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Abstract

We present a stochastic optimization model for allocating and sharing a critical resource in the case
of a pandemic. The demand for different entities peaks at different times, and an initial inventory
for a central agency is to be allocated. The entities (states) may share the critical resource with a
different state under a risk-averse condition. The model is applied to study the allocation of ventilator
inventory in the COVID-19 pandemic by FEMA to different US states. Findings suggest that if less
than 60% of the ventilator inventory is available for non-COVID-19 patients, FEMA’s stockpile of
20,000 ventilators (as of 03/23/2020) would be nearly adequate to meet the projected needs in slightly
above average demand scenarios. However, when more than 75% of the available ventilator inventory
must be reserved for non-COVID-19 patients, various degrees of shortfall are expected. In a severe
case, where the demand is concentrated in the top-most quartile of the forecast confidence interval
and states are not willing to share their stockpile of ventilators, the total shortfall over the planning
horizon (till 05/31/20) is about 232,000 ventilator days, with a peak shortfall of 17,200 ventilators on
04/19/2020. Results are also reported for a worst-case where the demand is at the upper limit of the
95% confidence interval.

1 Introduction

COVID-19 was first identified in Wuhan, China in December 2019 [20]. It has since become a global
pandemic. As of 03/31/2020 the United States has overtaken China in the number of deaths due
to the disease, with more than 3,900 deaths. US, Italy, and Spain have all surpassed the death toll
in China. However, United States tops the list of all countries in the current number of confirmed
COVID-19 cases exceeding 400,000 [5]. In Northern Italy, one of the global epicenters of the pandemic,
COVID-19 completely overwhelmed the healthcare system, forcing doctors into impossible decisions
about which patients to save. Physicians on the front lines have shared accounts of how they must now
weigh factors like age, comorbidities and probability of surviving prolonged intubation when deciding
which patients with respiratory failure will receive mechanical ventilation [23].

1.1 A Resource Constrained Environment

While approximately 80% of COVID-19 cases are mild, the most severe cases of COVID-19 can result
in respiratory failure, with approximately 5% of patients requiring treatment in an intensive care unit
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(ICU) with mechanical ventilation [28]. Mechanical ventilation is used to save the lives of patients
whose lungs are so damaged that they can no longer pump enough oxygen into the blood to sustain
organ function. It provides more oxygen than can be delivered through a nasal cannula or face mask,
allowing the patient’s lungs time to recover and fight off the infection. Physicians in Italy have
indicated that critical COVID-19 patients often need to be intubated for a prolonged period of time
(15-20 days) [23], further exacerbating ventilator scarcity.

Limiting the death toll within the US depends on the ability to allocate sufficient numbers of
ventilators to hard hit areas of the country before infections peak and ensuring that the inventory
does not run out. Harder hit states (such as New York, Michigan and Louisiana) are desperately trying
to acquire additional ventilators in anticipation of significant shortages in the near future. Yet in the
absence of a coordinated federal response, reports have emerged of states finding themselves forced
to compete with each other in order to obtain ventilators from manufacturers [1]. According to New
York’s Governer Cuomo, the state has ordered 17,000 ventilators at the cost of $25,000/ventilator,
but is expected to receive only 2,500 over the next two weeks [3]. As of 03/31/2020, according to
the US presidential news briefing, more than 8,100 ventilators have been allocated by FEMA around
the nation. Of these, 400 ventilators have been allocated to Michigan, 300 to New Jersey, 150 to
Louisiana, 50 to Connecticut, and 450 to Illinois, in addition to the 4,400 given to New York [8].

Going forward, the federal response to the COVID-19 pandemic will require centralized decision-
making around how to equitably allocate, and reallocate, limited supplies of ventilators to states in
need. Projections from the Institute for Health Metrics and Evaluation at the University of Washing-
ton, which assume that all states will institute strict social distancing practices and maintain them
until after infections peak, show states will hit their peak demand at different time points through-
out the months of April and May. Many states are predicted to experience a significant gap in ICU
capacity, and similar, if not greater, gaps in ventilator capacity, with the time point at which needs
will begin to exceed current capacity varying by state [25].

1.2 Our Contributions

In response to the above problem, this paper presents a model for allocation and possible reallocation
of ventilators that are available in the national stockpile. Importantly, computational results from the
model also provide estimates of the shortfall of ventilators in each state under different future demand
scenarios.

