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An impact of viral mutations on the extent of an epidemic is examined. A mechanism of immu-
nization of the population via spread of weakly mutated strain as a natural factor terminating the
epidemic is indicated. An epidemic model which details this mechanism is proposed.

I. INTRODUCTION AND MOTIVATION

The COVID-19 virus has spread across the world, be-
coming a pandemic. It brings with it a great deal of
social, economic, and political damage.

In this rapidly developing crisis, it is necessary to reli-
ably assess the current state of the epidemic as well as to
predict its near- and medium-term development. A sci-
entifically sound assessment is vital for deciding on how
to allocate the significant yet limited medical resources
available to combat the epidemic. And it is crucially
important for determination of optimal quarantine mea-
sures, such that they would effectively reduce the sever-
ity of the epidemic but would not inflict near-irreparable
damage to the economy.

In this paper, we consider the role of the inherent mu-
tability of the virus. We recognize it as the principal fac-
tor which critically suppresses the growth of novel viral
epidemics. The mechanism of this suppression has a well
known evolutionary nature. In plain words, once viruses
get under attack of the immune systems of the infected
humans, they mutate to survive in the hostile environ-
ment. Given the diminutive scale of the virus reproduc-
tion time, it is fair to assume that viruses may mutate
quite fast on the human timescale. And by evolution-
ary principle, a less pathogenic virus strain has better
survival chances. When a statistically significant num-
ber of people get infected, there should be a large num-
ber of them with strong immunity that facilitates less
pathogenic virus mutations. As these people transmit
their weaken strain to others, we observe some natural
cross-immunisation.

We develop a new mathematical model which takes
viral mutability into account, and compares our results
against other models and current factual data available
for COVID-19 pandemic. Our results allow us to evaluate
our ability to suppress the spread of the epidemic, and
to debate on measures which we should take in order
to optimally facilitate its containment and termination.
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We also provide a medium term forecast of the epidemic
development in those countries where COVID-2019 has
yet to unravel in full force.

The paper is structured as follows.

In the first part we review the commonly accepted
SIR epidemiological model [1]. We argue that the SIR-
based estimates of the peak values of the infected pop-
ulation and epidemic duration can hardly be supported
by COVID-19 data for a number of countries. We at-
tribute this fact to the SIR model overlooking the impact
of the virus mutability on the epidemic, whereas the fact
of rapid mutations is now reliably established [2].

We next extend the SIR model to incorporate a virus
mutation factor. Our model, which we call SIMR, shows
that rapid virus mutations that accompany avalanche
epidemic phase can drastically scale down the epidemic
and reduce the height of its peak by a factor of ten-to-
hundred as compared to the SIR results. In the second
part of this paper, we use the SIMR model to analyze
the now practically terminated COVID-19 outbreak in
Wuhan of China [3]. This allows us to evaluate the main
internal parameter of the model - the probability of mu-
tation of the transmitted virus. Next, we shall use this
approach to analyze and assess the current situation in
other countries where the epidemic still goes.

In the third part, we analyze the current state of the
epidemic in a number of countries and megacities, as well
as make medium-term forecasts of the development of the
situation. The analysis is based on the same SIMR model
with the same basic parameter.

In the conclusion, we qualitatively evaluate the role of
the SIMR model parameters in limiting the scale of the
epidemic as well as discuss the role of the age structure
of a country population which is not explicitly reflected
in the SIMR model in the suggested form.
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II. TWO MODELS OF THE EPIDEMIC
DEVELOPMENT

A. Basic SIR model that does not take into
account mutations of the virus

It is the main epidemic development model that exists
today to describe the course of an epidemic. It is based
on a three-stage scheme, where the entire population is
divided into three parts: S is susceptible (uninfected), I
is infected (infected, sick), R is recovered.

It is assumed that the survivors acquired perfect im-
munity at the cost of the disease and no longer get sick.
Taking into account that S(t), I(t) and R(t) are the frac-
tions of these groups throughout the entire population,
the model builds the evolution of the epidemic through
a system of three differential equations:

dS

dt
= −βIS (1)

dI

dt
= βIS − γI (2)

dR

dt
= γI (3)

The model parameter β characterizes the rate of trans-
mission of the virus, and γ the rate of recovery and
thereby the acquisition of immunity. The SIR model
keeps the sum S(t) + I(t) + R(t) = 1 constant, as it
should be.

Point S = 1, I = R = 0 corresponds to a state with
no infected. Small deviations from it develop in time
according to the law ∝ exp [(β − γ) t]. The emergence of
the epidemic and its further development is controlled in
this model by the only dimensionless parameter r = β/γ.
At a high propagation speed of the virus , when r is more
than one, the number of sick people starts to grow and
the epidemic begins.

Later on, the number of sick people increases until a
significant majority of the population passes through the
stage of the disease and thereby acquires immunity. At
the beginning of the epidemic, the vast majority of peo-
ple S(0) = 1− I0 are healthy I(0) = I0 � 1 is the initial
fraction of carriers of the virus, R(0) = 0 - nobody have
been sick and gained immunity so far). During the epi-
demic, a significant fraction of people 0 < I (t) < 1are
sick. At the end of the epidemic, there are no more sick
people, I(t) = 0. Some people R(t) as a result of the epi-
demic went through disease and gain immunity, another
part S(t) escaped the disease. The typical course of the
epidemic in the SIR model is as follows (Fig.1): The max-
imum fraction of the sick people during the epidemic is
given by the relation [1]

Imax = 1− (1 + ln r) /r (4)

FIG. 1. SIR model epidemic development (β=0.6, γ=0.12).

