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Abstract

The recent COVID-19 pandemic is of big and world-wide concern. There is an intense discussion and
uncertainty which factors and sanctions can reduce infection rates. The overall aim is to prevent an
overload of the medical system. Even within one country, there is frequently a strong local variability
in both — political sanctions as well as other local factors — which may influence infection rates. The
main focus of study is analysis and interpretation of recent temporal developments (infection rates).
We present a statistical framework designed to identify local factors which reduce infection rates. The
approach is robust with respect to the number of undetected infection cases. We apply the framework to
spatio-temporal infection data from Germany. In particular, we demonstrate that (1) infection rates are
in average significantly decreasing in Germany; (2) there is a high spatial variability of these rates, and (3)
both, early emergence of first infections and high local infection densities has led to strong recent decays
in infection rates, suggesting that psychological effects (such as awareness of danger) lead to behaviour
changes that reduce infection rates. However, the full potential of the presented method cannot yet
be exploited, since more precise spatio-temporal data, such as local cell phone-based mobility data, are
not yet available. In the nearest future, the presented framework could be applied to data from other
countries at any state of infection, even during the exponential phase of the growth of infection rates.

Introduction

Since March 2020 the new Disease COVID-19 is declared a pandemic by the World Health Organization
(WHO). The disease is caused by a novel virus called severe acute respiratory syndrome (SARS)-CoV-2.
Transmission of the virus between humans is known to happen via respiratory droplets and until today,
no specific medical treatment for the disease is known. The virus was first reported in Wuhan, Hubei,
China, in December 2019. The disease had spread widely over the province of Hubei, but was contained
after strict quarantine imposed on January 23, 2020. The peak of daily confirmed cases of about 4000
was reached on February 3, ten days after the quarantine had been imposed; then the number of daily
new cases decreased below 100 at the beginning of March [8]. Until today nearly exponential growth
has been observed in several countries worldwide including, e.g., Italy, Spain, and the U.S. Despite the
exponential increase, several countries have already observed a decrease in the daily number of infections
(e.g. South Korea, Italy, Spain, and Germany).

In order to better understand various aspects of the pandemic development, research on COVID-19
exploded during the last months. Besides medical studies, also various statistical and mathematical
infection models have been developed and applied to current data, in order to predict possible infec-
tion developments under certain conditions/restrictions or to compare infection rates among different
countries (see, among others, |1,/4,/10,|11,/13]). However, models often suffer from the fact that certain
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mechanistic assumptions are critical for the conclusions and predictions, but can often hardly be validated.

In this work, we present a statistical framework which is not based on specific mechanistic infection
models, but is constructed to analyse current infection numbers, where the latter may show an arbitrary
complex behaviour, possibly varying among different sub-regions of the considered area. The framework
is optimised to reveal factors that explain differences in recent infection rates among different sub-regions.
Thus, in the light of high variability of possible local political, social, environmental or infrastructural
factors that may affect the infection rates, the proposed tool provides an opportunity to extract the
most important factors responsible for COVID-19 propagation. This is important not only to reduce
the exponential rate of infection growth in different countries, but also to decide which sanctions can be
eased if the maximum of the confirmed daily new cases has been surpassed, as it is currently the case in
Germany and several other countries.

Material and Methods

Data structure and availability

German COVID-19 Infection data have been obtained from the Robert-Koch Institut (RKI) provided via
the national platform for geographical data (NPGEO Corona Hub 2020: https://npgeo-corona-npgeo-de.
hub.arcgis.com). In particular, data are available in terms of daily reported infections separately for
each of the 402 existing administrative districts (ADs), which are nested within 16 federal states (Fig. [1).
As a start of the time series we have set February the 22th (2020), which was just before the beginning
of the pandemic in Germany. The time series considered in this work ends at April 13th (2020).
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Figure 1. Map of Germany including the frontiers of the federal states (blue lines) and the
administrative district (black lines) (data from https://public.opendatasoft.com and

https://gdz.bkg.bund.de)
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Quantifying decrease in infection rates

In order to quantify the AD-related recent change in infection rates, we applied three different partially
related methods separately to infection rate time series of each sub-region leading to three different mea-
sures (B1, B2, and B3). Their derivation is detailed in the following.

