
 
 
 

Potency and timing of antiviral therapy as determinants of duration  
of SARS CoV-2 shedding and intensity of inflammatory response 

 
 

Ashish Goyal1†, Cardozo-Ojeda, E. Fabian1†, Joshua T. Schiffer1,2,3* 
 

1 Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center 
2 Clinical Research Division, Fred Hutchinson Cancer Research Center 
3 Department of Medicine, University of Washington, Seattle 
 
† Both authors contributed equally to the work. 
 
 
 
 
One Sentence Summary: We developed a mathematical model to predict the outcomes of 
different possible COVID-19 treatments. 
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Abstract: Treatments are desperately needed to lower the hospitalization and case fatality rates 
of SARS CoV-2 infection. In order to meaningfully impact the COVID-19 pandemic, promising 
antiviral therapies must be identified within the next several months. However, the number of 
clinical trials that can be performed in this timeframe is limited. We therefore developed a 
mathematical model which allows projection of all possible therapeutic approaches. Our model 
recapitulates off-treatment viral dynamics and predicts a three-phase immune response. Addition 
of treatment with remdesivir, hydroxychloroquine, neutralizing antibodies or cellular 
immunotherapy demonstrates that if in vivo drug potency is high, then rapid elimination of virus 
is possible. Potent therapies dosed soon after peak viral load when infected people typically 
develop symptoms, are predicted to decrease shedding duration and intensity of the effector 
immune response, but to have little effect on viral area under the curve, which is driven by high 
levels of early SARS CoV-2 replication. Potent therapy dosed prior to peak viral load, when 
infection is usually pre-symptomatic, is predicted to be the only option to lower viral area under 
the curve. We also identify that clinically meaningful drug resistance is less likely to emerge 
with a highly potent agent that is dosed after peak viral load. Our results support an early test and 
treat approach for COVID-19, but also demonstrate the need to identify early viral shedding 
kinetic features that are the most predictive surrogates of clinical severity and transmission risk.  
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Introduction: 
 

The COVID-19 pandemic is a devastating historical event which is currently impacting 
nearly all of mankind. SARS CoV-2 incidence is surging in numerous cities and countries across 
the globe (1), and infection carries a high mortality rate, particularly among the elderly (2-4). 
While social distancing has slowed and even eliminated many local epidemics, it is not an 
economically viable long-term strategy (5). There is no evidence of widespread herd immunity 
and a vaccine is unlikely to be developed and implemented within the next 18 months. 
Therefore, second and third waves of infection are likely to occur over the next two years (6). 
 It is imperative that optimal treatment strategies of COVID-19 are identified during the 
first wave of infection to ensure that the case fatality rate is lower during subsequent local 
epidemics. To date, selection of antiviral agents has been empirical and guided by limited or 
absent data. The window to conduct definitive clinical trials is likely to be narrow given that 
flatten the curve efforts are predicted to slow local epidemics, albeit temporarily. Therefore, 
effective tools are urgently needed to optimize the design of these trials. 
 Here we use mathematical models to project the possible impact of two small molecular 
agents, remdesivir and hydroxychloroquine; as well as broadly neutralizing antibodies and 
cellular immunotherapies. The goal of our models is to interpret emerging clinical trial data, and 
in turn to perfect subsequent trials in terms of selection of antiviral agents, timing of therapy, 
dosage, treatment duration, avoidance of drug resistance and selection of virologic endpoints. 
Overall, our simulations support initiation of therapy soon after symptoms develop and also 
suggest the urgent need for studies to identify virologic surrogates of SARS CoV-2 severity. 
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Results: 
 
SARS CoV-2 natural history 
 

We used four datasets of SARS CoV-2 shedding in the absence of effective treatment to 
develop and validate a mathematical model. This data included 25 infected people: 11 from 
Singapore (7), 9 from Germany (8), one from Korea (9), and 4 from France (10) (Fig 1).  
Notably, sampling techniques differed across studies. In Singapore, Korea and France, samples 
were obtained with nasopharyngeal swabs, whereas in Germany viral loads were measured 
directly from sputum. Shedding was notable for an early peak, followed by three phases of viral 
decay including a rapid initial decline from peak, a slower period of decay of variable length, 
followed by a third abrupt elimination of the low levels of remaining virus. Of note, we only 
captured the viral peak as well as the final rapid clearance phase in a subset of study participants. 
There was one example of substantial, transient viral re-expansion (G7 in Fig 1). 
 
SARS CoV-2 mathematical model 
 

We developed a series of ordinary differential equations to fit to the viral load data (Fig. 
1a, Methods and Materials). The equations capture the coupled interactions of susceptible 
cells, infected cells, SARS CoV-2 and a mounting immune response. In keeping with the 
standard viral dynamics model (11, 12), virus enters susceptible cells and converts them to 
infected dells which then produce virus at a fixed rate. Based on model fitting, we included two 
immune responses. The first accounts for the rate of infected cell elimination by the innate 
immune system and is governed by an exponent; in keeping with prior research, we refer to this 
as the density-dependent immune response (13, 14). The second phase is a slower cytolytic 
response in which per cell killing rate saturates once the total number of effector cells exceeds a 
certain level. We model this with stages of presumed effector cell precursors which differentiate 
at rate q as a method to calibrate timing. 

Our model reproduced viral load kinetics in all 25 participants (Fig. 1b). In certain cases, 
the model only fit to available data from the later stages of shedding, whereas it recapitulated the 
entirety of viral expansion, peak and decelerating clearance for several study participants (S5, 
S14, S18, G1, G2, G5, G7). In keeping with observations from a recent clinical trial (15), low 
level shedding continued past 20 days for some German participants (G1, G2, G3, G5, G6), 
whereas viral elimination occurred in the remaining infected people. 

 
Timing of innate and acquired cytolytic responses 
 

We continuously quantified the value of the immune terms in all 25 participants: the per 
cell killing rate and total number of cells killed per day was extremely high during the first 
several days of infection in all participants (Fig. 2a, b), coinciding with peak viral load. The 
cytolytic immune response initiated at various timepoints across participants (day 5-17) and led 
to lower per cell and total killing rates relative to the innate response but was sufficient to 
eliminate remaining infection (Fig. 2b). 
 