This modeling framework can be used to develop master plans that will allocate part of the venti-
lator inventory here-and-now, while allocating and reallocating the available ventilators in the future.
The modeling framework incorporates conditions under which part of the historically available ventila-
tor inventory is used for non-COVID-19 patients, who also present themselves for treatment along with
COVID-19 patients. Thus, only a fraction of the historical ventilator inventory is available to treat
COVID-19 patients. The remaining demand needs are met by allocation and re-allocation of available
ventilators from FEMA and availability of additional ventilators through planned production. FEMA
is assumed as the central agency that coordinates state-to-state ventilator sharing. The availability
of inventory from a state for re-allocation incorporates a certain risk-aversion parameter. We present
results while performing a what-if analysis under realistically generated demand scenarios using avail-
able ventilator demand data and ventilator availability data for different US states. An online planning
tool is also developed and made available for use at https://covid-19.iems.northwestern.edu [9].

1.3 Organization

This paper is organized as follows. A review of the related literature is provided in Section 2. We
present our resource allocation planning model, and its re-formulation in Section 3. Section 4 presents
our computational results under different mechanical ventilator demand scenarios for the COVID-19
pandemic in the US. In Section 5, we introduce our companion online COVID-19 ventilator allocation
and sharing planning tool. We end the paper with some discussion and concluding remarks.
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2 Literature Review

A medical resource allocation problem in a disaster is considered in [29]. Victims’ deteriorating health
conditions are modeled as a Markov chain, and the resources are allocated to optimize the total
expected health recovery rate and reduce the total waiting time. Certain illustrative examples in a
queuing network setting are also given in [29]. The problem of scarce medical resource allocation after
a natural disaster using a discrete event simulation approach is investigated in [14]. Specifically, the
authors in [14] investigate four resource-rationing principles: first come-first served, random, most
serious first, and least serious first. It is found that without ethical constraints, the least serious
first principle exhibits the highest efficiency. However, a random selection provides a relatively fairer
allocation of services and a better trade-off with ethical considerations. Resource allocation in an
emergency department in a multi-objective and simulation-optimization framework is studied in [16].
Simulation and queuing models for bed allocation are studied in [27, 18].

The problem of determining the levels of contact tracing to control spread of infectious disease
using a simulation approach to a social network model is considered in [11]. A linear programming
model is used in investigating the allocation of HIV prevention funds across states [15]. This paper
suggests that in the optimal allocation, the funds are not distributed in an equitable manner. A linear
programming model to derive an optimal allocation of healthcare resources in developing countries
is studied in [17]. Differential equation-based systems modeling approach is used in [10] to find a
geographic and demographic dependent way of distributing pandemic influenza vaccines based on a
case study of A/HIN1 pandemic.

In a more recent COVID-19-related study, the author [21] proposes a probability model to estimate
the effectiveness of quarantine and isolation on controlling the spread of COVID-19. In the context
of ventilator allocation, a conceptual framework for allocating ventilators in a public emergency is
proposed in [30]. The problem of estimating mechanical ventilator demand in the United States
during an influenza pandemic was considered in [22]. In a high severity pandemic scenario, a need
of 35,000 to 60,500 additional ventilators to avert 178,000 to 308,000 deaths was estimated. Robust
models for emergency staff deployment in the event of a flu pandemic were studied in [12]. Specifically,
the authors focused on managing critical staff levels during such an event, with the goal of minimizing
the impact of the pandemic. Effectiveness of the approach was demonstrated through experiments
using realistic data.

A method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospi-
talized influenza patients in respiratory failure, is introduced in [19]. In a case-study, mild, moderate,
and severe pandemic conditions are considered for the state of Texas. Optimal allocations prioritize
local over central storage, even though the latter can be deployed adaptively, on the basis of real-time
needs. Similar to this paper, the model in [19] uses an expected shortfall of ventilators in the objective
function, while also considering a second criteria of total cost of ventilator stockpiling. However, the
model in [19] does not consider distribution of ventilators over time. In the case of COVID-19, the
ventilator demand is expected to peak at different times in different states, as the demand for each
state has different trajectories. Only forecasts are available on how the demand might evolve in the
future.

In this paper, we assume that the planning horizon is finite, and for simplicity we assume that
reallocation decisions will be made at discrete times (days). Under certain demand conditions, the
ventilators may be in short supply to be able to meet the demand. Our model is formulated as a
stochastic program, and for the purpose of this paper, we reformulate and solve the developed model
in its extensive form. We refer the reader to [13, 26] for a general description of this topic.

3 A Model for Ventilator Allocation

In this section, we present a multi-period planning model to allocate ventilators to different regions,
based on their needs, for the treatment of critical patients. We assume that the demand for ventilators
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at each planning period is stochastic. We further assume that there is a central agency that coordinates
the ventilator (re)location decisions. The ventilators’ (re)location is executed at the beginning of each
time period. Once these decisions are made and executed, the states can use their inventory to treat
patients. Both the federal agency and the states have to decide whether to reserve their inventory in
anticipation of future demand or share it with other entities.