First, we fitted the generalised additive mixed model (GAMM) [7}[21] to the entire time series of each
AD, where the federal state has been used as a random intercept, and the date as a smooth predictor
term. Additive regression models allow to estimate nonlinear dependencies between predictor variables
(here e.g. the date) and an outcome variable (here e.g. the number of reported infections) [7}/21]. Consid-
eration of such nonlinearities is fundamental here, since the initial increase and possible later decrease in
infection numbers is often strongly nonlinear. In particular (if not stated otherwise) the optimal smooth-
ness has been determined using generalised cross-validation methods [18]. Random intercepts (i.e., the
use of mixed modelling [2}21]) have been applied if data are not independent, but instead nested within
certain units (such as states). Since infection numbers are additionally temporally autocorrelated (infec-
tion numbers depend to some degree on the number of the day before), an auto-regression (AR) structure
of order 1 has been added to the model. Finally, a negative-binomial probability distribution has been
used, to account for the fact that infection numbers do not follow a normal distribution but are (possibly
overdispersed) count data [9,[20,/21]. In addition to the date, also the weekday has been introduced as a
smooth, in particular as a cyclic smooth [18] in order to partial out the distinct effect of the weekday on
reported infection numbers.

Second, separately for each AD, the above described GAMM has been used to predict the partial effect
of the date, i.e., the (possibly nonlinear) date-dependent development of infection rates, where the effect
of the weekday has been eliminated. This smooth predicted curve has been subsequently normalised by
dividing all predicted values by the mean. The latter step ensures the comparability of the temporal
development of infection numbers between the different ADs.

Finally, the normalised smooth curve has been used for each AD to create two different measures
representing the strength of the recent decay: (1) we calculated the value B, which is defined by the
curve value of the most current date minus the value 10 days before, and (2) we calculated S, which is
defined by the value of the current data divided by the maximum of the curve. Thus, £, is proportional
to the current slope of the infection curve (averaged over the last 10 days), whereas By rather relates
the current infection number to the overall maximum of the smoothed infection curve. Hence, £ is
a reasonable measure even if most of the local infection curves are still increasing, whereas B is only
appropriate if most of the infection curves are already decreasing.

To calculate a third type of measure for recent changes in infection rates, a second GAMM was fitted
to the infection data of each AD — similar to the above described GAMM approach, however with two
differences: first, the time series has been restricted to the last 14 days, and second, the dependency on
the date has been assumed to be (log-)linear instead of nonlinear. All other model specifications were as
described above for the calculation of 81 and f2. The advantage of the non-smooth (log-linear) incorpo-
ration of the date variable, here, 83 (the slope of the average log-linear development) was represented by
a corresponding date-dependent regression coefficient, and thus confidence intervals respectively standard
errors could be computed, the latter representing the certainty of each estimate. Furthermore, after slight
reformulations, 83 can be directly interpreted, namely in terms of average percentage change in infection
rates per day. A possible disadvantage of 83 compared to 51 and B2 is that a shorter time series (and thus
less data) have been used, which was necessary to select a time frame with nearly log-linear behaviour of
infection rates corresponding to the model.
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Thus, in summary, three different (partially related) measures have been constructed to characterise
the recent infection rate, namely 8, and 83 (where a negative value indicates a recent decay) as well as
B2 (where values smaller than 1 indicate a decay).

Country-wide, state-specific, and spatial analysis of average infection rates

To calculate and plot the overall (smooth) development of infection rates with time (c.f., Fig. [2/ h) and
depending on the weekday (Fig. [2[1), an appropriate GAMM (structurally strongly related to the above
mentioned approach) has been applied. However, data of all ADs have been analysed simultaneously
here, using again the federal state as a random intercept, but also the ADs (which are nested within the
federal states). Furthermore, we introduced the date again as a smooth term, and the day of the week
as a cyclic smooth (c.f., above). Model validation has been performed based on various residual plots (as
e.g. suggested in [9,19-21]).

To analyse if the very recent decay of infection in Germany is significant, we used the three S-values
as the outcome variable in three different appropriate GAMMs. In particular, we used a 2D thin spline
regression depending on geographical coordinates to reduce spatial autocorrelation 18], and introduced
the federal state as a random intercept. In particular, for 81 and B3 we used the Gaussian probability
distribution, whereas for 82 we applied a Beta-distribution since this value is restricted between zero
and one [3,/9]. Furthermore, for 8; and S, data from different ADs have been weighted (using a priori
regression weights) with respect to the total number of cases in the corresponding AD, whereas for 3
the inverse variance of the estimated regression coefficient has been used as a weight ('inverse variance
weighting’ [6]). Furthermore, the federal state has been used as a random intercept in all three models.