It follows from this that the fraction of sick people at
the peak of the epidemic can be very high. So, at r = 5 it
is Imax = 48% as shows the I(t) plot in Fig.1. Experience
shows that the fraction of sick people never reaches this
level. This fact alone indicates the incompleteness of the
SIR model and the existence of other mechanisms for
ending the epidemic, not related to the acquisition of
immunity by people through the stage of the disease.

B. New SIMR model taking into account virus
mutations

To understand what exactly can be this way, you need
to consider that the virus itself, like the human body,
changes during the course of the epidemic. And if a
person gains immunity in the course of a disease, then
the initial strain of the virus, due to the sharply in-
creased replication rate in the body affected by the dis-
ease, rapidly mutates.

Mutations of the virus occur randomly, but it is pre-
cisely those strains that lead not to acute, but to a sub-
normal, latent course of influenza that are transmitted
most successfully. It is the carriers of such a strain that
transmit the largest number of viruses, and therefore it
is precisely such a strain that spreads most rapidly and
most successfully. Thereby there is a kind of mutual com-
plementarity:

1) an aggressive strain quickly and efficiently propa-
gates inside the body affected by the disease, but it has a
limited duration of action, during which it either is elim-
inated by the immune system or leads to the death of the
body. Further, he is less likely to spread further due to
the rapid immobilization of the patient;

2) a milder strain does not lead to acute illness and
multiplies inside the human body to a much lesser extent,
but it has the ability to remain in the body for a long
time, because it is built into the subnormal state of the
body. Further, he is more likely to transmit from person
to person due to the lack of external manifestations of
the disease.

For these reasons, the softer strain spreads faster and
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thereby exhausts the full area of the virus, gradually de-
priving the original aggressive strain of the possibility of
further spread. In general, this should lead to a change
in the composition of the strain circulating during the
epidemic in the direction of its mitigation.

Further, although the mutated virus does not lead to
an acute course of the disease, the very scale of its repro-
duction in the human body is limited by the activation
of the natural immune mechanism. Due to the genetic
proximity of the original and mutated viruses, the effect
of the latter acts as a natural vaccine, leading to hidden
immunization of the body.

Both of these factors the softening of the initial strain
and the hidden immunization act in the direction of
ending the epidemic.

Virus mutations can be included in the base SIR
model, giving the original virus ability to mutate dur-
ing transmission.

For this, along with the previous three categories (sus-
ceptible - infected - recovered), the fourth is introduced
- those who received the mutated virus. The fraction of
such people who got a mutated virus and were protected
by it from the disease is denoted by M(t). In the future,
they do not get sick and live the same way as they were
recovered persons from the set R(t).

Let the probability of mutation in a single act of virus
transmission be m < 1. Thus, the fraction of sick people
I(t) will be replenished at a rate of β (1−m) IS. The
fraction of people infected with a mutated virus M(t)
will be replenished at a rate of βmIS from sick people
and at a rate of βMS from those who already got mutant
virus. Then equations of the modified model, similar to
the base one, take the form

dS

dt
= −β (I +M)S (5)

dI

dt
= β (1−m) IS − γI (6)

dM

dt
= β (mI +M)S (7)

dR

dt
= γI (8)

Later on, we will call it the SIMR model. At m = 0, it
leads to the absence of mutations, as a result toM(t) = 0,
and just coincides with the basic SIR model.

In the essence, the SIMR model is based on the model
assumption that there are only two strains of the virus -
the original (aggressive) and mutated (milder) ones. Now
it is important to understand the effect of the mutation
factor m on the epidemic in this model.

Like the SIR model, the SIMR model keeps the sum
S(t) + I(t) + M(t) + R(t) = 1 constant. Point S = 1,
I = M = R = 0 corresponds to the state with no infected

FIG. 2. SIMR model epidemic development ( m=0.2, β=0.6,
γ=0.05 ).

people. Small deviations from it develop in time accord-
ing to the law ∝ exp [(1−m) (β − γ) t]. The emergence
of the epidemic and its further development is controlled
in the SIMR model by the only dimensionless parameter
r = (1−m)β/γ. At a sufficiently high rate of spread
of the virus β, when r > 1, the fraction of sick people
begins to grow and an epidemic occurs.

A typical course of the development of the epidemic
when mutations are taken into account is presented in
Fig.2.

A characteristic feature of the mutation model is a sig-
nificantly smaller fraction of sick people. This is due to
the fact that the vast majority of people got a one and
thereby undergo the hidden immunization.

On the graph, this is manifested in the fact that during
the course of the epidemic, the fraction of M(t) who got
a new, mutated virus significantly exceeds the fraction of
R(t) who got the original strain and thereby got sick.

