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ABSTRACT: 

Background: How human-associated microbial communities resist and respond to 25 

perturbations remains incompletely understood. Viral challenge provides one opportunity 

to test how human microbiota respond to disturbance.  

Methods: Using an experimental human rhinovirus infection challenge model, we 

explored how viral infection may alter microbiota of the upper respiratory tract (URT). 

Healthy human volunteers were inoculated with HRV serotype 39. Samples were 30 

collected by lavage before and after inoculation from healthy (sham inoculated, n=7) and 

infected (n=15) individuals and subjected to 16S rRNA gene sequencing through 

amplification of the V4 hypervariable region.  

Results: No evidence for differences in community alpha-diversity between cohorts was 

observed. The composition of microbiota of sham-treated and infected subjects did not 35 

appear distinguishable and no taxa were significantly associated with infection status. We 

did not observe support for a correlation between microbial dynamics and counts of 

specific monocytes. Subject identity was found to be the strongest determinant of 

community structure in our dataset.  

Conclusions: Overall, our findings do not suggest a consistent nasopharyngeal 40 

microbiota response to rhinovirus challenge. We support the conclusion that this microbial 

community is individualized. Broadly, our findings contribute to our understanding of how 

and when immune responses to viruses affect bacterial communities in the URT.  



INTRODUCTION: 45 
 

Longitudinal studies show the composition of human-associated microbial 

communities (microbiota) can remain steady over long periods of time [1-3]. To 

understand the forces stabilizing human microbiota, it can be helpful to study processes 

that disrupt human-associated microbial communities. One such process is pathogen 50 

colonization. Pathogen invasion can persistently deplete over half of bacterial taxa in a 

body site [2]. Concomitant inflammatory responses can also reduce colonization 

resistance by disrupting indigenous microbial communities [4].  To maintain homeostasis, 

commensal microbiota may have evolved to resist pathogens by inhibiting the growth or 

colonization of invading bacteria [5].  55 

Microbial communities residing in the nose and throat are thought to play an 

important role in pathogen colonization [6]. Acting as the interface between the respiratory 

system and the environment, the upper respiratory tract (URT) contains a complex 

network of distinct microbial populations whose distributions are dictated by a number of 

factors stemming from the environment, the spatial heterogeneity of the URT and host 60 

immune function [7, 8]. Less well-understood is how these communities change across 

infection. Recent work has linked the dynamics of specific microbiota in the URT with 

susceptibility to infection. For example, an early abundance of Moraxella and 

Corynebacterium/Dolosigranulum in communities was associated with stable dynamics 

and decreased frequency of reported acute respiratory infections (ARIs) [9, 10]. Shifts 65 

towards community dominance by a select few bacteria have been shown to precede the 

appearance of viral pathogens and symptoms [10]. Moreover, surveys during acute 



respiratory infections depict a conceivable consistent response to certain viral infections. 

Studies have found consistent increases or decreases of certain bacterial taxa following 

influenza disturbance [11-15], and an overrepresentation of Haemophilus influenzae has 70 

been observed in instances of Respiratory Syncytial virus (RSV) [16-18]. Small amounts 

of live attenuated influenza vaccine have also repeatedly resulted in increased bacterial 

diversity up to six weeks post inoculation in the URT [12, 13]. Following these increases, 

nasal taxonomic diversity decreases over time [18]. 

Investigating how infections reshape URT microbiota in humans is challenging. 75 

Observational studies of human infection often require unique cohorts at high risk of 

disease [19]. Discovering a predisposing microbiota presents a challenge due to the need 

for voluntary viral exposure or a long study timeline. Although research to date has 

already highlighted dynamic, niche-specific communities, it is still in its infancy. No 

consensus definition of ‘healthy’ or ‘infected’ nasopharyngeal communities in mature 80 

adults currently exists in part because many studies have focused on infant or pediatric 

populations [20].  