Before presenting the formulation, we list the sets, parameters, and decision variables that are
used in the model.

e Sets and indices

— N: states (regions), indexed by n € N := {1,...,|N|},
— T planning periods, indexed by t € T := {1,...,|T|},

— : ventilators’ demand scenarios, indexed by w € Q := {1,...,|Q|},
e Deterministic parameters

— Y,,: the initial inventory of ventilators in region n € A at time period ¢ = 0,

— I: the initial inventory of ventilators in the central agency at the beginning of time period
t=0,

— @4 the number of ventilators produced during the time period ¢ — 1 that become available
at the beginning of time period t € T, for t > 1,

— v,: the percentage of the initial inventory of ventilators in region n € A that cannot be
used to care for the patients at the critical level,

— T,: the percentage of the initial inventory of ventilators in region n € A that the region is
willing to share with other regions, among those that can be used to care for patients at
the critical level,

— pn: the risk-aversion of region n € N to send their idle ventilators to the central agency to
be shared with other regions,

e Stochastic parameter

— dy ;+ the number of patients in regions n € N at the critical level that need a ventilator at
the beginning of time period ¢ € T under scenario w € 2,

— p“: probability of scenario w € €,
e Decision variables

— 2,4 the number of ventilators reallocated to region n € N by the central agency at the
beginning of time period t € T,

— zy,+ the number of ventilators reallocated to the central agency by region n € 7 at the

beginning of time period ¢ € 7 under scenario w € €,
— Yy, the number of ventilators at region n € 7 that can be used to care for the patients at
the critical level at the end of time period ¢t € {0} U T under scenario w € 2,

— s¥: the number of ventilators at the central agency at the end of time period ¢t € {0} U T
under scenario w € Q.

For notational convenience, we also define the vector d := (df,,ds,,...,d| Nu)T for t € T and
w € Q. Moreover, we define d* := (dy,dy, ..., d#)—'—, for w € Q. We might drop the superscript w €
from this notation and use the same symbol with a tilde to denote that these parameters are stochastic.
For example, we might use d. Similarly, we define the decision vector x; := (T1,6, T2ty - Tppr)e) | for
each t € T and x := (x1,%2,...,X7) .
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3.1 Model with No Lead-Time

In this section, we assume that there is no lead time between sending a ventilator by an entity (a
region or the central agency) and delivery by another entity. With this assumption, the planning
model to minimize the expected shortage of ventilators in order to treat patients at the critical level
is formulated as a two-stage stochastic program as follows:

min GZ Z ZTnt+E {f(x,a)} (1a)

teT neN
st xpe >0, YneN,VteT, (1b)
where
f(xa a) = min Z Z (Jn,t - yn7t)+ (23‘)
teT neN

St Ynt—1 + Tnt — Znt = Yn,t YneN,vVteT, (2b)
St—1+ Q¢ + Z Znt — Z Tn,t = St, vteT, (2c)

neN neN

RN

Zn,t < (yn,t - (1 - Tn)yn,O - Pndn,t) s Vn € Na vteT, (2d)
Z Tpt < Se—1 +Q + Z Zn,t vteT, (2e)

neN neN
Yn,0 = (1 - PYn)Yna Vn € N, (2f)
S0 = Iv (Qg)
Znt >0, YneN,VteT, (2h)
Yn,t = 0, VneN, Vte{0}UT, (2i)

We now explain the model in detail. In the first stage, the central agency makes the “here-and-now”
decisions x before the stochastic parameters d are realized. As captured in (1a), the goal of the central
agency is to minimize the expected total shortage of ventilators over all time periods ¢t € 7 and all
regions n € N. The objective also includes a cost, parameterized by 6 of allocating a ventilator by
the central agency to a state at a given time. This cost can be set to zero, or set to a small value. In
our computations we set 6 = 0.01.

In the second stage, once the stochastic parameters d are realized, the “wait-and-see” decisions
Znts Ynits St n € N and t € T, are made. These decisions are scenario-specific, and are indicated by
the superscript w € 2, in the extensive formulation given in (3). Constraints (2b) and (2c¢) ensure the
conservation of ventilators for the regions and the central agency at each time period, respectively.
Constraint (2d) enforces that at each time period, a region is not sending out any ventilator to
the central agency if its in-hand inventory is lower than its safety stock, where the safety stock is
determined as pn(fmh for t € T and n € N. Constraint (2e) ensures that at each time period, the
total number of outgoing ventilators from the central agency to the regions cannot be larger than the
available inventory, after incorporating the newly produced ventilators and the incoming ones from
other regions. Constraints (2f) and (2g) set the initial inventory at the regions and central agency,
respectively. The remaining constraints ensure the non-negativity of decision variables.