To analyse the average (-values for the different states (Fig. , in the above mentioned GLMMs
(using the normal- respectively the Beta-distribution) the federal state has not been used as a random
intercept but as a fixed effect predictor, using the federal state Baden-Wiirttemberg as the baseline level.
Furthermore, we neglected the spatial 2D smooth in order to avoid collinearities between the spatial
smooth and the federal states. If smooth spatial maps of the S-values have been generated (Fig. [)),
similar models have been used but now neglecting the federal state variable and using only a spatial 2D
smooth as a predictor instead.

Selecting promising factors locally driving infection rates

In order to evaluate possible factors locally driving infection rates, we applied the ’least absolute shrink-
age and selection operator’ (LASSO) method [14}|15] in combination with cross-validation to the data.
LASSO is known to reliably perform model selection even if the total number of possible predictors
is high [9//16]. In particular, we applied LASSO separately to three different types of models (using
b1, B2, respectively (3 as the outcome variable, where for 8; and [ we used the normal probability
distribution. Since the used software (the R-package glmnet, c.f. below) is not able to perform Beta-
regression, we reformulated for the LASSO-step the value (2 into a binomial variable instead (’smaller
one’ vs. ’one’), using a binomial error distribution. We tested the following variables: On the AD-
level we introduced Longitude, Latitude (as well as their interaction term), the date of the first reported
COVID-19 infection (first_infection), the local percentage of people older than 65 years (Age) (data from
https://wuw-genesis.destatis.de), the population density (Density), and the local infection inten-
sity (percentage of people infected by COVID-19 — infection_density). On the coarser level of states,
we introduced human mobility data. In particular, we used mobility data from Google collected by
the type of activity, where activity (visits and length of stay) has been quantified at different types of
places such as retail and recreation, groceries and pharmacies, parks, transit stations, workplaces, and
residential — compared to a baseline level before the COVID-19 pandemic (variables have been named
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Figure 2. Temporal development of COVID-19 infection rates in Germany.(a)-(c) temporal infection
curves separately estimated with a GAMM for each administrative district (AD). (a)-(b) total time
series, (¢) the last 14 days. The colour represents the corresponding S-value, where green colour
indicates a recent decay and red colour a recent increase in infections. (d)-(f) example plots of reported
infection numbers for three AD’s with a recent decay (d), saturation (e) and increase (f). (g)
country-wide total daily reported infection numbers, (h)-(i) smoothed GAMM plot of total infection
numbers, where (h) is the partial effect of the date, and (i) is the partial effect of the weekday. In all
sub-figures (except (g)) the y axis cannot be interpreted in absolute values since either curves have been
normalised for each AD, or partial effect plots are shown.
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accordingly). The baseline has been calculated from a five-week period Jan. 3th until Feb. 6th, 2020.
For the pandemic period, we averaged the values from Feb. 7th until the date of publication. Data
have been obtained from https://github.com/datasciencecampus/google-mobility-reports-data/
blob/master/csvs/international_local_area_trends_G20_20200410.csv.

Software

For all statistical analyses we used the open source software R [12]. In particular, for GAMM regression
analyses we used the functions gam() and gamm() from the R-package mgcv [18]. For LASSO analyses
we used the function glmnet() from the R-package glmnet [5], and for all visualizstions we used the
R-package ggplot2 |17].

Infection rates significantly decrease in Germany

In Fig. 2 (a)-(c) the smoothed temporal development of COVID-19 infections separately estimated for
each AD are plotted, where the colour represents the corresponding [-value representing the strength
of decay (green) respectively increase (red) of infections. As described within the material and methods
section, 81 and 33 are calculated based on the entire time frame (starting with February 22th), whereas
B3 represents the percentage change in infection rates per day during the last 20 days. Three examples
for differently developing sub-regions (ADs) are shown in (d)-(e) (all from the state Bayern): (d) shows a
recent decay, (e) a saturation and (f) a recent increase. However, it is obvious that the majority of curves
in (a)-(c) show a recent decay in infection rates. This recently decaying behaviour can also be seen when
looking at the raw data of total (country-wide) infection numbers (2[ (g)). Indeed, when estimating the
average country-wide infection rate curve without the effect of the weekday (2| (h)) the rate decays since
approximately 10 days, after being rather constant for 10-20 days before the decay. The partial effect of
the weekday shows a distinct minimum at the weekend (2| (e)). New infections are first reported to the
local health office and then collected by the RKI. During weekends, notifications of new infections are
delayed and thus influence the RKI infection dataset, creating the observed decrease at weekends.