Here, we address these challenges using a human rhinovirus (HRV) challenge 

study to examine how viral infection affects the human nasal microbiota. Use of a 

challenge study design over the course of two weeks enabled us to collect serial 85 

microbiota samples of mature hosts before and after infection, as well as control for 

seasonal effects. Focus on a viral pathogen also let us investigate how host response to 

infection, and not direct bacterial interactions between a pathogen and commensals, 

affected human microbiota. Such host immune responses have been associated with 



URT microbiota shifts including increases in microbial species richness and taxonomic 90 

diversity [13, 21]. In the context of viral ARIs, prior work has associated these infections 

with URT alterations [11-17], and HRV infections specifically have been linked to 

increases in select genera during infection and a decrease in community diversity [22, 

23]. Here, we generate additional observations across 22 participants, to our knowledge 

forming the largest cohort study of URT microbiota during HRV challenge to date.  95 

 

METHODS:  

Sample Collection 

Healthy volunteers were recruited and challenged with human rhinovirus as 

previously described [24] under a study protocol approved by the Duke Medicine 100 

Institutional Review Board (Durham, NC). Following informed consent and screening, 

eligible subjects (n=30) were enrolled and entered the phase I quarantine facility at Duke’s 

clinical research unit (DCRU) for 2 days following inoculation with 106 TCID50 GMP HRV 

serotype 39 and subsequent viral challenge [24]. Patients were randomly assigned to 

challenge and sham groups. Subjects returned for 3 consecutive daily follow up visits 105 

through day 5 for daily symptom and sample collections (Figure 1, Table 1). Of the 30 

subjects enrolled, 23 completed the study. Of the 23, 7 asymptomatic individuals were 

inoculated with a sham treatment and 15 exhibited evidence of infection through HRV 

shedding or seroconversion. One subject (subject 5) was inoculated with rhinovirus but 

recorded healthy symptoms scores and excluded from analysis for a total of 22 110 

individuals.  



Nasal lavage samples of the URT were collected using 0.9% sterile saline as 

described [25] at baseline (day -1), post-inoculation (8hr), and daily thereafter (24hr, 48hr, 

72hr, 96hr, 120hr). Wash samples were immediately chilled on ice, gently vortexed, 

aliquoted into cryovials (1mL), frozen and stored at -80˚C.  These samples were used to 115 

determine infection status by quantitative viral cultures. Symptoms were recorded at least 

twice daily using standardized symptom scoring [26].  We used a modified Jackson Score 

as published previously [24, 27] to determine those subjects who developed typical cold 

symptoms of a rhinovirus infection. The highest score per symptom on each day was 

summed over the course of the challenge (Table S1); the median was used as a cutoff to 120 

identify HRV-positive mild and severe response groups.  

Prior to inoculation, subjects underwent repeated HRV antibody testing as well as 

baseline laboratory studies, including complete blood count (CBC) and serum 

chemistries. Peripheral blood samples from CBC readings were obtained from each 

subject at predetermined intervals (Table S2).  125 

 

DNA Extraction, Amplification, and Amplicon Cleaning 

 DNA from bacteria was isolated using a MoBio PowerSoil DNA extraction kit. To 

increase DNA output from nasal lavage fluid (NLF), prior to extraction, we first transferred 

800 µl lavage aliquots to a 2 mL tube and centrifuged at 8000 rpm for 20 minutes. DNA 130 

extraction then followed the PowerSoil protocol. [28, 29].  The V4 regions of the 16S rRNA 

gene were amplified from extracted DNA samples utilizing a set of primers with the 

sequences 5’-CCGGACTACHVGGTWTCTAAT-3’ and 5’- 



CAAGCAGAAGACGGCATACGAGAT – 3’. All samples were assigned a unique 12 bp 

barcode and amplified in triplicates along with a negative control. At the end of 35 cycles 135 

samples were incubated at 72°C for 10 minutes. PCR products were run on a gel to 

ensure amplification of the correct size and a lack of contamination. The 16S V4 amplicon 

was purified and separated using AMPure XP beads (Beckman Coulter Genomics). The 

purified products (~33 µl supernatant) were transferred to a fresh 96-well plate and stored 

at –20°C for later use or quantification.  140 

 

Quantification and Sequence Preparation 

Initial amplicon quantification was done using the Quant-iT dsDNA High-Sensitivity 

Assay Kit (Invitrogen). To ensure a sufficient concentration of DNA (20-50 ng/µl) in the 

sequencing library, amplicons were pooled in ratios ensuring an even representation of 145 

DNA from each sample. Pooled products were purified using the MinElute PCR 

Purification Kit (Qiagen) and gel-purified using the QiaQuick Gel Extraction Kit (Qiagen). 