We emphasize that from the point of view of epidemi-
ology, these two groups are equivalent - both of them
are no longer sick and gained immunity. Although the
price they paid for it is different. The first group (M)
suffered the disease subnormally and barely noticed any-
thing. The second group (R) suffered the disease in severe
form with all the attendant risks.

Since a person got a mutated virus does exhibit any
pronounced disease and practically does not appear ex-
ternally, it is natural to interpret the value of M(t) as a
percentage of hidden immunization.

The key effect manifested in the SIMR model
of the epidemic is the avalanche-like spread of the
mutated strain, which is significantly faster than
the epidemic itself. As can be seen from Fig.2, at
the peak of the epidemic, the percentage of the
hidden immunization M(t) caused by this strain
already exceeds 70%, and soon afterwards tends
to 100%. In the framework of the SIMR model,
this is precisely the terminating factor of the epi-
demic.

Thus, the SIMR model describes a natural mechanism
for limiting the scale of the epidemic, which is based on
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a mutation of the original virus, its gradual displacement
from the circulating strain, and hidden immunization of
the population with the mutated strain.

To assess the level of the hidden immunization, it is
convenient to consider the limiting case of the absence
of the usual immunity, γ = 0. In this case, during the
course of the epidemic, all susceptible persons sooner or
later get either the original strain - I(t) - or the softened
mutated one - M(t). In this limit, the SIMR model has
an exact solution (see Appendix A), allowing to find the
limiting value of the fraction of infected I(t) by the end
of the epidemic, i.e. as t→∞:

I (∞) = (I0)
m

(9)

For example, with an initial infection rate of one in a mil-
lion, I0 = 10−6 , and m = 0.2, the total infection rate of
the original strain is I (∞) = 1/16 . This is part of those
who have been immunized through the disease. The rest
will receive a mutated virus, M (∞) = 1−I (∞) = 15/16
, or 93.8%. This is the fraction of immunity resulting
from the epidemic through hidden immunization. At
m = 0.4, the total fraction of the hidden immunization
increases to 255/256, i.e. up to 99.6%.

It is clear that Eq.(9) gives the upper limit of the max-
imum value of I(t) because the recovery term in Eq.(2)
is negative.

These examples show a strong influence of the prob-
ability of mutation m on the fraction of those who had
the initial strain during the epidemic and for any nonzero
γ by the end of the epidemic there are no sick people,
I (∞) = 0.

The used approximation γ = 0 is good to describe the
rise of epidemic, since in this stage spread of the virus
dominates. In this approximation the SIMR model has
exact solution for any dependence β(t). This is impor-
tant since such dependence as well as the initial spread
rates β(0) are unknown. They are affected by traditional
modus vivendi of people in different countries and by
different quarantine measures, and it is very hardly to
evaluate both factors in a reasonable way.

Fortunatelly it turns out to be possible to exclude the
dependence β(t) from the result and to connect directly
two main values, M and I, in a simple relation (see Ap-
pendix A):

M = I

[(
I

I0

)m/(1−m)

− 1

]
(10)

Thereby one can trace the invisible level of the
hidden immunization M as the fraction of sick
people I is known at any time. Further we find the
mutation factor m from the data of Wuhani epidemic and
then will be in a position to evaluate the current level of
the hidden immunization in different countries, where the
epidemic still is rising. Eq.(10) gives the lower limit of
the current value of M . This can be seen from the end
limit t→∞ when I = 0 and M > 0.

In the point of maximum the right side of Eq.(6) is
zero, that immediately gives S = 1/r. As M ≤ 1 − S,
this means

M ≤ 1− 1/r (11)

Thereby in rise of the epidemic we have the lower limit
(10), and in the maximum both lower and upper limits
(10,11).

III. SIMR SIMULATION OF THE WUHANI
EPIDEMIC (CHINA)

The SIMR model has two main parameters.
The first of these is the rate β of spread of the virus.

This parameter, being large enough, triggers the epi-
demic mechanism. For this, similarly to the basic SIR
model, the condition must now be satisfied for a slightly
different dimensionless parameter r = (1−m)β/γ: r >
1. Here 1/γ is the characteristic time course of the dis-
ease.The virus spread rate β also determines the duration
of the epidemic. In a wide range of other parameters,
the time for the epidemic to reach a maximum is approx-
imately 10 cycles, the duration of each of which is the
time of a single act of virus transmission, 1/β.

The second parameter of the SIMR model is the prob-
ability of mutation m during virus transmission. The
main property of this parameter is its determining effect
on the maximum level of the epidemic, i.e. on the number
of cases at its peak. This number rapidly decreases with
increasing m according to the law (1−m)

10
, which cor-

responds to a decrease in the fraction of the initial strain
with factor(1 − m) for each cycle of virus transmission
and its replacement with a softened, mutated virus.

The parameters β and m should be gained from com-
bining statistics with the prediction of the SIMR model.
In the case of interest to us, the most complete data
are available on the epidemic of the COVID-19 virus in
Wuhan (China), where it originated and is already close
to completion. We will take as a basis the evolution of
the current number of sick people for the entire period,
and overlay the theoretical graph of the SIMR model on
these data:

The code for solving the equations of the SIMR model,
giving the theoretical The coincidence shown is achieved
with a virus transmission time of 1/β = 2.2 days and a
typical disease progression time of 1/γ = 14 days.