Remdesivir pharmacokinetics and pharmacodynamics 
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We developed a pharmacokinetic / pharmacodynamic model of remdesivir (Fig. 3a), a 
broad-spectrum nucleotide analogue that targets SARS CoV-2 replication in infected cells (16).  
The model links intravenous administration with plasma levels of free drug and concentrations of 
the drug’s active nucleotide-triphosphate component (NTP) observed within PBMCs in non-
human primates (17), and captures the slow decay of NTP within this compartment (Fig. 3b). 
With multiple doses, we project stable levels of NTP in target cells over time (Fig. 3c) followed 
by slow decay after cessation of treatment. 

We next simulated possible dose response curves of antiviral efficacy, which capture the 
percentage of viral replication eliminated, according to micromolar concentration of drug. The 
percent of viral replication suppression at a given intracellular drug concentration is dependent 
on the intracellular EC50 of the drug, or the concentration of drug required to lower viral 
replication by 50% (Fig 3d). Of note the intracellular EC50 is unknown for remdesivir, 
particularly in vivo, making predictions of clinical trial outcomes impossible. 

Finally, we combined the PK and PD models as in Fig. 3a to project the percentage of 
viral replication inhibited over time at different assumed intracellular EC50 values (18, 19). With 
high assumed drug potency (EC50=0.8 uM), antiviral effect are sustained over the 10-day dosing 
interval and are maintained for a long period once drug delivery has stopped (Fig. 3e). At higher 
assumed EC50 values, remdesivir potency is projected to be lower. 
 
Projections of SARS CoV-2 outcomes assuming remdesivir treatment during early and late 
symptomatic phases  
 

We next simulated therapy at day 10 of infection (Fig. 4a), when severely infected people 
often seek hospital care, and at day 5 of infection immediately after viral peak (Fig. 4b), when 
infected people often become symptomatic. In both cases, when remdesivir in vivo potency was 
assumed to be high (EC50=0.8 uM), viral elimination occurred rapidly after initiation of therapy. 
This effect occurred because of unopposed removal of approximately 100-1000 infected cells per 
day by an ongoing innate immune response (Fig. 2b).  

Simulations with the assumption of a less potent version of remdesivir (EC50= 8 or 80 
uM) resulted in a lower viral clearance slope. This result implies that viral clearance slope in 
clinical trials can be used in concert with our model to directly estimate the in vivo intracellular 
EC50 value of remdesivir in each treated patient. The model can then be used to project the 
effect of increasing or decreasing doses in subsequent trials. 
  
Projections of SARS CoV-2 outcomes assuming extremely early remdesivir treatment during the 
pre-symptomatic phase 
 

We next performed simulations of therapy at very early timepoints during infection at 
and prior to peak viral load. Most infected people are pre-symptomatic at this stage so these 
model realizations may most closely reflect implementation of a post exposure prophylaxis 
strategy in which some people are already in the very early stages of infection at the time of first 
dose. Under this scenario, extremely potent (EC50=0.8 uM) therapies at day 2 and 0 of infection 
resulted in immediate viral suppression (Fig. 4c, d). With early, low or moderate potency 
treatment, the model predicted therapeutic failure with persistent SARS CoV-2 shedding due to 
insufficient early immunity against the virus (Fig. 4d). 
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Projections of short course remdesivir 
 

We next repeated the above exercise with a shorter 5-day course of treatment. Results 
were similar though simulations under the assumption of extremely early initiation of therapy did 
not lead to full SARS CoV-2 suppression within this timeframe (Fig. S1). 
  
Predictors of therapeutic efficacy for remdesivir 
 

 We next assessed which unknown variables in our therapeutic model were most 
predictive of relevant therapeutic outcomes. As independent variables, we selected in vivo 
intracellular EC50, because the potency of remdesivir against SARS CoV-2 in humans is 
unknown, and infection duration at the time of treatment initiation. As dependent variables, we 
selected shedding duration and viral area under the curve because it is unclear which of these 
outcomes is a stronger predictor of progression to cytokine storm and respiratory failure, as well 
as transmissibility, in infected people. We also included the final tally of effector cells as this 
outcome may also be predictive of likelihood of cytokine storm (20). 
 Early initiation of a highly potent therapy was predictive of lower shedding duration 
whether given in the pre-peak asymptomatic phase or in the post-peak symptomatic phase 
beyond day 2-4 of infection. However, extremely early initiation of a lower potency therapy was 
predicted to prolong shedding relative to no treatment (Fig. 5a). 
 Both high drug potency and extremely early treatment initiation during the pre-
symptomatic stage of infection were required to significantly lower viral area under the curve. 
Even highly potent therapy during the earliest symptomatic phase at days 4-5 had only a slight 
impact on viral area under the curve, reflecting the fact that most virus and infected cells are 
generated during the first 2-3 days of SARS CoV-2 infection (Fig. 5b). 
 Finally, initiation of a highly potent therapy within 6 days of infection lowered the extent 
of the effector cell response in our simulations (Fig. 5c) which may suggest that an early test and 
treat strategy could lower deleterious infection associated inflammation.  
 
Theoretical kinetics of drug resistant variants  
 

Based on the mutation rate of positive ss RNA viruses of approximately 10-5 mutations 
per base pair per cell infection (21), and on the fact that two separate mutations may induce 
partial remdesivir resistance in SARS CoV-1 which in turn leads to a less fit virus (22), we 
estimated the probability that a drug resistant mutant would emerge during therapy. When we 
assumed a potent therapy (EC50=0.8), the model projects that while single and double mutants 
will emerge, they are unlikely to predominate or meaningfully extend duration of shedding if 
dosed during the symptomatic phase of disease, though resistance may emerge with early dosing 
(Fig. 6a,b). However, if a moderate potency is assumed, then a single mutant with resistant is 
predicted to persist, particularly if therapy is initiated before or during viral peak (Fig. 7a,b).  

If we assume that a single point mutation in SARS CoV-2 could theoretically induce 
complete resistance, then treatment failure may occur regardless of dose timing. The resistant 
strain is predicted to predominate raising the possibility of transmitted drug resistance (Fig. S2). 
 