Concentration of pooled DNA was verified using the Qubit 2.0 Fluorometer to confirm a 

minimum volume of 20 µl of pooled sample with a concentration greater than or equal to 

20 ng/µl. All pooled samples were sequenced on an Illumina Miseq instrument at the 150 

Duke University Sequencing Core using the MiSeq v2 Reagent Kit (Illumina) with paired 

end, 150 base pair reads.  Operational taxonomic units (OTUs) were picked at a 97% 

sequence similarity threshold using the uclust method referencing the Greengenes 

dataset (gg_13_8) [30]. OTUs seen in fewer than 5 samples were removed from 



downstream analysis resulting in 1,982 and 344,982 sequences as the lower and upper 155 

bounds respectively (mean 56,685.831, S.D 51,077.356, median 40,948.0). 

 

Sequence Analysis  

Diversity and compositional analysis was undertaken in the QIIME computational 

environment, versions 1.9.0 and 1.9.1 [31] using phylogenies obtained from the 160 

Greenegenes dataset (version 13_8) [30]. Within sample (alpha) diversity of the nasal 

microbiome was evaluated using counts of observed OTUs, the Shannon diversity index, 

and the Chao1 index. Analysis of within-population diversity was carried out using a series 

of scripts in QIIME with a previously published workflow [32]. Between population analysis 

(beta diversity) was calculated using Bray-Curtis, unweighted Unifrac, and weighted 165 

Unifrac distances. PCoA analysis was performed using the principal_coordinates.py and 

make_2d_plots.py scripts in QIIME.  

 

Statistical Analysis  

To qualitatively and quantitatively compare differences in inter-individual (between 170 

subject) and intra-individual (within subject) Unifrac distances, the 

make_distance_boxplots.py script in QIIME was used. The script performs the students 

two-sample t-test to identify statistically different distributions; calculation of the non-

parametric p-value was done using Monte Carlo permutations. Due to limitations in how 

implementations of the PERMANOVA calculate effects in a longitudinal study, we split 175 

our statistical tests in the following manner. We tested for the effects of Time and an 



interaction between Time and Infection status using the function call 

adonis(dm~Infection*Time + Subject, data=map, strata=Subject permutations=999) 

where the metadata factor Time signifies time following inoculation (t= -24h, 8h, 24h, 48h, 

72h, 96h, 120h). We used the adonis function available in the R (Version 3.2.0) package 180 

vegan (version 2.3.0) [33]. To measure the effect of Subject, we reran adonis without 

Subject as a blocking factor (formula=dm~Subject, data=map, permutations=999). To 

test the effect of Infection in light of the nested design of our experiment, we performed a 

non-parametric ANOVA using the command nested.npmanova(dm~Infection + Subject, 

data = map, permutations = 999) available in the R package Biodiversity R (version 2.8-185 

2).  

To determine the effect HRV has on community composition in our time series, the 

Kruskal-Wallis H test was performed at the phylum level (for all phyla) and at the genus 

level (for common taxa, meaning they were detected in at least 15 samples, resulting in 

171 unique genera tested). Relative abundance of individual and clustered taxa (see 190 

below) in infected and sham-treated samples was compared at the phyla and genus level 

using the Mann-Whitney U test with correction for multiple hypothesis testing using the 

Benjamini-Hochberg method. 

Clustering of taxa was performed similarly to a previously published technique [34]. 

In order to elucidate cluster composition, OTUs were initially grouped at the genus level. 195 

10.7% of taxa were discarded; these taxa were not assigned at the genus level. Rare 

genera, classified as genera observed in fewer than 5 samples were discarded - rare 

genera comprised 382 of 647 total observed genera. The remaining 265 genera were 



included in the analysis and assigned a cluster. The analysis pipeline was as follows: 

pairwise correlations between genera were first estimated using SparCC [35]. A pairwise 200 

dissimilarity matrix was computed as (1-correlation between genera) and was then 

investigated with the hierarchical clustering toolbox in SciPy version 0.11 [36]. The 

clustering was carried out using the "linkage" function (method = weighted). Following, 

taxa were split into clusters utilizing the fcluster function (criterion = distance). 