The probability of the viral mutation during its trans-
mission based on these data is m = 0.39. Later on, we
consider this value a constant, which is an internal prop-
erty of the virus.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 3.8. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

The irreparable discrepancy between the theoretical
curve and statistics in the vicinity of the maximum, be-
tween the 15th and 30th days of the epidemic, allows for a
fairly simple explanation: it was during this period that
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FIG. 3. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in Wuhan (China) accord-
ing to the SIMR model (solid line) with statistical data [3]
(dots). The SIMR parameters are taken as m=0.39, β=0.45,
γ=0.071. Here and in all further figures, the line I(t) shows
the number of cases, and the line M(t) is normalized to satu-
ration with the value of M = 1 (100% hidden immunization).
The red line indicates the hidden immunization M = 0.9 at
the peak of I(t).

the Chinese authorities took unprecedented quarantine
measures at the center of the epidemic, which of course
reduced the virus transmission rate β by several times.
In the SIMR model with a constant parameter β, this is
not explicitly taken into account, but the qualitative ef-
fect of these measures on the dependence I(t) is obvious.
From a comparison of the two lines on the graph, the
effect of restrictive measures is visible. They lowered the
maximum number of cases by about 25,000, which, with
a 6 percent mortality rate, is about 1,500 saved lives.

Further, we can compare the maximum percentage of
cases in Wuhan (with a population of 12 million, this is
about 0.5%) with the prediction of a basic SIR model
that ignores virus mutations. According to the above
formula (4), for r = β/γ = 6.3, this value should be 55%,
which is completely unrealistic.

It is also extremely important that the SIMR model
allows us to track the growth of the percentage of hidden
immunization M(t), which is not yet available to direct
measurements. According to the SIMR model, at the
peak of the Wuhan epidemic (on its 25th day) it was
already 80%, on the 40th day 99.98%, and now, on the
80th day, i.e. on 11/02/2020, is almost 100%. This is
what allows us to consider the Wuhan epidemic to be
over.

IV. SIMR-MODELING AND FORECAST OF
THE COVID-19 EPIDEMIC IN SEVERAL

COUNTRIES

Next, we use the SIMR model to analyze the current
state of the epidemic in some specific cases. We note
right away that the model proceeds from constant rather
than local parameters, and therefore can pretend to de-
scribe only the average distribution of the epidemic in

each country, developing only in time. At the same time,
it is clear that in megacities and conglomerates it should
develop much faster. This is exactly what is observed
during the development of the pandemic. In order to
smooth out this discrepancy between the model and the
real situation, we will choose in each country the refer-
ence region of compact residence, which accounts for the
majority of infections. For example, in Italy such a region
is Lombardy with a population of 10 million people (of
the total population of Italy 60 million). The following
is a summary table of such reference areas / megacities
for various countries to which the SIMR model will be
applied (see Tab.1).

The initial number of infected in each case is selected
from the principle of correspondence between the model
and statistics. It has a logarithmically weak influence on
the result, however, it is given here in order to enable
complete verification of the model calculations. Further,
it is understood that the rate β of the virus spread dur-
ing an epidemic can and should be reduced by restrictive
measures. For this reason, the growth in the number of
infected people is slowing. Thus, a SIMR model with a
constant value of the parameter β can only show a pes-
simistic assessment of the course of the epidemic, corre-
sponding to the absence of dependence β(t). The initial
value of the parameter β will be taken from the initial ex-
ponential portion of the observed dependence I(t) in the
first 10-15 days of the epidemic. To increase the reliabil-
ity of this assessment, we use the data starting from the
moment when the number of sick people exceeds 1000.

We assume that the probability of a virus mutation
is its internal property, does not depend on factors of
external influence, and therefore can be directly taken
from the Wuhan data in all cases: m=0.39. The time of
exit from the disease is on average constant, determined
by the average level of immunity and is 12-14 days. This
corresponds to the rate value is about γ=0.07 and will be
a bit varied for different countries for best fitting. The
exception when this parameter is noticeably smaller is
Italy, which have a large percentage of the elderly pop-
ulation with weakened immunity due to age. Thus, the
expression for the increment of the dependence I(t), hav-
ing the form of α = (1−m)β−γ, allows to find the initial
spread rate of the virus β from the established values of
α,γ, and m.

A. Italy

Here the epidemic develops according to the most dra-
matic scenario. The number of cases has already reached
80 thousand, and due to the large number of elderly
among the cases, the mortality rate is noticeably higher
than in Wuhan. The dynamics of the number of cases in
Italy is shown in Fig. 4.

