionately represented in confirmed cases from
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both Italy and the US [11, 2, 20]. Not only is this a major concern for the health of people
on the front line of pandemic response, there is also a risk of transmission to patients. For
this reason, the design of cohorting strategies to restrict contact between COVID-19 patients
and the rest of the healthcare system are of great importance. Already in some locations,
hospitals or other facilities are being exclusively dedicated for COVID-19 patients, separate
from others for the non-COVID-19 cohort, and alternate care facilities are in the process of
being established [1]. China built entirely new healthcare facilities to handle the surge in
Wuhan [3, 17].

While presently the focus is rightly on the initial surge of COVID-19 disease in the portion
of healthcare which is handling it, we lack a secure framework in which to interpret the risk
and the consequences of nosocomial infection in the part of healthcare that is separate from
the treatment of known COVID-19 infections.

In this paper we investigate results from a stochastic system to model introductions into
the non-COVID-19 cohort in the healthcare system, assuming that the background dynamics
in the community at large follow simple deterministic SEIAI1I2R dynamics. Individuals
begin susceptible (S). Following a transmission event, they move into the exposed class
(E). After that they become infectious. A fraction of these remain asymptomatic (IA) and
so can only be identified through testing. Another fraction of infections are initially “pre-
sympomatic” (I1) and eventually exhibit symptoms (I2) which could lead to identification.
Finally they recover with immunity (R).

We assume a cohorting strategy in which the population is divided into the general public
and a cohort of Health Care Workers (HCWs) and patients which are kept separate from
individuals diagnosed with COVID-19. In practice it may make sense for a community to
divide their uninfected patients and HCWs into multiple subcohorts which are intended to
contain the impact of an introduction. The dynamics of health care workers and the un-
infected patients are stochastic. Within the non-COVID-19 cohort, we assume that once
individuals become symptomatic they are identified and removed. We use stochastic simu-
lations to track these components. We assume that the background dynamics follow simple
deterministic SEIAI1I2R dynamics. To demonstrate the impacts of control measures and
cohort size, we focus on a single cohort of HCWs and the patients.

2 Methods

We consider a basic transmission model. The model has two major components: transmission
within the broader community, and transmission within a cohort of HCWs and patients who
are initially not infected with SARS-CoV-2, that is, the non-COVID-19 cohort.

The specific details of our simulations are described in the Appendix. The simulations
are scripted in Python (scripts can be found here – https://github.com/joelmiller/

HospitalCOVID19). What follows is a broad overview of the model structure. We assume
that the broader community follows deterministic dynamics, described by a system of ordi-
nary differential equations.

The HCWs and patient cohort is modelled stochastically using a Gillespie-Doob algorithm
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Variable Definition

S, E, IA, I1, I2, R

number of susceptible, exposed, asymptomatic infec-
tious, presymptomatic infectious, symptomatic infec-
tious, and recovered individuals in the general popu-
lation.

SP , EP , IA,P , I1,P , RP
number of patients in the cohort. We assume that
symptomatic cases are removed immediately.

SH , EH , IA,H , I1,H , QH , RH

number of HCWs of each status. We assume that iden-
tified infections are moved into a quarantine class QH

until recovering.

NP = SP +EP +IA,P +I1,P +RP

and
NH = SH+EH+IA,H+I1,H+RH

Number of patients and health care workers active in
the cohort (no symptomatic or quarantined individu-
als).

Table 1: The variables used in the model. The I2,P , I2,H classes are neglected in the model
because we assume individuals are removed as soon as they become symptomatic.

[21]. The cohort experiences introductions either through HCWs infected in the broader
community or patients (which may come from visitors to the hospital or from newly admitted
patients who are incorrectly identified as uninfected).

2.1 Variables and Parameters

We will use the variables S, E, IA, I1, I2, and R for two purposes: both to denote the
number of individuals in a particular state, and also as a shorthand to refer to the status of
an individual. So the number of S individuals in the population is S, and the number of E
HCWs in the cohort is EH .