Identification of a clustering threshold required a tradeoff between model simplicity and 205 

fidelity. Model simplicity entails building clusters with a reasonably interpretable number 

of genera, whereas fidelity involves capturing the dynamics of more genera. By choosing 

a clustering threshold of ½ the maximum distance between any 2 genera, we balanced 

these two ideals. Cluster abundances were reported as the fraction of total 16S rRNA 

gene reads for a sample.  210 

Counts of leukocytes were correlated with the abundances of six major clusters. 

To account for potential trends resulting from a comparison of timeseries data, the first 

difference of each pair was calculated for analysis. Only complete pairs of cluster 

abundance and monocyte counts were included in the analysis. 

 215 

RESULTS: 

 Thirty volunteers were enrolled in the original study [24]. After excluding volunteers 

with incomplete sampling data and baseline viral contamination, data for twenty-two 

volunteers was available for sequencing and analysis (Table 1). The average age of 



participants was 26.73 years. Fifty-nine percent of the subject pool was male and 220 

eighteen percent were of Hispanic or Latino origin. Of the twenty-two volunteers, seven 

were given sham inoculations; these make up the sham-treated subject population 

(Figure 1). All infected subjects positively reported one or more of the following symptoms 

common to HRV during the trial: runny nose, stuffy nose, sneezing, cough, malaise, sore 

throat, headache, shortness of breath, earache (Figure S1). Eight of the fifteen subjects 225 

in the infected cohort made up the severe infection group with a sum symptom score 

greater than 18 over the course of the infected period (Figure S1; Table S3).  

 A total of 118 samples across 22 subjects were successfully amplified and 

sequenced, with a representation of all study participants at a minimum of 3 time points 

(at baseline and at least two other time points). A median of 41,280 reads survived quality 230 

filtering and were assigned taxonomy per microbiota sample (min=2,069, max=347,066, 

median absolute deviation=23,271). Sequences were clustered into 11,462 distinct OTUs 

(97% identity cutoff). After removing OTUs seen in fewer than 5 samples, 1,784 unique 

OTUs were left for further analysis. These taxa represented 281 genera from 16 bacterial 

phyla. A median of 329 unique filtered OTUs were observed in each sample.    235 

 We first tested whether species diversity was affected by HRV infection and 

symptom severity. We computed the alpha-diversity at the OTU level of the nasal 

microbiota of infected and sham-treated subjects at baseline (Figure S2) and over the 

HRV exposure period following inoculation (Figure 2). HRV infection was not associated 

with differences in alpha diversity as measured by the Shannon index, counts of observed 240 

OTUs, or Chao1 diversity index (p>0.05, Wilcoxon rank-sum; Figure 2). Within the 



infected cohort, symptom severity was also not associated with alpha diversity (p>0.05, 

Wilcoxon rank-sum; Figure S3) 

We next examined whether there were compositional differences associated with 

HRV infection across the subject pool. We performed principal coordinate analysis 245 

(PCoA) of pairwise distances between samples to visualize the similarity of nasal 

microbial community samples. PCoA plots using on Bray-Curtis, weighted Unifrac, and 

unweighted Unifrac measures visually clustered by individual identity (Figure S4). By 

contrast, we did not observe distinctions between samples according to subject health 

status (Figure 3). Samples also did not appear to be structured temporally among infected 250 

patients before, during, and after infection (Figure S4). Similarly, samples did not appear 

to group by HRV response severity (Figure S5). 

Multiple statistical analyses quantitatively supported the conclusion that host 

phenotypes, aside from subject identity, are weak drivers of microbiota variation in our 

dataset. Non-parametric comparisons based on Monte Carlo permutations of unweighted 255 

and weighted Unifrac distances, as well as Bray-Curtis dissimilarity, revealed significantly 

higher inter-individual subject distances than intra-individual subject distances across the 

entire subject pool and when testing the sham-treated and infected cohorts separately 

(P<0.001; student’s two-sample t-test). Furthermore, semi-parametric Analysis of 

Variance (PERMANOVA) showed that subject identity had a significant association with 260 

microbiota composition (R2=0.457; p<0.001; Table 2). Infection status was not 

significantly associated with community structure (p=0.338, Table 2) nor when interacting 



with time (R2=0.033; p=0.601; Table 2). Time as a singular effect was not found to be 

deterministic of microbial structure (R2=0.046; p=0.113; Table 2).  