Hydroxychloroquine treatment predictions.  
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Using a multi-compartment PK/PD model for hydroxychloroquine (Fig. S3a), we first 
recapitulated drug levels of the drug over time following a single dose (Fig. S3b), simulated 
twice daily doses over 10 days (Fig. S3c), generated theoretical dose response curves (Fig. S3d), 
and then projected drug efficacy over time (Fig. S3e). As with remdesivir, the predicted efficacy 
of therapy on shedding depended on timing of treatment and the intracellular in vivo EC50 (Fig. 
S4a-e). Lowering the area under the curve again required extremely early initiation of potent 
treatment (Fig. S4f) while decreasing the number of effector cells required effective dosing 
within the first 5 days of infection (Fig. S4g). 
 
Broadly neutralizing antibody predictions. We next simulated a single infusion of broadly 
neutralizing antibodies with prolonged half-life. Broadly neutralizing antibodies are designed to 
stop infection of new cells rather than eliminate viral replication. We used a dual compartment 
PK model for (Fig. S5a), estimated antibody levels over time following a single dose (Fig. S5b), 
generated theoretical dose response curves (Fig. S5c), and then projected antibody efficacy over 
time (Fig. S5d). The predicted efficacy of therapy on shedding again was dependent on timing of 
treatment and the in vivo EC50 (Fig. S6a-d). Once again, to lower duration of shedding and the 
number of effector cells depended on therapeutic potency, while effective lowering of viral area 
under the curve required extremely early initiation of potent treatment (Fig. S6e-g). 
 
Immunotherapy predictions. We generalized the potential effects of a cellular immunotherapy 
which would presumably decrease the lifespan of infected cells. We projected that such an 
intervention would need to increase this rate 10-fold to match the efficacy of a potent small 
molecular agent. (Fig. S7a-c). Immunotherapies were projected to have no efficacy if started 
prior to peak shedding (Fig. S7d). 
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Discussion  
 

SARS CoV-2 infection is characterized by a stereotypical viral kinetic pattern with a high 
peak viral load during the first several days of infection, a subsequent short rapid decay period 
followed by a slower clearance phase of variable duration, and a final, rapid elimination phase. 
Our mathematical model reproduces this data and explains that the transition from first to second 
phase viral decay is governed by a density dependent term in which a massive die off of infected 
cells occurs during peak viremia. Viral clearance rate slows considerably once the viral load 
decreases below a threshold of ~105 RNA copies. A late slowly expanding cytolytic T cell 
response is predicted to induce eradication of infected cells in the upper airway 2-20 days later. 
The timing of this final response appears to be variable among infected people. Moreover, it is 
unknown if cessation of viral replication in the nasopharynx guarantees the same result in the 
lung or other anatomic compartments (8). 

We built therapy simulations on top of these natural kinetics to glean knowledge about 
the possible impact of antiviral therapies.  While accurate prediction is impossible in the absence 
of clinical trial data, we are able to make several observations which highlight the importance of 
off treatment viral dynamics in understanding treatment effects. Our results can guide future 
study design and assist in interpretation of forthcoming trial data in multiple ways. 

First, it is critical to know whether in vitro potency assessments of remdesivir, 
hydroxycholorquine and bNAbs can be projected onto human infection. We previously 
demonstrated that in vivo IC50 values for antiviral agents can exceed estimates derived from cell 
cultures experiments by a multiple of 5-10 for small molecule antiviral drugs (19).  A similar 
observation has been hypothesized for HIV targeting monoclonal neutralizing antibodies (23). It 
is unclear if this discrepancy occurs due to low blood levels in tissue, different cell metabolism 
of drug in tissue or higher protein binding in vivo. Whatever the case, if in vitro potency 
measurements of hydroxycholoroquine and remdesivir overestimate in vivo activity, or if higher 
intracellular levels are required than in plasma, then these drugs may be less effective in clinical 
trials. Higher dosing may be a possible solution to circumvent this issue. 

Second, effective dosing after symptom development predicts rapid subsequent 
elimination of infected. Most current clinical trials are focused primarily on hospitalized patients 
whereas our results and those from other COVID models suggest that treatment in the days 
immediately following symptom onset will decrease the duration of detectable viral shedding 
(24, 25). Our model also predicts that early treatment will limit the extent of the cytolytic 
immune response required to clear infection. If either of these outcomes are correlates of 
progression to severe disease and transmission risk, then as with HIV (26), influenza (27), and 
Ebola (28), early test and treat is a vital, currently overlooked strategy. 

Third, effective dosing soon after onset of symptoms is predicted to have an insignificant 
effect on viral load AUC. This phenomenon occurs because the amount of virus produced per 
hour at the early peak is far higher than the amount produced per day during the lower viral load 
second decay phase. This finding provides a cautionary message: if subsequent disease severity 
and development is imprinted during the high viral load, pre-symptomatic phase of infection, 
then early antiviral therapy could theoretically eliminate further shedding without altering 
clinical outcomes. Moreover, if extremely high viral load periods are responsible for most 
transmissions as suggested by the 5-day generation time of infection (29), then early elimination 
of shedding may not lower transmissibility either. Overall this result highlights the urgent need 
for studies which identify early viral and immune correlates of severe disease and 
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transmissibility. Indeed, preliminary studies suggest that presenting viral load may impact 
disease severity (30). 

Fourth, if therapy is initiated during the pre-symptomatic stage of infection as may occur 
during post exposure prophylaxis (31), then its effectiveness is predicated on high potency. 
Subtherapeutic small molecular agents may in fact prolong infection. Based on this result, we 
suggest sampling at late timepoints during post exposure prophylaxis trials. 

Fifth, our approach suggests that while development of low-level drug resistance will 
occur commonly during COVID-19 treatment with remdesivir, it is unlikely to predispose to 
treatment failure provided the drug is potent against the predominant susceptible strain. Resistant 
variants will likely be present at low levels relative to susceptible strains making transmission of 
resistance far less likely. Important exceptions may occur in immunocompromised hosts who 
might shed respiratory viruses for longer and at higher levels, thereby increasing the chance of de 
novo resistance (32), or in the context of only moderately potent antiviral therapy. 