Table 1 shows the variables we track with the models, and Tables 2 and 3 show the
parameters and their default values.

The basic reproduction number in the general population is

R0 = (1− q)
(
λ1
γI,1

+
λ2
γI,2

)
+ q

λA
γA

For our values, we find R0 = 2.5 − 0.25q. If all individuals become symptomatic (q = 0)
then R0 = 2.5, while if all become asymptomatic (q = 1) then R0 = 2.25. The R0 value is
in the range of estimations from previous studies [18, 23, 24]. We assume that the average
transmission rate in asymptomatic infection is the same as that in pre-symptomatic infection,
that is, λA = λ1.

Within the hospital, we expect that HCWs are at high risk of infection, even if they have
personal protective equipment (PPE). This is because of the frequent close interactions be-
tween HCWs and their patients. Additionally this expectation is supported by the observed
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Parameter Default Value Definition

λ1 1/4 Average transmission rate from I1 individuals

λ2 2/7 Average transmission rate from I2 individuals

λA λ1 Average transmission rate from IA individuals

λ λ1I1 + λ2I2 + λAIA
Overall transmission rate (force of infection) to S indi-
viduals in general public.

γE 1/3 rate of a transition out of E to either I1 or IA.

q 1/2 The probability a transition from E is to IA.

γI,1 1/2 rate of an I1 → I2 transition.

γI,2 1/7 rate of an I2 → R transition.

γA 1/9 The rate of an IA → R transition.

Table 2: Default parameter values of disease spread in general population

high rates of infection among HCWs in many different populations [17, 19, 6, 2]. This is
reflected in the large value of CPH , representing that an infected patient transmits to HCWs
at a rate that is CPH times that of a general member of the public to other members of the
public.

We anticipate that HCWs to patients transmission rates will also be high. HCWs trans-
mit to patients at a rate that is CHP times that of a general member of the public to other
members of the public. It should be noted that patients typically outnumber HCWs. So
the transmissions from patients to HCWs are concentrated in a smaller population. This
means that all else being equal, the force of infection experienced by HCWs is higher than
that of patients. So even if CPH = CHP , this represents a higher transmission probability
per interaction from patients to HCWs than vice versa.

3 Analysis

3.1 Basic outcomes

We find that in the absence of any attempts to prevent introduction of SARS-CoV-2 to the
non-COVID-19 cohort, HCWs rapidly become infected early on in the epidemic (Figure 1(a)),
consistent with general observations from the early stages of the pandemic [10, 17]. While
this leads to a high force of infection to patients in the early stage of the epidemic (Figure
1(a)), later, once many of the HCWs have developed immunity or become symptomatic
and moved into quarantine, the force of infection to patients drops. At later stages, as
the epidemic grows in the general population, the patients are at reduced risk. This is
because the patients primarily interact with HCWs who have been immunized by infection,
meanwhile they have relatively little interaction with other patients or the general public.
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Parameter Default Value Definition

γQ 1/14 The rate at which quarantined individuals are released.

ω 0
Testing rate of HCWs and Patients. Increased testing
means ω=0.05.

ρ 0
Probability a non-symptomatic individual would get
admitted.

CH 0.1
The relative transmission from the general public to
HCWs.

CP 0.1
The relative transmission from the general public to
patients (captures risk from hospital visitors).

CPP 0.5
Scaling factor for patient to patient transmissions rel-
ative to number expected an infected individual would
cause in general population.

CPH 2
Scaling factor for patient to HCW transmission, relative
to general population

CHP 2 Scaling factor for HCW to patient transmission.

CHH 1
Scaling factor for HCW–HCW transmission within the
cohort.

N̂ 1000
the typical size of a cohort in absence of transmission.
The natural discharge rate is b/N̂ . In absence of disease
NP would oscillate around N̂ .

N̂/4 250
The total number of HCWs allocated to the cohort
(changes when HCWs go into or return from quaran-
tine).

b N̂/14 natural rate at which new patients arrive at a cohort.

Table 3: The default values for health-care related parameters.