We investigated whether specific microbial taxa could be associated with HRV 265 

infection. The most abundant phyla were Firmicutes (median=40.37%, MAD=10.30%), 

Actinobacteria (median=21.21%, MAD=10.27%), and Proteobacteria (median=21.33%, 

MAD=11.08%) across all subjects. We observed no significant differences between levels 

of phyla between sham-treated subjects and the infected cohort after FDR correction 

(p>0.05; Wilcoxon rank-sum tests; Figure 4, Table S4). We also did not observe changes 270 

in the relative levels of dominant taxa when samples from sham-treated and infected 

subjects were broken down by time point: before (t=-24 hours), during (t=8h to 96h), and 

after (t=120h) HRV infection (p>0.05; Kruskal-Wallis H tests; Table S5A). We then 

repeated the prior statistical tests at the genus level (the finest taxonomic level at which 

16S rRNA are generally assigned with confidence with only a minimal loss of taxonomic 275 

resolution [37]). Again, no changes in the relative levels of dominant genera when 

grouping the infected and sham-treated cohorts by time point were observed (p>0.05; 

Kruskal-Wallis H tests; Table S5B). Comparison of genera in the sham-treated and 

infected cohorts with abundance greater than 1% during infection revealed no genera to 

be significantly associated with HRV infection after FDR correction (p>0.05; Wilcoxon 280 

rank-sum tests; Table S6).  

 Since significant bacterial dynamics could be obscured by the high number of 

taxonomic groups we tested for association with infection, we also performed a genus-

level clustering analysis (Figure 5A). This analysis was designed to group genera with 



shared dynamics, easing microbiota interpretation and reducing the number hypotheses 285 

tested in statistical analyses [19, 34]. Clustering showed six major groups of bacterial taxa 

which accounted for at least 1% subjects’ total median abundance at one or more time 

points (Figure 5B/C). We did not observe significant differences in the abundance of these 

major clusters at any time point among HRV patients relative to subjects in the sham-

treated cohort (p>0.05; Wilcoxon rank-sum tests; Table S7). 290 

 Finally, we hypothesized that taxonomic dynamics within subjects’ microbiota 

might be more strongly associated with immune response than infection status. It has 

been previously demonstrated during viral infection that commensal bacteria augment 

immunity and antiviral gene expression [38]. As a result, we looked to identify statistically 

significant microbial-leukocyte relationships that may exist in the URT. The differential 295 

relative abundance of the six major clusters of genera at every timepoint was correlated 

with differences in counts of white blood cells, neutrophils, lymphocytes, monocytes, 

eosinophils, and basophils at the corresponding timepoints. No significant relationships 

were found between these bacterial and immune variables (Spearman’s rank correlation 

coefficient tests; p>0.05; Table S8). 300 

          

DISCUSSION: 

 
Here, we used HRV challenge to examine if and how nasal microbiota respond to 

viral infection. We found a lack of evidence for orderly dynamics and measurable 305 

differences in the microbiota of the nasopharynx following perturbation. HRV infection 

was not associated with changes in community diversity nor associated with changes in 



community structure or the levels of specific bacterial taxa. Within the infected cohort we 

found no differences in diversity associated with symptom severity. Furthermore, we were 

unable to relate any specific taxa with a subject’s susceptibility to HRV infection. No 310 

associations emerged between bacterial groups and host phenotypes, like infection 

status, or between microbiota variation and time past inoculation. Additionally, no 

correlations were found between leukocyte levels and bacterial genera. Subject identity 

was the strongest driver of overall community structure identified in our dataset. 

Interpreting our lack of evidence for a URT microbiota response to HRV infection 315 

invites consideration of our samples size and power to detect meaningful effects. 