Finally, our model projects a high likelihood of success for neutralizing antibodies and 
cellular immunotherapies provided that they achieve adequate potency and are dosed early. 

In summary, our model provides a broad platform for assessment of all major types of 
therapies. Our results demonstrate the need to differentiate whether duration of viral shedding or 
viral area under the curve is the more relevant surrogate of severity. If viral area under the curve 
is most predictive of poor outcomes, then all forms of antiviral therapy outside of potent post 
exposure prophylaxis are unlikely to provide clinical benefit. However, if shedding duration is 
the best surrogate, then an early test and treat approach is highly promising for limiting the 
likelihood of severe disease. 
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Materials and Methods 
 
Study design 
 

We employed ordinary differential equation models to analyze the in-host SARS CoV-2 
dynamics in infected individuals and the potential in vivo effect of different treatment strategies. 
First, we fit models to the viral load data from different sources using a nonlinear-mixed effects 
approach. Second, we used pharmacokinetics models to fits observed plasma concentration of 
remdesivir (RDV) and its active nucleoside triphosphate form in PBMCs, and blood 
concentration of hydroxychloroquine (HCQ). Third, we simulated dose response curves for 
antiviral effect of RDV and HCQ using different possible half maximal effective concentration 
(EC50) based on in-vitro estimations against SARS-CoV-2. Fourth, we simulated therapy at 
different times during infection to analyze the potential reduction of SARS CoV-2 shedding. 
Finally, we repeated projections of therapy including the emergence of resistance to therapy. 
 
SARS CoV-2 viral load data 
 

We analyzed viral load data from patients infected with SARS CoV-2 that were 
monitored and received supported therapy in hospitals in Singapore (n=11), Germany (n=9), 
South Korea (n=1), and France (n=4). Patients who had less than 4 data points or had oscillatory 
viral dynamics were excluded. 

The first data set was obtained from SARS Cov-2-infected patients followed at 4 hospital 
in Singapore from January 23rd to February 23rd, 2020 (7). All patients diagnosed stated to have 
travelled from Wuhan, China in the last two weeks of enrollment. Viral load observations were 
obtained from different specimens (blood, stool, and urine samples), but we analyzed those 
coming from nasopharyngeal swabs. Cycle threshold were obtained with reverse transcriptase 
polymerase chain reaction (RT-PCR) at multiple times during the first 2 weeks after enrollment.  

The second data set was obtained from infected patients enrolled and treated in a single 
hospital in Munich, Germany from January 23rd to January 27th, 2020 (8). For all patients, the 
infection was reported to happen after contact with an index case. Viral load observations were 
obtained daily from sputum, pharyngeal swabs and stool using RT-PCR. Here, we analyzed viral 
RNA concentrations from sputum.  

The third data set comes from the first SARS Cov-2 infected case in Korea, a 35-year-old 
Chinese citizen coming from Wuhan, China (9). Nasopharyngeal swabs viral loads were 
obtained daily from day 2 of symptoms onset using RT-PCR.  

The fourth data set came from four patients admitted in hospitals in Paris or Bordeaux, 
France with viral loads obtained from nasopharyngeal swabs using RT-PCR (10). We analyzed 
viral load data digitized from the published study. 

When viral load observations were only published in cycle threshold (Ct) values we 
converted them to copies per swab using the relation values in (33). We assumed a lower limit of 
detection of 100 copies per sample. 
 
Pharmacokinetic data 

 
PK data of HCQ specifically to 200 mg oral dose was gathered from (34). PK data of 

RDV was gathered from (17), where non-Human Primates (NHPs) intravenously received RDV 
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at 10mg/kg dose at day 0 and the plasma concentration of RDV and its active nucleoside 
triphosphate form in PBMCs were recorded over 24 hours. We digitize this data and employ it to 
fit PK model of RDV.   
 
Mathematical modeling of SARS-COV-2 dynamics 
 

To understand the observed SARS-COV-2 shedding dynamics we developed a viral 
infection model modifying previous models of virus dynamics (12, 35-37). In this model, 
susceptible cells (S) are infected at rate 𝛽𝑉𝑆 by SARS-COV-2 (V). SARS-COV-2-infected cells 
(I) are cleared in two ways: (1) by an innate response with density dependent rate 𝛿𝐼! (13, 14); 
and (2) an acquired response with rate "#!

#!$%!	
 mediated by SARS-COV-2-specific effector cells 

(𝐸). The exponent 𝑘 describes by how much the first death rate depends on the infected cell 
density. The Hill coefficient 𝑟 parameterizes the nonlinearity of the second response and allows 
for rapid saturation of the killing. Parameter 𝜙 defines the effector cell level by which killing of 
infected cells by 𝐸 is half maximal. SARS-COV-2 is produced at a rate	𝜋	and cleared with rate 
𝛾.		 In the model, SARS-COV-2-specific effector cells rise after 𝑛 stages from precursors cells 
(𝑀'()…+). The first precursor cell compartment (𝑀)) proliferates in the presence of infection 
with rate	𝜔𝐼𝑀) and differentiates into the effector cell at a per capita rate 𝑞 during each 
intermediate stage. Finally, effector cells die at rate 𝛿#. The best instance of the model is 
expressed as a schematic (Fig. 1a) and here as a system of ordinary differential equations: 
 

,-
,.
= −𝛽𝑉𝑆

,/
,.
= 𝛽𝑉𝑆 − 𝛿𝐼!𝐼 − 𝑚 #!

#!$%!	
𝐼

,0
,.
= 	𝜋𝐼 − 𝛾𝑉

,1"
,.

= 𝜔𝐼𝑀) − 𝑞𝑀)
,1#$%…'

,.
= 𝑞(𝑀'2) −𝑀')

,#
,.
= 𝑞𝑀+ − 𝛿#𝐸

.   (1) 

 
Fitting viral load data and model selection 
  

We fit different instances of our model in equation 1 to the SARS-COV-2 shedding data 
using a nonlinear mixed-effects modeling approach (38-40) (See Table S1). Briefly, we obtained 
a maximum likelihood estimation of the population median (fixed effects) and standard deviation 
(random effects) for each model parameter using the Stochastic Approximation Expectation 
Maximization (SAEM) algorithm embedded in the Monolix 2019R2 software (www.lixoft.eu). 
For a subset of parameters, random effects were specified, and the standard deviation values 
were estimated.  Measurement error variance was also estimated assuming an additive error 
model for the logged 𝑉. We simultaneously fit each model to the viral load data of 25 patients 
form the four data sets. The parameters associated with the effector cell compartment were only 
estimated for those study participants who cleared infection during the observed data. 