In order to analyse if the country-averaged decay is significant, we applied three appropriate GAMMs
using each (-value as the outcome variable. Indeed, all three results indicate a recent highly signifi-
cant country-wide decay: 1 = —1.00 (95 % CI: [~1.26,—0.74]), 82 = 0.50 (95 % CI: [0.45,0.55]), and
B3 = —6.76 (95 % CI: [=7.9,—5.7]). Just a reminder: for 51 and 2, negative values indicate a recent
decay, where for 2, values smaller than one are associated with decreasing infection rates.

Recent infection rates show a distinct spatial variability

Although decay has recently been observed in the country-wide infection rates, Fig. 2| (a)-(f) suggests
that there is a strong local variability in that decrease. To analyse the relative differences between dif-
ferent states, we again used appropriate GAMMs; corresponding results are presented in [3| (a)-(c). In a
second step, we rescaled each S-value across all states (i.e., subtracting the mean and dividing by the
standard deviation) to make the relative differences between states comparable with respect to 1, 82 and
Bs3. Corresponding results are given in [3| (d); the state-specific mean values from the rescaled 31, B2 and
(B3 thus represent the relative differences of recent infection rate changes between the different states. In
particular, low values represent a strong decrease in infection rates, whereas high values represent a less
strong decrease (respectively increase). The absolute values of the Y-axis in [3| (d) cannot be interpreted
directly. Furthermore, confidence intervals in [3| (d) refer to the certainty of the mean value from the
rescaled (31, B2 and 3 for each state.
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Figure 3.
B-values. For the state Baden-Wiirtetemberg in (a)-(c) no confidence intervals have been computes,
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It appears, that the states Sachsen and Bayern show the strongest (and most certain) decays in infec-
tion rates, whereas Thiiringen and Hessen show the less-strongest decays. That Thiiringen and Hessen
nevertheless most probably show in average a decrease and not an increase, can be seen in [3| (a-c) where
all estimated 81 and (B3 values are below zero, and all By values are below one.

Spatial distribution of the different S-values is shown in Fig. [d] In the first row, the spatial raw data
of the estimated (-values are shown. Sub-figures in the second row are based on spatial GAMM-plots,
where the number of knots (= degrees of freedom) for the thin-plate regression spline has been fixed to
k = 35 in all three plots. The aim is to obtain optimal comparability among the spatial distributions of
51, B2, and B3. In the third row, we present the optimal number of knots estimated separately for each
[B-value based on generalised cross-validation.

Overall, there is a very coherent picture of the spatial distribution of the different [-values: In all
cases, the distribution is spatially inhomogeneous, showing in particular in the centre of Germany (on the
boarder of Tiiringhen, and Hessen) a lower decay in infection rates compared to the average development.
Indeed, both states show distinct larger beta values also in our analysis on the state-level . Only the
cross-validation based GAMM-plot for 85 (4| third row, plot on the right-hand side) shows a much coarser
spatial resolution. A possible explanation is that for the calculation of S3 much less data (namely infec-
tion data from only the last two weeks) have been used, which may lead to a larger unexplained variance,
which finally leads to a more conservative estimate of spatial heterogeneity during the cross-validation
procedure.

Thus, in summary, all states show in average a distinct decay in infection rates, where Sachsen and
Bayern belong to the states with an especially strong decay, whereas in Thiiringen and Hessen the decay-
strength is less pronounced.

Which factors drive the local decrease of infection numbers?

In order to further investigate the underlying factors causing the observed spatial differences in infection
rates based on the proposed method, we tested different possible variables (c.f. Material and Methods
section) with the LASSO variable selection method. However, the selection of variables was strongly
determined by their public availability in an appropriate format, such that various potentially interesting
factors have not yet been tested due to the lack of availability.

With respect to [y, this approach selected the variables Infection_density and Retail_recreation.
The subsequent GAM-analysis with these predictors reveals a negative regression coefficient for infec-
tion_density (-74.6, 95 %-CI: [-177.8,17.5]) suggesting that higher local infection densities lead to stronger
current decays of infection rates. The psychological effect of perceived abstractness of the threat might
be the reason for this: as long as the total number of infected in an area is low, it is highly probable that
an individual does not know anyone infected personally and the threat is perceived to be very abstract.
If in contrast an area is affected by a high number of infections, it his more probable that someone knows
somebody who is infected (and/or the region is more present in the media) and the threat is suddenly
perceived as very real, which may induce a much stronger change to a more preventive behaviour.
Furthermore, there is a highly significant positive regression coefficient for Retail_recreation (0.061, 95
%-CI: [0.02,0.1]) indicating that a high use of places like restaurants, cafes, shopping centres, theme
parks, museums, libraries, and movie theatres prevents the recent decay of infection rates. Even when
most of these places are closed now, a previous intense use of these places might still influence current
rates due to the delay processes in infections.