Determining an appropriate sample size for a microbiota study ultimately depends on the 

strength of an expected effect [39]. Here, we were motivated to examine the effects of 

HRV infection on URT microbiota in part because prior investigations of other pathogens 

in the nose and throat had revealed striking dynamics among commensal microbiota. We 320 

note that orderly changes in the abundance of bacterial taxa following infection by 

pathogens like Vibrio cholera [40], Clostridium difficile [41] and Salmonella [42] have also 

been observed in the guts of individuals or animals. We can estimate our likelihood of 

detecting such changes by considering one of our prior studies, in which we observed a 

predictable succession of microbiota following pathogen colonization in the human gut 325 

[19]. We found that levels of a common microbial genus in healthy fecal samples 

(Prevotella, !=36%, "=19%) were reduced among 10 infected individuals (!=6%, " 

=14%), and that overall microbiota Shannon diversity was also lower among individuals 

with cholera (!=2.88, "=0.96) than in healthy subjects (!=4.82, "=0.82). Power analyses 



indicate that should post-infection taxonomic or diversity responses among URT 330 

microbiota have similar effect sizes, we would have had a 92-98% chance of detecting 

such effects. Therefore, given our lack of significant statistical findings here, we conclude 

that our HRV challenge cohort likely did not experience an URT microbiota response of 

similar intensity and inter-individual consistency as in prior microbiota studies of infection. 

Ultimately, should reproducible statistical associations exist between our HRV infection 335 

model and URT microbiota, their effect sizes may be modest and require hundreds of 

human samples to detect [43]. 

 The lack of a clear URT microbiota response to HRV infection presented here 

contrasts with prior reports that HRV infection was associated with significant changes in 

levels of select genera. Differences between this study and prior ones include differences 340 

in cohort size and broader age demographic of this study population as compared to 

earlier reports [23, 44]. Also, discrepancies in sampling methods and location across 

studies may influence our ability to observe patterns. For example, the microbiota 

measured in our nasal lavages represents bacteria sampled across multiple, and likely 

heterogenous, locations in the URT [45]. Still, none of the bacterial taxa previously 345 

associated with HRV were conserved across the prior studies and only two studies, Allen 

et al. and Hofstra et al., were explicit in their control for multiple hypothesis testing across 

bacterial taxa. Moreover, our study is consistent with prior HRV challenge reports in the 

lack of a reproducible response to HRV. Only one of the prior studies reported decreases 

in URT alpha-diversity during HRV infection [23], and none detected statistically 350 

significant shifts in overall community structure (e.g. via PERMANOVA) following HRV 



infection. Ultimately, understanding why viral infection does not always affect resident 

microbiota is likely to be an informative area of future research, as modulation of the host 

immune response by viruses is a complex and burgeoning field [46]. Knowing if and why 

viral infection does not alter microbiota will help define the limits of cross-talk between 355 

viral and bacterial immune responses.  

 The resistance of human URT microbiota to HRV infection also has implications 

for the pathogenesis of respiratory co-infection. Primary viral infections in the respiratory 

tract can be exploited by opportunistic bacterial pathogens [47], and a retrospective 

analysis of the 1918-1919 influenza pandemic suggests multiple waves of succession 360 

following infection resulted in secondary bacterial pneumonia [48]. Our finding that URT 

microbiota lack a consistent response to HRV infection suggests that if bacterial 

pathogens do exploit HRV infection, they do so opportunistically. No one bacterial species 

or group appears favored to grow in the wake of HRV infection. 

 365 

Conclusions 

Among our study participants, we did not identify significant associations between HRV 

and human URT microbiota. The severity of clinical symptoms was independent of 

community diversity. We also did not identify host immune markers that were correlated 

with URT microbiota composition among the sham-treated and infected cohorts. Subject 370 

identity was found to be the strongest determinant of URT microbial community structure 

in our dataset. Our findings support the hypothesis that the nasopharyngeal microbial 



community is individualized and do not reveal stereotypical microbiota responses to 

rhinovirus challenge. 

 375 
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FIGURES 515 

 

 

 Figure 1. Study design. Subject distribution within the sham-treated (A) and infected 
(B) cohorts. Sham-treated subjects are underlined green. Infected subjects exhibiting 
shedding or seroconversion are underlined in orange and pink respectively. (C) Temporal 520 

distribution of sampling. 
 