For each model fit we assumed 𝑡 = 0 as the time of first positive viral load for each 
person. However, we defined the initial value as the time of infection, i.e. when 𝐼(𝑡'+'.) = 1 cell. 
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Since infection starts before the first detected viral load, we have that 𝑡'+'. < 0. We fixed other 
initial values as 𝑆(𝑡'+'.) = 103 cells, 𝑉(𝑡'+'.) =

4/(.#'#()
7

, 𝑀)(𝑡'+'.) = 1 cell and 𝑀'(8…+(𝑡'+'.) =
𝐸(𝑡'+'.) = 0. We fixed parameter 𝛾 = 15 day-1 (41), 𝛿# = 1 day-1 (35), and 𝜙 = 100 cells. We 
assumed this value of 𝜙 because of the low percentage (~2%) of activated T cells that start 
growing at the moment of viral load drop (42). We estimated the remaining parameters including 
the time of infection 𝑡'+'.. 

To determine the most parsimonious model among the instances for the available SARS 
Cov-2 shedding data, we computed the log-likelihood (log L) and the Akaike Information 
Criteria (AIC=-2log L+2m, where m is the number of parameters estimated). We assumed a 
model has similar support from the data if the difference between its AIC and the best model 
(lowest) AIC is less than two (43). 

 
Pharmacokinetic modeling of remdesivir 
 

To reproduce the PK data of RDV, we employed a simple two compartment model  
where the first compartment represents the amount of RDV in plasma (𝐶9, volume 𝑉9) and the 
second compartment denotes the amount of its active nucleoside triphosphate form in PBMCs 
(𝐶:, volume 𝑉:). Here, we assume that RDV gets metabolized to its active nucleoside 
triphosphate form at rate 𝑘;: whereas RDV and its active nucleoside triphosphate form are 
eliminated from their respective compartments at rates 𝑘< and 𝑘:, respectively. The model is 
given by, 

𝑑𝐶9
𝑑𝑡 = −𝑘;:𝐶9 − 𝑘<𝐶9 
𝑑𝐶:
𝑑𝑡 = 𝑘;:𝐶9 − 𝑘:𝐶: 

As the drug concentration was recorded in 𝜇M, we convert the amount of the drug given 
in mg to 𝜇M by dividing 𝐶9 and 𝐶: by conversion factors 𝑉) and 𝑉8, respectively. Here, 𝑉) and 
𝑉8 are a combination of the volume of the distribution of two compartments and the molar mass 
of two forms of RDV.  

We fit this model to the PK data from NHP (17), using a non-linear least squares 
approach using an initial dose of 10mg/kg. We adapted the dose in humans (200mg and 100mg) 
assuming a normal weight of 70kg. 

 
Pharmacokinetic modeling of hydroxychloroquine 
 

To recapitulate the pharmacokinetics of HCQ, we developed a model on 
pharmacokinetics models of chloroquine (CQ), as HCQ is a derivate of CQ and has the same 
active metabolites (44). In this four-compartment model, the drug gets absorbed from the gut 
compartment (𝐴=) at rate 𝑘: and enters the central compartment (𝐴9, with volume 𝑉)), where it 
is eliminated with at a rate 𝑘<. The rate constants 𝑘)8 and 𝑘)> represent the movement of the 
drug from the central compartment to the first peripheral compartment (𝐴8, volume 𝑉8) and the 
first peripheral compartment (𝐴>, volume 𝑉>), respectively. Similarly, the movement of the drug 
from compartments 𝐴8 and 𝐴> to the central compartment is modelled using 𝑘8) and 𝑘>), 
respectively. The modeling equations representing the amount of drug in each compartment is 
given by, 
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𝑑𝐴=
𝑑𝑡 = −𝑘:𝐴=  

𝑑𝐴9
𝑑𝑡 = 𝑘:𝐴= − 𝑘)8𝐴9 − 𝑘)>𝐴9 + 𝑘8)𝐴8 + 𝑘>)𝐴> − 𝑘<𝐴9 

𝑑𝐴8
𝑑𝑡 = 𝑘)8𝐴9 − 𝑘8)𝐴8 
𝑑𝐴>
𝑑𝑡 = 𝑘)>𝐴9 − 𝑘>)𝐴> 

 
We fit this model to the PK data using a non-linear least squares approach. 

 
Pharmacokinetic modeling of broadly neutralizing antibodies 
 

The pharmacokinetics of a intravenously injected broadly neutralizing antibody (bNAB) 
was simulated using a simple bi-phasic exponential model, 𝐶?(𝑡) = 𝑌)𝑒2!". + 𝑌8𝑒2!%. (45). In 
this model 𝑘) ad 𝑘8 represent the distribution and clearance rates of the bNAB whereas 𝑌) and 𝑌8 
describe the coefficients associated with them. We fixed parameters 𝑌) = 2200 𝜇𝑔/mL, 𝑌8 =
150 𝜇𝑔/mL and 𝑘) = 1.1 day-1 following estimates for the bNAb VRC01 (23). We also fixed 
𝑘8 =

@.BC
)D@

 day-1 to reflect the long half-life of 3 months. 
 
Pharmacodynamic modeling 
  

We model antiviral efficacy (𝜖) of each treatment approach as a function of the drug 
concentration 𝐶(𝑡) as 𝜖(𝑡) = E(.)

E(.)$#E)*
 being 𝐸𝐶F@ the half maximal effective concentration. 

Remdesivir and hydroxychloroquine are assumed to inhibit viral production rate (𝜋) whereas 
bNABs are hypothesized to inhibit the viral infectivity (𝛽), both by a factor of 1 − 𝜖(𝑡).  