3.2 Impacts of regular testing

Testing is important in order to enact sound containment measures. HCWs have been
recognized as an important groups to receive testing both because of the exposure risks
inherent in their profession and the potential consequences of their infection [1]. In absence
of testing, the asymptomatic patients and HCWs cannot be removed from the population
and pose an infection risk to the rest of the cohort. When we set the testing rate of patients
and HCWs at ω = 0.05, we see a significantly lower force of infection (FOI) on both HCWs
and patients (Figure 1(b)). It takes longer for the HCWs to all become infected, and the
peak level of HCW quarantine is higher as a result of more cases being identified.
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Figure 1: Comparing different scenarios of testing and PPE. Plots are showing the susceptible
and infected portions of the cohort, and the force of infection. When there is no testing
and no PPE (a), all HCWs are infected quite early on. The calculation of FOI on HCWs
terminates once all have been infected. At peak about 40% of the HCWs are infected (not
in quarantine), and shortly thereafter about 20% of the HCWs are under quarantine. The
plots show that both testing (b) and PPE (c-d) can reduce the force of infection (FOI). But
PPE has more substantial impacts on delaying and reducing the HCWs infection peak and
the FOI. Noticeably, even only HCWs have PPE on (c), the infection peak and FOI in both
HCWs and patients are reduced. (e) is showing the impact of simutaneously having both
testing and PPE.
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3.3 Impacts of PPE

PPE can provide substantial impacts on delaying the infection peak and reducing FOI,
even only being used in HCWs (Figure 1(c), (d), (e)). Then to explore the impacts under
different quality of PPE, we define perfect PPE can bring down inside hospital transmission
to the general population level; Imperfect PPE is defined by reduced effectiveness of PPE
in preventing transmission, and can be considered to represent situations in which PPE
shortages lead to diversion of supply to the COVID-19 cohort. For example, 50% effective
PPE means that the use of PPE can bring down half of the transmissions inside the hospital.
Based on the simulations (Figure 2), we find that even half effective PPE (Figure 2(b)) can
bring down the FOI of HCWs near to that in the general population.

3.4 Impacts of asymptomatic infection

Due to the uncertainty on the proportion of asymptomatic infections (18%-75%) from epi-
demiological studies [15, 9, 16, 4], we examined scenarios in which varying proportions of
infections were asymptomatic (q), in the presence of testing to detect them at rate ω= 0.05
(Figure 3). As shown, an increasing proportion of asymptomatic infections impacts upon the
FOI among the HCWs, making it peak earlier with concomitant effects on patients (Figure
3(a-c)). But the effect of this is minor in comparison with the consequences of reducing the
duration of the asymptomatic period (Figure 3(d)), which intuitively reduces the opportunity
for exposure and transmission. This reflects the importance of testing for detecting infected
individuals among both HCWs and patients promptly. It also indicates the importance of
PPE use among as many individuals as possible, in order to limit unwitting transmission
from individuals not yet tested.

3.5 Impacts of cohort size

The probability a cohort of size L is not invaded by infection is e−kL for some k > 0.
The value of k increases with the rate at which non-symptomatic infected individuals are
admitted, the rate at which the general public transmits to patients or HCWs, and the
transmission rate between individuals in the health-care system. The value of k decreases
as the recovery rates and testing rates increase.

The probability that a given introduction establishes in a cohort is independent of L once
L is reasonably large. However, the expected number of introductions is proportional to L.
For this reason, the probability a cohort does not have a successful introduction increases as
L decreases. The probability of at least one successful introduction into a cohort is 1− e−kL.

If infection is established within a cohort, it will typically infect some fraction of the total
population. Like typical epidemics, this fraction is independent of the population size. So
for larger populations, the number of infections increases.