The initial value of the increment is obtained from the
number of sick people on 02.29.2020, I(0) = 1049 and
after 10 days - on 10.03.2020, I(10) = 8514 [3]. Hence,
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Country Population Region Population Initially 

(Mio.) (Mio.) Infected

China 1400 Wuhan 12 2000

South 50 Daegu 2.5 200

Korea

Italy 60 Lombardie 10 1000

Spain 40 Madrid 15 1000

Catalonia

Russia 140 Moscow 20 200

USA 330 Top  20 states 200 2000

Germany 80 Bavaria,  NRW,   42 1000

Baden-Württemberg

World 6400 Top 20 countries 1000 30000

TABLE I. Reference regions

the initial increment is α = 1
10 ln 8514

1049 = 0.21. Given
the known probability of mutation m=0.39 and a very
small value of the parameter for the rate of exit from the
disease γ = 0.03, this, in accordance with the relation
α = (1−m)β − γ, gives an estimate of the initial virus
spread rate at the start of the epidemic: β = 0.21+0.03

1−0.39 =
0.39. It is this value of β that leads to the model graph
in the Fig.4.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 7.9. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

It is clearly seen that after the first 2 weeks of the
epidemic, the growth in the number of sick people slowed
noticeably compared to the SIMR model with a constant
value of β. It is natural to consider this as a consequence
of the restrictive measures taken, leading to the decrease
of β.

FIG. 4. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in Italy according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.39, γ=0.03.

A comparison of the theoretical and observed depen-
dences I(t) shows a noticeable lag of the latter by about
14 days. This indicates a later onset of the peak com-
pared with the case of constant β, and the delay scale
has already been determined, although it may slightly
increase. Further, it is natural to assume that restrictive
measures can only reduce the height of the maximum
I(t), which for the theoretical curve is at the level of 120
thousand.

The lower limit of hidden immunization in Italy in ac-
cordance with Eq.(10) is about 20%.

Thus, in this example, we see that the SIMR model is
not able to reproduce the exact course of the epidemic
dependence I(t), but it gives an obvious upper limit on
the height of the maximum and a reasonable estimate of
the peak time. In this case, we are talking about another
two weeks.

B. Spain

Here the situation is similar to Italy. The number of
cases exceeded 80 thousand and continues to grow. The
dynamics of the number of sick people in Spain is pre-
sented in Fig. 5.

The initial value of the increment is obtained from the
number of sick people on 09.03.2020,I(0) = 1169 and
after 10 days - on 19.03.2020, I(10) = 16139 [3]. Hence,
the initial increment is α = 1

10 ln 16139
1169 = 0.26. Given the

known probability of mutation m=0.39 and a value of the
parameter for the rate of exit from the disease γ = 0.06,
this, in accordance with the relation α = (1−m)β − γ,
gives an estimate of the initial virus spread rate at the
start of the epidemic: β = 0.26+0.06

1−0.39 = 0.52. It is this
value of that leads to the model graph in the Fig.5.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 5.3. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

It is clearly seen that after the first week of the epi-
demic, the growth in the number of sick people slowed
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FIG. 5. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in Spain according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.52, γ=0.06.

noticeably compared to the SIMR model with a constant
value of β. It is natural to consider this as a consequence
of the restrictive measures taken, leading to the decrease
of β.

The lower limit of hidden immunization in Spain in
accordance with Eq.(10) is about 9%. On the other hand,
closeness to the maximum implies by Eq.(11) the upper
limit of the hidden immunization as already about 80%.

A comparison of the theoretical and observed depen-
dences I(t) shows a noticeable lag of the latter by about
10 days. This indicates a later onset of the peak com-
pared with the case of constant β, and the delay scale
has already been determined, although it may slightly
increase. Further, it is natural to assume that restrictive
measures can only reduce the height of the maximum
I(t), which for the theoretical curve is at the level of 100
thousand.

C. Germany

In Germany the epidemic is developing much slower
than in other European countries and in the USA. The
number of sick people here has already reached a max-
imum of 70 thousand and has stopped growing. The
dynamics of changes in the number of cases in Ger-
many is presented in Fig. 6. The initial value of the
increment is obtained from the number of sick peo-
ple on 08.03.2020, I(0) = 1022 and after 10 days - on
18.03.2020, I(10) = 12194 [3]. Hence, the initial incre-
ment is α = 1

10 ln 12194
1022 = 0.323. Given the known prob-

ability of mutation m=0.39 and a value of the parameter
for the rate of exit from the disease γ = 0.075, this, in
accordance with the relation α = (1−m)β− γ, gives an
estimate of the initial virus spread rate at the start of
the epidemic: β = 0.323+0.075

1−0.39 = 0.53. It is this value of
that leads to the model graph in the Fig.6.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 4.3. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

FIG. 6. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in Germany according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.53, γ=0.075.

It is clearly seen that after the first week of the epi-
demic, the growth in the number of sick people slowed
noticeably compared to the SIMR model with a constant
value of β. It is natural to consider this as a consequence
of the restrictive measures taken, leading to the decrease
of β.

As the epidemic in Germany passed maximum, by
Eq.(11) the upper limit of the hidden immunization is
currently about 75%.

A comparison of the theoretical and observed depen-
dences I(t) shows a decrease of the maximum by about
50 thousand and it delay about 6 days. Both effects are
an obvious consequence of the severe restrictive measures
taken at the beginning of the epidemic. The flip side of
such an effective restrictive approach is, from the point
of view of the SIMR model, a certain slowdown in the
growth of the hidden immunization and thereby delay-
ing the maximum point of the epidemic - and hence its
cessation.