To calculate the efficacy of remdesivir, we assume that the active form (𝐶:) has the 

antiviral effect, i.e. 𝜖(𝑡) =
+,(()
/%

+,(()
/%

$#E)*
. Since concentration of HCQ in lung and other tissues 

reaches levels of 200-700 times higher than in plasma (46), we took a conservative approach and 
determined an intracellular concentration of HCQ as 𝐴/(𝑡) = 200 × G0(.)

0)
. Thus, the antiviral 

effect of intracellular HCQ was calculated as 𝜖(𝑡) = G1(.)
G1(.)$#E)*

. We used values of EC50 from 
those estimates in vitro against SARS CoV-2 (0.72 μM for Hydroxychloroquine (47),  and 0.77 
μM for Remdesivir (16)) to hypothetical in vivo values up to 100 times the in vitro value.  

We also explored the antiviral effect of a hypothetical bNAb using the form 𝜖(𝑡) =
E2(.)

E2(.)$#E)*
 and varied values of EC50 between 1 and 1000 μM. Finally, we modeled the potential 

antiviral effect of immunotherapies by enhancing the early death rate of infected cells (𝛿) by a 
factor of 50%, 100% and 200%. 
 
Modeling the emergence of resistance to remdesivir 
 

We adapted the model in equation 1 to allow for the emergence of resistance to RDV. 
We base the modifications on the fact that two separate mutations may induce partial resistance 
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to RDV in SARS CoV-1 which in turn leads to a less fit virus (22). In the case of SARS Cov-1, 
two single mutations can induce to a less sensitive virus with 2.4- and 5.0-fold increase in the 
RDV EC50. When the combined mutations emerged, it mediated a 5.6-fold increase in the RDV 
EC50. We included these findings in the model by assuming that infected cells (𝐼H) that produce 
sensitive virus (𝑉H) can transition into infected cells (𝐼I) and 𝐼I8) that produce less sensitive virus 
(𝑉I) and 𝑉I8), due to one mutation during the viral replication cycle. These two viral populations 
have an increased EC50 (2.4- and 5-fold higher). Similarly, we assumed that 𝐼I) and 𝐼I8 can 
transition into infected cells that produce a more resistant strain 𝑉I)8 (with 5.6-fold higher EC50) 
after another mutation. We also allowed for reversal mutation events. We assumed a mutation 
probability of 𝜇 = 102F per infection event. Under these assumptions total viral load is defined 
as 𝑉 = 𝑉H + 𝑉I) + 𝑉I8 + 𝑉I)8 and total number of infected cells as 𝐼 = 𝐼H + 𝐼I) + 𝐼I8 + 𝐼I)8. 
With these modifications the model becomes, 

 
,-
,.
= −𝛽𝑉𝑆

,/3
,.
= (1 − 2𝜇)𝛽𝑆𝑉H + 𝜇𝛽𝑆(𝑉I) + 𝑉I8) − 𝛿𝐼!𝐼H −𝑚

#!

#!$%!	
𝐼_𝑠

,/!"
,.

= 𝜇𝛽𝑆𝑉H + (1 − 2𝜇)𝛽𝑆𝑉I) + 𝜇𝛽𝑆𝑉I)8 − 𝛿𝐼!𝐼I) −
"#!/!"
#!$#)*!

,/!%
,.

= 𝜇𝛽𝑆𝑉H + (1 − 2𝜇)𝛽𝑆𝑉I8 + 𝜇𝛽𝑆𝑉I)8 − 𝛿𝐼!𝐼I8 −
"#!/!%
#!$#)*

!

,/!"%
,.

= 𝜇𝛽𝑆(𝑉I) + 𝑉I8) + (1 − 2𝜇)𝛽𝑆𝑉I)8 − 𝛿𝐼!𝐼I)8 −
"#!/!"%
#!$#)*!

,03
,.
= 𝜋(1 − 𝜖H)𝐼H − 𝛾𝑉H

,0!"
,.

= 𝜋(1 − 𝜖I))𝐼I) − 𝛾𝑉I)
,0!%
,.

= 𝜋(1 − 𝜖I8)𝐼I8 − 𝛾𝑉I8
,0!"%
,.

= 𝜋(1 − 𝜖I)8)𝐼I)8 − 𝛾𝑉I)8
,1"
,.

= 𝜔𝐼𝑀) − 𝑞𝑀)
,1#$%…'

,.
= 𝑞(𝑀'2) −𝑀')

,#
,.
= 𝑞𝑀+ − 𝛿#𝐸

.  (2) 

 