This motivates the following observation: given a collection of cohorts that are small
enough to each have a non-negligible chance of escaping infection, then joining them together
increases the risk to all members of the cohorts. The cumulative distribution function of
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Figure 2: The relative protection of PPE in non-COVID-19 cohorts. Here the scenarios are
always with testing rate ω=0.05 but with different quality of PPE. Perfect PPE is defined
as PPE can bring down inside hospital transmission to the general population level trans-
mission (d); Imperfect PPE defined by reducing the percentage of the relative transmissions,
where plot (a) represents no PPE is used; (b) represents the PPE can reduce half of the
transmissions inside the hospital; (c) represents the PPE can reduce 75% of transmissions
inside the hospital. Results indicate that even imperfect PPE used in non-COVID-19 cohorts
can lower the peaks of internal infection and reduce the force of infection inside the hospital.

outbreak sizes for cohorts of different size is shown in Figure 4. This suggests that having
smaller cohorts and making efforts to minimize the risk of successful introduction can be
an effective way to reduce risk of infection within the cohorts. Smaller cohorts also reduce
the amount of additional testing required to identify secondary transmission among contacts
once one case is identified.

Whether infection comes in through an externally infected HCW, a visitor, or an asymp-
tomatic new infection does not significantly affect the outcomes. As long as the within cohort
reproduction number (Appendix B) is greater than 1, once the infection is established in the
cohort the dynamics will be dominated by the internal infection process.
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Figure 3: Comparison of scenarios with varying proportions of asymptomatic infections (q).
Here all scenarios have a testing rate ω=0.05. The proportion was changed from the default
value of q=0.5 in (b) to a lower value of q=0.3 in (a) and then to a higher value of q=0.7 in
(c). To explore the impact of potential shorter duration of infectiousness of asymptomatic
infections, the parameter of γA was changed from the default 1/9 to 1/5 with q=0.7 in (d).
We find that the increasing proportions of asymptomatic infections can increase the peak
of infected HCWs and patients, increase, the FOI, and reduce the peak of quanrantined
HCWs. However, the duration of infectiousness of the asymptomatic has larger impacts,
where under the higher proportion q=0.7, if the duration of infectiousness is shorter, the
peak of infections and FOI can substantially reduce.

4 Discussion

COVID-19 presents a special challenge for healthcare systems. The pronounced increases in
the risk of severe disease or death that are found in older age groups, as well as patients
suffering co-morbidities, demands that these at-risk groups be protected. And yet they
are also disproportionately likely to require healthcare for conditions other than COVID-
19. Contact and risk to the vulnerable can be reduced by innovations such as telemedicine
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(a) NPatient = 50; NHCW = 12 (b) NPatient = 100; NHCW = 25

(c) NPatient = 200; NHCW = 50 (d) NPatient = 400; NHCW = 100

(e) NPatient = 800; NHCW = 200 (f) NPatient = 1600; NHCW = 400

Figure 4: The impacts of cohort size, based on 200 simulations per cohort size. Probability
density of outbreak sizes for different cohort sizes. As the cohort size increases the frequency
of small outbreaks goes down. With large cohort sizes, all cohorts have outbreaks that infect
a large fraction of people. With small cohort sizes, many cohorts have no outbreaks, or
outbreaks that only infect a few.

consultations for chronic conditions, but urgent care will remain to be needed in acute
cases. This work has been an attempt to define the roles of cohorting, prompt and accurate
diagnostic testing and PPE in protecting those patients who need urgent care for conditions
other than COVID-19, and the HCWs who look after them.

Our primary finding is that the relative impacts of interventions depend on the underlying
properties of the disease and in particular infection from currently asymptomatic individuals.
The possibility of this has been apparent for some time and it has recently been confirmed
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to be responsible for a large fraction of transmission events [7]. We find that this makes
little impact on the force of infection (with the caveat that it depends on the duration
of the asymptomatic period), but it magnifies the impact of effective PPE. The potential
for transmission from pre-symptomatic individuals has long been known to be a crucial
component in how hard we expect it to be to control an infection [5]. This model shows that
if we wish to prevent SARS-CoV-2 transmission among the vulnerable non-covid cohort it
is helpful to assume that all individuals may be infectious, both staff and patients, and act
accordingly. This is increasingly understood and in well resourced locations where masks
are widely available they are often being used throughout healthcare. However this may
not continue to be the case given shortages, and PPE for the non-COVID-19 cohort is an
important element of planning.