 

 



 525 

Figure 2. Taxonomic composition of the sham-treated and infected cohorts. (A) 
Stacked bar chart of the median abundance of most abundant genera within the two 
cohorts during infection at t=48h (p > 0.05; Wilcoxon rank-sum). According to the 
Greengenes database, operational taxonomic units were considered “unclassified” if the 
RDP classifier could not assign taxonomy at the family level. Genera comprising less than 530 

1% of the total abundance were combined into the “Other” category. (B) Box and whisker 
plot of Chao1 diversity index. Sham-treated (n=5) versus infected (n=12). No significant 
differences in alpha diversity between the two cohorts were found (p > 0.05; Wilcoxon 
rank-sum) (see figure S2 for distributions of baseline alpha diversity and figure S3 for 
rarefaction curve). (C) Box and whisker plot of Bray-Curtis dissimilarity at baseline and 535 

48h. 



 

Figure 3. Principal coordinate analysis of nasal microbiota. The similarities of 
temporal nasal microbiota were projected onto a two-dimensional space. Shown are 
projections made using the unweighted Unifrac (A; p=0.305) and weighted Unifrac (B; 540 

p=0.301) distances, as well as Bray-Curtis dissimilarity (C; p=0.337) colored by infection 

status. Reported p-values are calculated using non-parametric multivariate analysis of 
variance with Infection as a main effect. Sample coloring by subject and time-point are 
provided in Figure S2.  



 545 

Figure 4. Box and whisker plot of relative abundance of dominant phyla by time 
point. Counts for sham-treated samples (before: n=7, during: n=4, after: n=6). Counts for 
infected samples (before: n=15, during: n=12, after: n=10). No significant differences 
during infection among all phyla were observed (p>0.05; Wilcoxon rank-sum). 
 550 



 

Figure 5. Abundance of nasal microbiota from the sham-treated and infected 
cohorts over time. (A) To simplify analysis, highly correlated genera were grouped 
according to their dynamics. Microbiota from sham-treated subjects are shown in green. 
Absent samples are shown with an X. (B) Median group abundances across infected 555 

subjects. (C) Median group abundances across sham-treated subjects. Abundance 
values are shown next to the bars (p > 0.05; Wilcoxon rank-sum). The three most 

abundant genera in each cluster are shown in the legend above. Genera assignments to 
clusters not shown can be found in Table S9.  
 560 

 



Tables 
Table 1: Subject Information 

       
Subject Age, years Sex Race SheddingB SeroconversionC Symptomatic 
1 22 M White - - - 
2 25 F White - - - 
3 27 F White - Yes Yes 
4 35 M Black Yes - Yes 
5E 24 M White - - - 
7 26 F White Yes - Yes 
8 30 M Black Yes Yes Yes 
9 23 M WhiteA Yes Yes Yes 
10 21 M WhiteA Yes - - 
12 29 F White Yes - Yes 
13 24 M White - - - 
14 27 M Black Yes - Yes 
15 31 M Asian Yes - - 
16 28 F Black Yes - Yes 
17 24 M White Yes Yes Yes 
22 25 M White Yes Yes Yes 
23 37 F American Indian/ Alaskan Native Yes Yes Yes 
24 29 M WhiteA Yes - Yes 
25 21 M White - - Yes 
27 21 F WhiteA - - - 
28 40 M White Yes - - 
29 19 F Asian - - YesD 

30 24 F White - - YesD 

 
A Hispanic or Latino Specified 565 
B Meets criteria for infected/shedding phenotype (measurable viral titer on 2 or more days 24 hours post inoculation) 
C Convalescent (day 28) Seroconversion 
D HRV free yet reported symptoms 
E Excluded from analysis 



 570 

Table 2: Results of variation partition testing. Analysis of variance was carried out 
using non-parametric multivariate ANOVA (Methods) applied to three different measures 
of β-diversity. R-squared values are provided when computed by the statistical package 
used to test a given effect.  