Here, 𝜖H =
+,(()
/%

+,(()
/%

$#E)*
, 𝜖I) =

+,(()
/%

+,(()
/%

$8.J×#E)*
, 𝜖I8 =

+,(()
/%

+,(()
/%

$F×#E)*
 and 𝜖I)8 =

+,(()
/%

+,(()
/%

$F.B×#E)*
 are the 

antiviral effect of Remdesivir in blocking virus production for each viral population. 
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Figure 1. Mathematical model recapitulation of untreated SARS CoV-2 kinetics. A. 
Mathematical models schematic including infection of susceptible cells (S), production of virus 
by (V) by infected cells (I), an early density-dependent immune response governed by exponent 
k, and a mounting T cell response with sequential populations of T cells (M1, M2, M3 and E) 
which kill infected cells when above a certain threshold.  B. Model fit to individual data. Shapes 
are individual viral loads and lines are model load projections. S = Singapore; G = Germany; K = 
Korea; F = France. 
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Figure 2. Early innate and late acquired killing rates of SARS CoV-2 infected cells. Model 
projections of rates in 15 participants who cleared viral shedding. A. Per cell death rate mediated 
by innate responses (blue) and acquired responses (green). B. Total death rate mediated by innate 
responses (blue) and acquired responses (green). 
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Figure 3. Projected pharmacokinetics and pharmacodynamics of remdesivir therapy.A. 
Complete model of remdesivir (RDV) including plasma levels of parent drug, intracellular levels 
of the active component (NTP) and antiviral efficacy of drug according to concentration. B. 
Projections of plasma RDV levels and intracellular NTP in PBMCs. Datapoints from non-human 
primate experiments are dots while lines are model projections. C. Simulated concentrations of 
the parent compound and intracellular levels of the active compound with a loading dose of 200 
mg IV followed by 9 daily doses of 100 mg IV. D. Pharmacodynamic projections of antiviral 
efficacy according to drug concentration assuming different values for the in vivo EC50 of the 
drug. E. Combination simulations of pharmacokinetic and pharmacodynamic models 
demonstrating prolonged antiviral activity after dosing is stopped. 
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Figure 4. Treatment projections of a 10-day remdesivir course assuming different potency 
and timing of treatment. Each set of simulations is performed under assumptions of high, 
medium and low potency (EC50=0.8, 8 and 80 uM respectively). Treatment initiation at 
timepoints generally consistent with A. hospitalization (day 10 after first positive sample), B. 
first symptoms (day 5 after first positive sample), C. pre-symptomatic post-peak phase (day 2 
after first positive sample) and D. pre-symptomatic pre-peak phase (day 0). Overall, early potent 
treatment limits duration of infection. 
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Figure 5. Predictors of SARS CoV-2 treatment outcomes with remdesivir. Heatmaps 
comparing variance in drug potency measured by in vivo EC50 (x-axis) and timing of treatment 
initiation (y-axis) for A. Shedding duration, B. viral load area under the curve (AUC) and C. 
extent of T cell response required for viral elimination. Potent therapy within the first 5 days of 
infection limits shedding duration and the extent of the T cell response. However, only extremely 
early therapy during the pre-symptomatic phase of infection lowers viral AUC. Sub-potent 
therapy given during the extremely early pre-symptomatic stage may extend shedding duration at 
lower viral loads by limiting the effector cell response. 
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Figure 6. Projections of remdesivir drug resistance during therapy. Simulations are with 
high potency (EC50=0.8 uM) and the assumption that mutants confer partial drug resistance. 
Treatment initiation is at timepoints generally consistent with hospitalization (day 10 after first 
positive sample), first symptoms (day 5 after first positive sample), pre-symptomatic post-peak 
phase (day 2 after first positive sample) or pre-symptomatic pre-peak phase (day 0). A. 
Projections of no treatment, treatment with no assumed drug resistance, and treatment with 
assumed drug resistance. B. Projections of assumed drug resistance with trajectories of sensitive 
strains, single mutants and double mutants.  
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Figure 7. Projections of remdesivir drug resistance during therapy. Simulations are with 
moderate potency (EC50=8.0 uM) and the assumption that mutants confer partial drug 
resistance. Treatment initiation is at timepoints generally consistent with hospitalization (day 10 
after first positive sample), first symptoms (day 5 after first positive sample), pre-symptomatic 
post-peak phase (day 2 after first positive sample) or pre-symptomatic pre-peak phase (day 0). A. 
Projections of no treatment, treatment with no assumed drug resistance, and treatment with 
assumed drug resistance. B. Projections of assumed drug resistance with trajectories of sensitive 
strains, single mutants and double mutants. 
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Fig S1. Treatment projections of a 5-day remdesivir course assuming different potency and 
timing of treatment. Each set of simulations is performed under assumptions of high, medium 
and low potency (EC50=0.8, 8 and 80 uM respectively). Treatment initiation at timepoints 
generally consistent with a. hospitalization (day 10 after first positive sample), b. first symptoms 
(day 5 after first positive sample), c. pre-symptomatic post-peak phase (day 2 after first positive 
sample) and d. pre-symptomatic pre-peak phase (day 0). Overall. Early potent treatment limits 
duration of infection. 
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Fig S2. Projections of remdesivir drug resistance during therapy. Simulations are with high 
potency (EC50=0.8 uM) and the assumption that mutants confer complete drug resistance. 
Treatment initiation is at timepoints generally consistent with hospitalization (day 10 after first 
positive sample), first symptoms (day 5 after first positive sample), pre-symptomatic post-peak 
phase (day 2 after first positive sample) or pre-symptomatic pre-peak phase (day 0). A. 
Projections of no treatment, treatment with no assumed drug resistance, and treatment with 
assumed drug resistance. B. Projections of assumed drug resistance with trajectories of sensitive 
strains and single mutants. 
 

 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 21, 2020. ; https://doi.org/10.1101/2020.04.10.20061325doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.10.20061325
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig S3. Projected pharmacokinetics and pharmacodynamics of hydroxychloroquine 
therapy. a. Complete model of hydroxychloroquine (HCQ) including gut, plasma and dual 
compartment levels of parent drug, intracellular levels of the active component and antiviral 
efficacy of drug according to concentration. b. Projections of plasma HCQ levels. Datapoints 
from human PK experiments are dots while lines are model projections. c. Simulated 
concentrations of the parent compound with a loading dose of twice daily 400 mg followed by 18 
twice daily doses of 200 mg. d. Pharmacodynamic projections of antiviral efficacy according to 
drug concentration assuming different values for the in vivo EC50 of the drug. e. Combination 
simulations of pharmacokinetic and pharmacodynamic models demonstrating prolonged antiviral 
activity after dosing is stopped. 
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Fig S4. Treatment projections of hydroxychloroquine assuming different potency and 
timing of treatment. Each set of simulations is performed under assumptions of high, medium 
and low potency. Treatment initiation is at timepoints generally consistent with a. hospitalization 
(day 10 after first positive sample), b. first symptoms (day 5 after first positive sample), c. pre-
symptomatic post-peak phase (day 2 after first positive sample) and d. pre-symptomatic pre-peak 
phase (day 0). Overall, early potent treatment limits duration of infection. Heatmaps comparing 
variance in drug potency measured by in vivo EC50 (x-axis) and timing of treatment initiation 
(y-axis) for e. Shedding duration, f. viral load area under the curve (AUC) and g. extent of T cell 
response required for viral elimination. 
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Fig S5. Projected pharmacokinetics and pharmacodynamics of neutralizing antibody 
therapy. a. Complete bi-compartment model of broadly neutralizing antibody therapy with 
lowering of viral infectivity according to antibody concentration. b. Projections of plasma bNAb 
levels from simulations of VRC01 treatment c. Pharmacodynamic projections of antiviral 
efficacy according to antibody concentration assuming different values for the in vivo EC50. d. 
Combination simulations of pharmacokinetic and pharmacodynamic models demonstrating 
antiviral activity as a function of time 
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Fig S6. Treatment projections of broadly neutralizing antibody (bNab) assuming different 
potency and timing of treatment. Each set of simulations is performed under assumptions of 
high, medium and low potency. Treatment initiation is at timepoints generally consistent with a. 
hospitalization (day 10 after first positive sample), b. first symptoms (day 5 after first positive 
sample), c. pre-symptomatic post-peak phase (day 2 after first positive sample) and d. pre-
symptomatic pre-peak phase (day 0). Overall, early potent treatment limits duration of infection. 
Heatmaps comparing variance in bNAb potency measured by in vivo EC50 (x-axis) and timing 
of treatment initiation (y-axis) for e. Shedding duration, f. viral load area under the curve (AUC) 
and g. extent of T cell response required for viral elimination. 
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Fig S7. Treatment projections of cytolytic immunotherapy assuming different potency and 
timing of treatment. Each set of simulations is performed under assumptions of high, medium 
and low potency based on multiplicative effect on infected cell death rate. Treatment initiation is 
at timepoints generally consistent with a. hospitalization (day 10 after first positive sample), b. 
first symptoms (day 5 after first positive sample), c. pre-symptomatic post-peak phase (day 2 
after first positive sample) and d. pre-symptomatic pre-peak phase (day 0). Overall, early potent 
treatment limits duration of infection.  
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Table S1: Akaike information criterion (AIC) for multiple instances of our model with 
different number of the compartments of 𝑴 (𝒏) and the hill-coefficient associated the 
effector cell response (𝒓). Lower the AIC, better is the support for the combination of 
parameters for our model. We found that 𝑛 = 2 and 𝑟 = 10 is best supported by the data (bold 
red). For comprehensive, we also tried a model with 𝑛 = 0 (i.e., no effector cell response), and a 
model with 𝑛 = 0 and 𝑘 = 0. In both cases, we found AIC~945, supporting the choice of our 
model. 
 