However, as the epidemic maximum is already reached,
the hidden immunization at this point is about 75%. This
indicates the end of the epidemic within the next 10 days.

D. Russia

In Russia the epidemic started much later as compared
with other European countries and in the USA. From
this reason the number of sick people is not high (about
15000) but grows rapidly. The dynamics of changes in
the number of cases in Russia is presented in Fig. 7
The initial value of the increment is obtained from the
number of sick people on 29.03.2020, I(0) = 1462 and
after 15 days - on 13.04.2020, I(10) = 16710 [3]. Hence,
the initial increment is α = 1

15 ln 16710
1462 = 0.17. Given the

known probability of mutation m=0.39 and a value of the
parameter for the rate of exit from the disease γ = 0.05,
this, in accordance with the relation α = (1−m)β − γ,
gives an estimate of the initial virus spread rate at the
start of the epidemic: β = 0.17+0.05

1−0.39 = 0.35. It is this
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FIG. 7. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in Russia according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.35, γ=0.05.

FIG. 8. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in USA according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.53, γ=0.05.

value of β that leads to the model graph in the Fig.7.
The dimensionless epidemic factor from here is r =

(1−m)β/γ = 4.3. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

Coincidence of the SIMR graph with statistical data
enables to use the solution for M(t) as the value of the
current hidden immunization in Russia. It is about 12%.

The epidemic in Russia in still in development and
exhibits very good coincidence with forecast of the SIMR
model, with no delay. The pick is expected in 10 days on
the level of 35,000 sick people

E. USA

In USA the epidemic is developing faster than in China
and Europa, the number of cases has already exceeded
300 thousand and continues to grow. The dynamics
of changes in the number of sick people in the USA
is presented in Fig. 8. The initial value of the in-
crement is obtained from the number of sick people on
13.03.2020, I(0) = 2126 and after 14 days - on 27.03.2020,
I(14) = 99909 [3]. Hence, the initial increment is α =

FIG. 9. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in South Korea according
to the SIMR model (solid line ) with statistical data [3]
(dots). The SIMR parameters are taken as m=0.39, β=0.46,
γ=0.03.Saturation of M(t) corresponds to 100% hidden im-
munization. Fraction of the mutated virus in the total initial
infection is taken to be f=0.9.

1
14 ln 99909

2126 = 0.275. Given the known probability of mu-
tation m=0.39 and a value of the parameter for the rate
of exit from the disease γ = 0.05, this, in accordance
with the relation α = (1−m)β− γ, gives an estimate of
the initial virus spread rate at the start of the epidemic:
β = 0275+0.055

1−0.39 = 0.53. It is this value of that leads to
the model graph in the Fig.8.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 6.5. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

The lower limit of hidden immunization in USA in ac-
cordance with Eq.(10) is currently about 9%.

It is clearly seen that after the first week of the epi-
demic, the growth in the number of sick people slowed
noticeably compared to the SIMR model with a constant
value of β. It is natural to consider this as a consequence
of the restrictive measures taken, leading to the decrease
of β.

Comparison of the theoretical and observed dependen-
cies I(t) shows a lag of the latter by about 8 days. This
indicates a later onset of the peak compared with the
case of constant β, and the delay scale has already been
determined, although it may slightly increase. Further,
it is natural to assume that restrictive measures can only
reduce the height of the maximum I(t), which for the
theoretical curve is at the level of 600 thousand.

F. South Korea

In South Korea, as in other countries of Southeast
Asia, the epidemic developed much more slowly than in
the West. The data of South Korea, presented in Fig.
9, are very different from the data of the South of Eu-
rope and the USA. At the maximum of the epidemic,
the number of infected people did not reach here even 8
thousand. To understand the reason for this difference,
two facts must be taken into account: 1) the geograph-
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ical proximity of South Korea and Wuhan, and 2) the
epidemic in South Korea began in mid-February, when
it was at its peak in Wuhan. As shown earlier in sec-
tion II, the red line in Fig.3, the hidden immunization
in Wuhan at this point was 90%. This means that 90%
of virus came in South Korea from Wuhan already mu-
tated . This was exactly the composition of the virus
population got in South Korea from Wuhan.

Accordingly, it is necessary to introduce this fact into
the initial conditions of infection in South Korea: instead
of the initial condition M(0) = 0 common to all previous
cases, here it is necessary to take M(0) = 9I0. This
means that the hidden immunization with mutated virus
from Wuhan has been taking place in South Korea since
the very start of the epidemic.

The initial value of the increment is obtained from the
number of sick people on 22.02.2020, I(0) = 416 and
after 10 days - on 03.03.2020, I(10) = 5120 [3]. Hence,
the initial increment is α = 1

10 ln 5120
416 = 0.25. Given the

known probability of mutation m=0.39 and a value of the
parameter for the rate of exit from the disease γ = 0.03,
this, in accordance with the relation α = (1−m)β − γ,
gives an estimate of the initial virus spread rate at the
start of the epidemic: β = 0.25+0.03

1−0.39 = 0.46. It is this
value of β that leads to the model graph in the Fig.9.