Our findings regarding the size of sub cohorts are somewhat nuanced, but identifying some
general trends is straightforward; reducing any of the transmission rates is unsurprisingly
important in reducing transmission. However by keeping the cohort smaller, we reduce the
probability that infection establishes in the cohort. Further, by reducing interaction amongst
HCWs, we can reduce transmission risks.

If infection reaches a cohort, the introduction may fail to establish itself. However,
modeling shows that when an infection does establish it tends to have an increased early
growth rate [14]. Mathematically this can be interpreted as a consequence of the fact that
if on average a small outbreak would grow by a factor of R0 at each generation, but some
go extinct, then those that do not go extinct must have increased transmissibility in order
to achieve the observed dynamics [12]. This means that interventions that increase the
probability of causing 0 transmissions from an introduction are of particular importance.In
the presence of a very high force of infection from the community at large they are of
limited value. However in combination with a sustained effort to prevent the introduction
of infections (and at the initial stage of the pandemic) smaller cohorts in which HCW are
kept separate may have value in preventing establishment of the infection in the healthcare
setting.

There are several important elements of the COVID-19 pandemic and SARS-CoV-2 biol-
ogy that are not captured by our model. We have assumed an unmitigated outbreak outside
the non-COVID-19 cohort, which is not the case in most locations. However much of the the
most important dynamics we observe happen early on, and so our findings will be relevant
independent of the details of the pandemic outside. We also do not directly model the conse-
quences of transmission in the health care setting; obviously transmission to elderly patients
or otherwise vulnerable individuals is expected to have an outsize impact on overall mortality
and the strain on healthcare in general. We have also not considered the consequences of
an overdistributed R0. The SARS-CoV-1 outbreak, as well as MERS outbreaks have both
been characterised by superspreading events in healthcare settings [8, 22], and future work
should explicitly consider the impact of these. This is especially relevant to our findings on
the size of individual subcohorts, because it is known that an overdispersed R0 can lead to
situations in which most disease introductions go extinct, but those that do not go on to
cause explosive outbreaks [12].
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In reality we might wish to distinguish between truly asymptomatic and presymptomatic
cases and those in which the presentation of disease is unusual and so the infection is not
suspected. The overall impact however is similar for our model. We have not modeled the
potential for transmission to be further curtailed by aggressive isolation of contacts of known
cases, either among patients or HCWs. We have also not modeled the impact of strategies
in the community to limit transmission and infection, such as physical distancing or salutary
sheltering, instead assuming a simple and symmetrical force of infection. These are not likely
to alter our major conclusions.

As communities around the globe confront the pandemic, they should be careful to ensure
that there is adequate supply of PPE throughout healthcare. Testing must be made available
both to identify those who are infected and those who have been infected, and innovative
approaches will need to be taken to minimize the pandemic threat. We do not expect that
these conclusions will be surprising to many, but the failure to act upon them so far is also a
source of dismay to many. We hope that our analysis will motivate future action to preserve
lives.

A Model description

A.1 Dynamics in general public

We assume that the infection status of individuals in the general public can be separated
into 6 classes: Individuals begin Susceptible (S). After receiving a transmission, they be-
come Exposed (E) but not infectious. They then become Infectious but not symptomatic
(presymptomatic infectious) I1, Infectious and symptomatic I2, and recovered R (Figure 5).
There is considerable dispute about the distinction between truly asymptomatic infection,
presymtomatic or subclinical and so on. Here we use this term to capture those who could
not be reasonably expected to alter their behavior to avoid infecting others.

Figure 5: Compartmental model of the dynamics in general public

We assume deterministic dynamics in the general population as, at least initially, we ex-
pect the epidemic to be more advanced and the incidence to be higher outside the healthcare
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setting. We have

S ′ = −λ S
N

E ′ = λ
S

N
− γEE

I ′A = qAγEE − γI,AIA
I ′1 = (1− qA)γEE − γI,1I1
I ′2 = γI,1I1 − γI,2I2
R′ = γI,2I2 + γI,AIA

where λ = λ1I1 + λ2I2 + λAIA.