 Unweighted Unifrac Weighted Unifrac Bray-Curtis 
 R2 P R2 P R2 P 
Infection - 0.321 - 0.215 - 0.338 
Subject 0.394 0.001*** 0.468 0.001*** 0.457 0.001*** 
Time 0.044 0.288 0.029 0.890  0.046 0.113 
Infection:Time 0.039 0.661 0.030 0.707 0.033 0.601 
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SUPPLEMENTARY INFORMATION 

 

Figure S1: Mean symptom scores of sham and infected cohorts. Symptom scores 
were collected periodically throughout a week period. Error bars represent the standard 
error of the mean. The symptom scale for the categories of runny nose, stuffy nose, 595 

sneezing, coughing, malaise, sore throat, fever, headache, shortness of breath, and 
earaches was defined as 0-none/unknown, 1-mild, 2-moderate, 3-severe, 4-very severe. 



 

Figure S2: Baseline taxonomic composition of sham-treated and infected cohorts. 
(A) Stacked bar chart of the median abundance of most abundant genera within the two 600 

cohorts during infection at baseline (t=-24h). (B) Box and whisker plot of Chao1 diversity 
index. Sham-treated (n=7) versus infected (n=15). No significant differences in alpha 
diversity between the two cohorts were found (p > 0.05; Wilcoxon rank-sum) (see figure 
S3 for rarefaction curve). 



 605 

Figure S3: Composition of Mild and Severe HRV response groups. A) Stacked bar 
chart of the median abundance of most abundant genera within the two cohorts during 
infection at t=48h (p > 0.05; Wilcoxon rank-sum). (B) Box and whisker plot of Chao1 
diversity index. Response severity as determined by symptom score: Mild (n=7) vs 
Severe (n=8). No significant differences in alpha diversity between the two groups were 610 

found (p > 0.05; Wilcoxon rank-sum). 



 

 

Figure S4. Principal coordinate analysis of nasal microbiota. Projections were made 
using the unweighted Unifrac (A) and weighted Unifrac (B) distances, as well as the Bray-615 

Curtis dissimilarity (C). Samples are colored by individual (left column) and time (right 
column). 



 

Figure S5: Principal coordinate analysis of nasal microbiota within the infected 
cohort. Shown are projections made using the unweighted Unifrac, weighted Unifrac 620 

distances, and Bray-Curtis dissimilarity colored by infection response severity and health 
status.   



 

 

Figure S6. Alpha diversity rarefaction curve demonstrating the relationship between 625 

sample size and the number of observed species in infected samples. Lines are labeled 

by time following inoculation (before: t=-24 hours, during: t=8h to 96h, after: t=120h). 
When comparing the sham-treated and infected cohorts, no significant differences in 
sequences per sample were found (p>0.05, Wilcoxon rank-sum; Table S10). 
 630 

 

 

 

 



Table S1: Raw reported symptom scores. 635 

 

Table S2: Complete blood count sample collections. Subjects had samples taken 24 

hours to inoculation with virus (baseline) and at set intervals following HRV challenge.  

 

Table S3: Subject assignment to mild and severe infection groups. The highest 640 

symptom score reported in the categories of runny nose, stuffy nose, sneezing, cough, 

malaise, sore throat, headache, shortness of breath, and earache on each day was 

summed over the course of the week and is reported below. The median of this metric 

serves as the cutoff for mild (n=7) and severe (n=8) response HRV groups.  

 645 

Table S4: Wilcoxon rank-sum test to test the null hypothesis that the relative 

abundances of phyla were the same between infected and healthy individuals during 

infection (t=48h).  

 

Table S5A: Kruskal-Wallis H test of dominant phyla to test the null hypothesis that the 650 

relative abundances of phyla were the same across time points in healthy and infected 

subjects.  

 

Table S5B: Kruskal-Wallis H test of dominant genera to test the null hypothesis that 

the relative abundances of the dominant genera were the same across time points in 655 

healthy and infected subjects.  



 

Table S6: Wilcoxon rank-sum test to test the null hypothesis that the relative 

abundances of genera with median abundance greater than 1% during infection (t=48h) 

were the same between infected and healthy individuals.  660 

 

Table S7: Comparison of clusters classified as dominant during health and 

infection (t=48h).   

 

Table S8: Results of Spearman Rank Order Correlation.  R: Spearman correlation 665 

coefficient. P: FDR-corrected p-value (n=75). 

 

Table S9: Genera assignment to clusters. 

 

Table S10: Wilcoxon rank-sum test to test the null hypothesis that the sequences 670 

per sample were the same between infected and sham samples.  

 

 

 

 675 