It is important to understand that South Korea did not
go through one, but two epidemics at once - the initial
aggressive and the new mutated virus. The same SIMR
model shows that if South Korea entered the epidemic
along with Wuhan and got only the original strain of the
virus, the number of cases at the peak of the epidemic
would not be 8, but 30 thousand. It is the entry of the
mutated virus into the epidemic that explains the SIMR
model of a much milder course of the epidemic in the
entire region of Southeast Asia.

G. World

At last, we consider the summary data starting on
March 10, which we will conditionally consider as the
beginning of the post-Wuhan pandemic. Let’s combine
them with the result of the SIMR model, as shown in
Fig. 10.

The initial value of the increment is obtained from
the number of sick people on 10.03.2020, I(0) = 48031
and after 10 days - on 20.03.2020, I(10) = 172591 [3].
Hence, the initial increment is α = 1

10 ln 172591
48031 = 0.128.

Given the known probability of mutation m=0.39 and a
value of the parameter for the rate of exit from the dis-
ease γ = 0.03, this, in accordance with the relation α =
(1−m)β−γ, gives an estimate of the initial virus spread
rate at the start of the epidemic: β = 0.128+0.03

1−0.39 = 0.32.
It is this value of β that leads to the model graph in the
Fig.10.

The dimensionless epidemic factor from here is r =
(1−m)β/γ = 3.0. Thus, the epidemic condition r > 1
is fulfilled, as it should be.

FIG. 10. Comparison of the dynamics of the number of cases
during the COVID-19 epidemic in the world according to the
SIMR model (solid line ) with statistical data [3] (dots). The
SIMR parameters are taken as m=0.39, β=0.32, γ=0.065.

It is clearly seen that after the first week of the epi-
demic, the growth in the number of sick people slowed
noticeably compared to the SIMR model with a constant
value of β. It is natural to consider this as a consequence
of the restrictive measures taken, leading to the decrease
of β.

A comparison of the theoretical and observed depen-
dencies I(t) shows a noticeable lag of the latter by about
3 days. This indicates a later onset of the peak compared
with the case of constant β, and the delay scale has al-
ready been determined, although it may slightly increase.
Further, it is natural to assume that restrictive measures
can only reduce the height of the maximum I(t), which
for the theoretical curve is at the level of 1,500 thousand.

V. CONCLUSIONS

The SIMR model constructed in our work is a direct
generalization of the basic SIR model that takes into ac-
count the accelerated evolution of the virus during an
epidemic within the framework of the simplest approxi-
mation of two strains. However, it has the same limita-
tions as the base model. It does not take into account
two circumstances: 1) heterogeneity of parameters even
within one country, and 2) the age structure in the pop-
ulation.

The first of them should lead to territorial heterogene-
ity of the rate of spread of the virus, β, which, apparently,
increases with increasing population density. We smooth
out this factor by considering the reference regions with
the highest concentration of the population.

The second is related to the age-dependent level of
immunity, which determines the rate of at which the
body emerges from the disease. This requires a separate
consideration, going beyond the framework of the con-
structed simple SIMR model. At the same time, even it
allows one to qualitatively assess the effect of the av-
erage age of the population on the course of the epi-
demic. In countries with a predominantly elderly pop-
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ulation (Italy), there is a longer course of the epidemic
with a higher gentle maximum and a longer exit from
it. This is due precisely to the low value of the average
immunity parameter γ in elderly patients.

We emphasize once again that the main property of the
solutions of the SIMR model is the avalanche-like spread
of the mutated strain, which is faster than the epidemic
itself. The hidden immunization of the population re-
sulting from this spread stops the epidemic.

Now we are in a position to evaluate the effect of all
three model parameters on the incidence curve I(t) in an
epidemic. It always begins with an ascent, then turning
to a maximum and a descent.

The steepness of the rise is determined by the spread
rate, β. This is exactly the parameter that is influenced
by quarantine measures.

The height of the maximum in the SIMR model is de-
termined by the virus mutation factor, m. It is impossible
to influence this factor, but knowing that it is possible
to forecast the course of the epidemic, which allows us
to plan and allocate resources. We consider this param-
eter as inherent property of the virus, a kind of epidemic
index, which determines its extent.

The steepness of the descent depends on the γ-
parameter that is on the rate of gaining immunity of
the sick persons and - to some extent - on the quality
of medical care.

The experience of the Wuhan epidemic shows that it
is quarantine measures that can have a significant - al-
beit limited - impact on the height of the maximum epi-
demic. In this particular case, according to our model, it
was reduced by about 1/3, i.e. for 25 thousand infected.
Accordingly, with an average mortality rate of 6%, this
saved approximately 1,500 lives.