A.2 Dynamics in cohort of (presumed) uninfected patients

We now derive the equations which will be used in patients. These will calculate the rates
at which transitions happen.

We assume if a patient becomes symptomatic or is identified as infected through testing,
the patient is immediately removed from the cohort, so we track SP , EP , IA, and I1,P (Figure
6).

Figure 6: Compartmental model of the dynamics in non-COVID-19 patients

New patients arrive at rate b. We assume that the arriving patients are chosen ran-
domly from the non-symptomatic population. The probability that an non-symptomatic,
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but infected individual enters the population is reduced by a factor ρ. This means

SP → SP + 1 Np → NP + 1 with rate
S

S + ρ(E + IA + I1) +RP

b

EP → EP + 1 Np → NP + 1 with rate
E

S + ρ(E + IA + I1) +RP

ρb

IA,P → IA,P + 1 Np → NP + 1 with rate
IA

S + ρ(E + IA + I1) +RP

ρb

I1,P → I1,P + 1 Np → NP + 1 with rate
I1

S + ρ(E + IA + I1) +RP

ρb

RP → RP + 1 Np → NP + 1 with rate
RP

S + ρ(E + IA + I1) +RP

b

We also have departures from the population (deaths or discharge) at combined rate b/N̂
where N̂ is the anticipated size of the cohort. So all of the variables for the patients (SP , EP ,
etc.) all reduce by 1 independently as Poisson processes with rate b/N̂ times their current
value (so for example, SP → SP − 1 and NP → NP − 1 at rate bSP/N̂).

We assume there are several potential sources of infection for a susceptible patient:

• asymptomatic/presymptomatic infections in the general population, with rate CP (λAIA+
λ1I1).

• Infections from other asymptomatic or presymptomatic patients with rate

CPP
λAIA,P + λ1I1,P

NP

where NP = SP + EP + I1,P + IA,P +RA,P is the number of patients in the cohort.

• Infections from asymptomatic or presymptomatic HCWs, with rate

CHP
λAIA,H + λ1I1,H

NP

So we find
SP → SP − 1 and EP → EP + 1

at rate (
CP (λAIA + λ1I1) +

CPP (λAIA,P + λ1I1,P ) + CHP (λAIA,H + λ1I1,H)

NP

)
SP

Exposed individuals transition to infectious at rate γE , so

EP → EP − 1
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at rate γEEP . Of those that transition, a fraction qA become asymptomatic and (1 − qA)
become presymptomatic. So when this transition happens, with probability qA we have
IA,P → IA,P + 1 and with probability (1− qA) we have I1,P → I1,P + 1.

Due to testing, infected patients can be removed from the cohort with rate ω. This gives:

EP → EP − 1 NP → NP − 1 with rate ωEP

I1,P → I1,P − 1 NP → NP − 1 with rate ωI1,P

IA,P → IA,P − 1 NP → NP − 1 with rate ωIA,P

Finally infectious presymptomatic individuals transition to symptomatic and are imme-
diately removed at rate γI,1, so

I1,P → I1,P − 1 NP → NP − 1

at rate γI,1I1,P .

A.3 Dynamics in HCWs

Note NH = SH +EH + I1,H + IA,H +RH , so it does not include quarantined HCWs (Figure
7).

Figure 7: Compartmental model of the dynamics in healthcare workers

We assume that the HCWs in the cohort suffer a force of infection

• from the general public, with rate CH(λ1I1 + λ2I2 + λAIA) = CHλ where CH < 1.

• a force of infection from their patients.

CPH
λ1I1,P + λAIA,P

NH

where NH is the number of active HCWs and CPH is a factor scaling the patient to
HCW transmission rate relative to the patient to patient transmission rate.

15

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.20.20073080doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.20.20073080


• They also experience a force of infection from fellow HCWs

CHH
λ1I1,H + λAIA,H

NH

where CHH scales the HCW-HCW transmission rate.