With respect to f2, the LASSO analysis selected the variables first_infection, Age, infection_density,
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Figure 4. Spatial distribution of the three S-values. First row: raw data, second row: GAMM-smooth
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and Transit_stations. The subsequent GAM-analysis with these predictors reveals highly significant de-
pendencies on infection_density and first_infection. In particular, the positive regression coefficient for
first_infection (0.02, 95 %-CI: [0.01,0.03]) indicates that infection rates decay the stronger the earlier the
first infection in this region has been detected. At first glance, one might think that an earlier start
leads to an earlier decay due to the natural progression of the infection curve. However, the 'natural
progression’ would be a further increase for a long time, which only saturates or decreases to changes in
behaviour. The latter can be caused either by intrinsic (psychological) or extrinsic factors (sanctions).
Since sanctions (such as curfews) have been realised approximately at the same time everywhere in Ger-
many (with only differences of some days), the observed decay in connection with early detected infections
is also most probably a result of the above mentioned psychological factors.

A highly significant negative value for infection_density (-97.2, 95 %-CI: [-135.6,-58.9]) suggest again that
high local infection densities lead to stronger current decays of infection rates. Thus, both effects are
most probably related to the above described awareness of the thread.

Furthermore, the positive regression coefficient for Age (0.022, 95 %-CI: [-0.002,0.045]) indicates that in
regions with more people older than 65, infection rates decay less. This might be explained by the fact
that younger people may show a more mobile behaviour (e.g. due to their work) so that sanctions (such
as curfew) might affect them in a stronger way. Other factors might be that older people are possibly
less frighten (due to more life experience), and it also could be more difficult for them to substantially
change their habits.

The negative value for Transit_stations (-0.012, 95 %-CI: [-0.027,0.002]) finally indicates that an increased
use of public transport leads to a decrease of recent infection rates. This result is counter-intuitive,
and we therefore think that here, possibly a random correlation was detected. Indeed, this result is
statistically non-significant and movement data have been introduced only at the coarse federal state-
level. For future work, such data with a finer spatial resolution (such as currently available for the UK
https://wuw.gstatic.com/covid19/mobility/2020-04-05_GB_Mobility_Report_en.pdf) would al-
low for more reliably estimates.

Finally, with respect to 83, LASSO analysis did not select any variables. This observation might be
again explained by the fact that for the calculation of 83 (compared to 8 and B3) much less data have
been used (namely infection data from only the last two weeks instead of the entire period), which may
lead to a larger amount of unexplained variance negatively influencing the detection of correlations during
LASSO analysis.

Summary and outlook

In summary, we present a new statistical approach which is specifically designed to identify factors influ-
encing local infection rates. Since only relative changes in detected infections are considered, the approach
is robust with respect to the percentage of undetected infections, as long as the latter does not locally
change in time. The approach has been applied to spatio-temporal COVID-19 infection data in Germany.
Nevertheless, it can be adapted to other countries at any state of infection, provided that both, infection
numbers and factors affecting them, are provided in a sufficient spatio-temporal resolution. The analysis
of daily COVID-19 infections in Germany reveals that (1) currently, infections are in average significantly
decreasing; (2) there is a strong spatial variability in the local recent infection rates, especially varying
in the centre of Germany (mostly including the two states Thiiringen and Hessen); (3) there are strong
evidences that both, an early emergence of first infections and high local infection densities, lead to strong
recent decays in infection rates. The latter may indicate that psychological effects (such as the aware-
ness of danger due to infection cases in the circle of friends and acquaintances) lead to a more cautious
behaviour, which again reduces the local risk of additional infections.

The presented approach can be further applied in the nearest future to investigate additional potential
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variables, such as the impact of local restrictions (due to political decisions) or average movement range
(based on cell-phone GPS data) on different spatio-temporal scales. For this study, the availability of
such data was a bottleneck, e.g., since movement data are (up to our knowledge) not yet available on the
spatial scale of administrative districts in Germany.
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