In general, the development of a pandemic has a lim-
ited time frame, practically independent of efforts in a
particular country. However, the height of the maximum
epidemic in each country is determined by the intensity
of timely quarantine measures. This reduces the steep-
ness of the rise and allows to go through the epidemic
without rising to its top, but to make it in a ”tunnel”
way. As it was in China and, apparently, in Germany
(see Fig.3 and Fig.6).
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Appendix A

It is convenient to explore the role of mutation factor
m in the absence of immunity (γ = 0, R = 0). We choose
a unit of time so that β = 1. Then the SIMR model turns

into an exactly solvable three-component SIM model

dS

dt
= −S(I +M) (A1)

dI

dt
= (1−m)SI (A2)

dM

dt
= (mI +M)S (A3)

keeping the sum S + I + M = 1. The equation for S
is separated:

dS

dt
= −S(1− S) (A4)

and has a solution

S(t) =
1

1 + et−a
(A5)

The initial conditions I(0) = I0 and S(0) = 1− I0 fix the
value of parameter a by the relation

I0 =
1

1 + ea
(A6)

After that, the second equation for I(t) is integrated:

I(t) = I0 exp

[
(1−m)

∫ t

0

S (τ) dτ

]

= I0 exp

[
(1−m)

∫ t

0

dτ

1 + eτ−a

]

=
I0

[I0 + (1− I0) e−t]
1−m (A7)

Of interest is the asymptotic behaviour of the fraction of
sick people I(t) at t→∞, that is expressed as

I (∞) = (I0)
m

(A8)

It is Eq.(9) of the main text. For example, for I0 = 10−6

we have for the asymptotic of the sick people fraction
I (∞)

m = 0.2⇒ I (∞) =
1

16

m = 0.4⇒ I (∞) =
1

256

Accordingly, the asymptotic of the hidden immunization
M (∞) = 1− I (∞) in the same cases are

m = 0.2⇒M (∞) =
15

16
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m = 0.4⇒ I (∞) =
255

256

These examples show how the epidemic outcome changes
with increasing mutation parameter m.

Note that the found relation (A8) holds for any mono-
tonic dependence β(t) corresponding to a change in the
transmission rate β during the course of the epidemic due
to quarantine restrictions. The only condition is the ful-
filment of the relation r = (1−m)β/γ � 1, which allows
neglecting the immunity factor γ, as done in equations
(A1-A3).

This allows to express the hidden immunization M
through the fraction of sick peopleIindependently on
the concrete functionβ(t). Dividing Eq.(A3) through
Eq.(A2) results in following uniform differential equation

dM

dI
=

mI +M

(1−m) I
(A9)

This equation for unknown function M(I) has simple so-
lution

M = I

[(
I

I0

)m/(1−m)

− 1

]
(A10)

which corresponds to initial condition M(I0) = 0, that is
at t = 0 we have initial fraction of sick people I(0) = I0
and no hidden immunization M(0) = 0.

As this relation is universal for r � 1, and numbers of
sick people I0, I are always known, it allows to trace the
level of the hidden immunization at any time.

Appendix B

Below we present the code for Mathematika, which
solves the system of equations of the SIMR model (5-8)
and represents the solution in the form of a graph.

Manipulate[
Block[{eq, sol},

eq =
{x1’[t] == -b*(x2[t] + x3[t])*x1[t],
x2’[t] == b*(1 - m)*x2[t]*x1[t] - c*x2[t],
x3’[t] == b*(m*x2[t] + x3[t])*x1[t],
x4’[t] == c*x2[t],
x1[0] == 1 - IN0/N/(1 - f),
x2[0] == (IN0/N),
x3[0] == (IN0/N)*f/(1 - f),
x4[0] == 0};

sol = NDSolve[eq, {x1, x2, x3, x4},

{t, 0, tmax}];
Plot[{{N*x1[t],N*x2[t],N*x3[t],N*x4[t]}
/. sol},

{t, 0, tmax}]],
{{N,1000000}, 0, 10000000},
{{IN0, 1000}, 0, 10000},
{{f, 0}, 0, 1},
{{m, 0.1}, 0, 1},
{{b, 0.6}, 0, 1},
{{c, 0.1}, 0, 1},
{{tmax, 100}, 20, 200}

]
Legend:
x1[t] = S(t)
x2[t] = I(t)
x3[t] = M(t)
x4[t] = R(t)

N = total population
(1,000,000...10,000,000)
IN0 = initial number of infected
(1,000...10,000)
f = initial fraction of mutated virus
in the strain (0...1)
m = probability of the virus mutation
(0...1)
b = spread rate (0...1)
c = recovery rate (0...1)
tmax = length of the time axis (20...200)

1. REFERENCES

[1] Kermack, W. O. and McKendrick, A. G. ”A Contri-
bution to the Mathematical Theory of Epidemics.” Proc.
Roy. Soc. Lond. A 115, 700-721, 1927.

Anderson, R. M. and May, R. M. ”Population Biol-
ogy of Infectious Diseases: Part I.” Nature 280, 361-367,
1979.

Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.
”Exact analytical solutions of the Susceptible-Infected-
Recovered (SIR) epidemic model and of the SIR model
with equal death and birth rates”. Applied Mathematics
and Computation. 236, 184194, 2014.

https://mathworld.wolfram.com/Kermack-
McKendrickModel.html

[2] https://www.gisaid.org/epiflu-applications/next-
hcov-19-app/

[3] https://www.worldometers.info/coronavirus/

[4] https://www.dropbox.com/s/oxmu2rwsnhi9j9c/Draft-
COVID-19-Model%20%2813%29.pdf?dl=0

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2020. ; https://doi.org/10.1101/2020.04.09.20059782doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.09.20059782
http://creativecommons.org/licenses/by/4.0/