So we find
SH → SH − 1 and EH → EH + 1

with rate [
CHλ+

CPH (λ1I1,P + λAIA,P ) + CHH (λ1I1,H + λAIA,H)

NH

]
SH

Exposed individuals transition to infectious at rate γE. With probability qA that transi-
tion is to an asymptomatic state, so

EH → EH − 1 and IA,H → IA,H + 1

at rate qγEEH . With probability 1− qA the transition is to the presymptomatic state, so

EH → EH − 1 and I1,H → I1,H + 1

with rate (1− q)γEEH .
Testing occurs with rate ω. Identified individuals are quarantined, temporarily removing

them from the active population

EH → EH − 1 QH → QH + 1 NH → NH − 1 with rate ωEH

I1,H → I1,H − 1 QH → QH + 1 NH → NH − 1 with rate ωI1,H

IA,H → IA,H − 1 QH → QH + 1 NH → NH − 1 with rate ωIA,H

Infectious presymptomatic HCWs transition to symptomatic γI,1. These individuals are
quarantined and do not interact with others. So this transition reduces NH by 1. So

I1,H → I1,H − 1 QH → QH + 1 and NH → NH − 1

at rate γI,1I1,H .
However, they recover and return to the population at rate γQ. This transition increases

NH by 1:
QH → QH − 1 RH → RH + 1 and NH → NH + 1

The asymptomatic HCWs recover with rate γI,A, so

IA,H → IA,H − 1 and RH → RH + 1

at rate γI,AIA,H
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B Reproduction number within cohort

To calculate the reproduction number within the cohort, we need to calculate the probability
that an infected patient or HCW enters each infected state and the expected number of
infections within the cohort that result.

We start by looking at a newly infected patient. Note that the probability an infected
individual becomes asymptomatically infected before being tested or discharged is qγE/(γE+
ω + b/N̂) and the probability of becoming presymptomatic is (1− q)γE/(γE + ω + b/N̂).

If the patient develops asymptomatic infection, the expected number of new patients
infected will be CPPλA/(γA+ω). If the patient enters the presymptomatic state, the expected
number of new patients infected before being tested or discharged will be CPPλ1/(γ1 + ω +
b/N̂). The expected number of transmissions to other patients is thus

CPPXP

where

XP =
γE

γE + ω + b/N̂

(
q

λA

γA + ω + b/N̂
+ (1− q) λ1

γ1 + ω + b/N̂

)
(1)

The expected number of transmissions to HCWs from an infected patient is CPHX. Similarly
the expected number of transmissions from an infected HCW is CHPXH to a patient and
CHHXH to an HCW where XH is the same as XP , but with b/N̂ replaced by 0.

So we can capture the number of infections in the “next generation” by the matrix(
XPCPP XPCPH

XHCHP XHCHH

)
The dominant eigenvalue of this matrix is the reproduction number

R0 =

(
XPCPP +XHCHH

2
+

√
(XPCPP −XHCHH)2

4
+XPXHCPHCHP

)
(2)

The expression for XH and XP suggest increasing the testing rate ω would be a particularly
important step for reducing R0 because it appears in the denominator of the first term and
in the denominators of both terms inside the parentheses in (1). Similarly, any interventions
that simultaneously impact both infectiousness of infected individuals and susceptibility of
susceptible individuals will also have significant impact.

C Limitations and additional comments

There are some particularly important effects which we have not included in the model:

• We assume that testing continues at a constant rate in the cohort. This neglects an
enhanced level of testing that might be expected if an infection is detected.
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• We ignore heterogeneity in infectiousness. In the general population, this is not sig-
nificant. However, as seen in [14, 13], this can have an important impact on the
establishment of a disease following introduction. Higher heterogeneity makes diseases
less likely to establish, but those that successfuly establish have higher average initial
growth than predicted from R0.

• We have neglected HCWs transmission from interactions with those involved in the
COVID-19 cohort or other non-COVID-19 cohorts.

• We assume that all patients and HCWs are monitored closely enough that individuals
are immediately identified once symptomatic.
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