 𝑟 = 0.1 𝑟 = 1 𝑟 = 5 𝑟 = 10 𝑟 = 15 
𝑛 = 1 922.8 935.4 929.7 926.5 932.2 
𝑛 = 2 929.2 924.0 941.6 919.9 925.9 
𝑛 = 3 922.8 935.4 929.7 926.5 932.2 
𝑛 = 4 951.5 928.6 925.8 925.5 924.3 
𝑛 = 5 950.4 930.8 929.1 923.3 922.5 
𝑛 = 6 NA 928.6 926.0 924.9 923.2 
𝑛 = 7 NA 928.3 926.4 927.8 924.8 
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Table S2. Individual parameter estimates for the best model fits to the viral load data 
(lowest AIC in Table S1). 
 
 

ID 

𝒕𝒊𝒏𝒊𝒕 
(days 
before 
1st +)  

log$%𝜷 
(virions-1 

day-1) 

𝜹 
(day-1 

cells-k) 

𝒌 
(-) 

log$%𝝅 
(log10 day-1) 

𝒎 
(day-1 

cells-1) 

log$%𝝎 
(day-1 

cells-1) 

𝒒 
(day-1) 

S2 -6.68 -7.23 3.14 0.08 2.59 2.91 -4.56 2.4E-05 
S3 -3.73 -7.22 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
S4 -6.56 -7.23 3.14 0.08 2.59 3.51 -4.56 2.4E-05 
S5 -2.00 -7.23 3.15 0.08 2.59 3.31 -4.56 2.4E-05 
S6 -2.79 -7.23 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
S10 -5.66 -7.23 3.13 0.08 2.59 3.54 -4.55 2.4E-05 
S11 -4.80 -7.23 3.13 0.08 2.60 3.51 -4.56 2.4E-05 
S12 -6.29 -7.23 3.14 0.08 2.59 3.26 -4.56 2.4E-05 
S14 -1.23 -7.23 3.13 0.08 2.59 3.57 -4.55 2.4E-05 
S17 -7.06 -7.23 3.14 0.08 2.59 3.39 -4.56 2.4E-05 
S18 -1.32 -7.23 3.15 0.08 2.59 3.20 -4.56 2.4E-05 
G1 -1.27 -7.22 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
G2 -0.92 -7.22 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
G3 -4.57 -7.22 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
G4 -3.97 -7.23 3.12 0.08 2.60 3.13 -4.55 2.4E-05 
G5 1.32 -7.22 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
G6 -2.76 -7.23 3.13 0.08 2.60 3.21 -4.55 2.4E-05 
G7 -2.00 -7.23 3.13 0.08 2.59 3.21 -4.55 2.4E-05 
G8 -6.12 -7.23 3.12 0.08 2.60 3.21 -4.55 2.4E-05 
G9 -7.58 -7.22 3.11 0.08 2.60 3.72 -4.55 2.4E-05 
K1 -4.17 -7.23 3.14 0.08 2.59 3.30 -4.56 2.4E-05 
E1 -4.02 -7.22 3.10 0.08 2.60 4.06 -4.55 2.4E-05 
E3 -4.14 -7.23 3.14 0.08 2.59 3.36 -4.56 2.4E-05 
E4 -3.74 -7.23 3.11 0.08 2.60 3.45 -4.55 2.4E-05 
E5 -2.31 -7.23 3.11 0.08 2.60 3.54 -4.55 2.4E-05 
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Table S3. Individual parameter estimates for pharmacokinetics model of remdesivir. 

Parameter Value 
𝑘&' 0.86 day-1 

𝑘( 1.2 day-1 

𝑘' 0.05 day-1 

𝑉$ 2.84 
𝑉) 0.12 
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Table S4. Parameter estimates for pharmacokinetics model of hydroxychloroquine. 
Parameter Value 

𝑘' 6.1 day-1 

𝑘( 229 day-1 

𝑘$) 2*106
 day-1 

𝑘)$ 1.5*104 day-1 

𝑘$* 6.5*102 day-1 

𝑘*$ 0.85 day-1 

𝑉$ 0.002 mL 
𝑉) 0.5 mL 
𝑉* 1.6 mL 
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