Note that the objective function (5a) and constraints (2d) are not linear. By introducing an
additional variable, the term (oZm — Ynt)T in the objective function, for n € N, t € T, and w € Q,
can be linearized as

En,t Z dn,t — Yn,t,
€n,t > 0.
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Furthermore, for each region n € A and time period ¢ € T, constraint (2d) can be linearized as

yn,t - (]- - 7_77,)yn,O - pndn,t 2 M(gn,t - ]-)a
Zn,t < Yn,t — (1 - Tn)yn,o - pndn,t + M(l - gn,t)a
Zn,t S Mgn,ta

gn,t S {07 1}7

where M is a big number. _
By incorporating the finiteness of the support of d, a linearized reformulation of model (1) can be
written as a mixed-binary linear program in the following extensive form:

min 0% Y wnit+ »p? [Z > 6‘;:4 (3a)

teT neN weN teT neN

St Yy T — 2 = Yt YweQ, VneN,VEeT, (3b)
Y1+ Q:+ Z Zp it — Z Tpt = St YweD VEeT, (3c)

neN neN
Yt — (L= Tn)Yp o — pudy s > M(gy, , — 1), VweQ, VneN,VteT, (3d)
Zpt SYny — (L =T)yy o — pudy , + M(1— g5y ,), VweQ, VneN, VteT, (3e)
zp, < Mgy, YweN VneN, VteT, (3f)
Z Tpyt <87+ Q + Z Zp b5 YweQ, VeeT, (3g)

neN neN
Yo = (1 = 7n)¥n, Vw € Q, Vn e N, (3h)
s% =1, Yw € Q, (31)
R e T YVweQ, YneN, VteT, (3)
Tnt 20, YneN,VteT, (3k)
Z s €y >0, VwoeQ, VneN, VteT, (31)
Yt >0, YweQ, Vne N, Vte{0}UT, (3m)
s >0, YweQ, Vte {0}UT, (3n)
g+ €40,1}, VwoeQ, VneN, VteT, (30)

where dj; , denotes the number of patients at the critical level in regions n € A that need a ventilator
at the beginning of time period ¢ € T under scenario w € €. Note that all second-stage variables
28 Yy, and s¢, n € N and t € T in model (3) have superscript w to indicate their dependence to
scenario w € . It is worth noting that (1) (and (3) as well) considers multi-period decisions. In the
model, the central agency will make decisions for the entire planning horizon using the information
that is available at the beginning of planning.

For our numerical experiments in Section 4, we used a commercial mixed-integer programming
solver to obtain the results. Furthermore, we used I + 7,y,,0 + Zt,<t Q: as a big-M for n € A and
teT.

3.2 Model with Lead-Time

In this section, we assume that there is a lead time of L time periods between sending a ventilator by
an entity (a region or the central agency) and delivery by another entity. With this assumption, (1)
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can be generalized as follows:

min 6 Z Z Tnt+E {f(x,a)} (4a)

teT neN
st xpe >0, YneN,VteT, (4b)
where
f(xa a) = min Z Z (dn,t - yn,t)Jr (5&)
teT neN
S.t. Ynit—1 — Znt = Yn,t» VneN,VteTift <L, (5b)
Ynt—1+t Tnt—L — Znt = Yn,t, VYneN,VteTift> L, (5¢)
s+ Qr— Y ny =51, Ve Tiftt<L,  (5d)
neN
St—1 + Qt + Z Znt—L — Z Tn,t = St, Vie T ift> L, (58)
neN neN
NS
Znt < (yn,t - (1 - Tn)yn,o - pndn,t) s Vn € N: vteT, (5f)
Z Tt < St—1+ Q, VieTift<L, (5g)
neN
> wni<sica+ Qi+ D Znu-r, VteTift>L,  (5h)
neN neN
Yn,0 = (1 - PYn)Yna Vn € N, (51)
so =1, (5))
Znt 2 0, VneN,VteT, (5k)
Yn,t = 0, VneN, Vte{0}UT, (51)
s; >0, Ve {0fUT. (5m)

Note that by incorporating lead time in the planning model constraints (2b), (2¢), and (2e) in model
(2) have changed, and the remaining constraints are as in (2). Constraints (5b) and (5¢) require
the conservation of ventilators for the regions at each time period, where a ventilator sent by the
federal agency to a region at time period ¢t — L, t > L, will become available for the region at time
period t. Constraints (5d) and (5e) ensure the conservation of ventilators for the central agency,
respectively, where a ventilator sent by a region to the federal agency at time period t — L, t > L, will
become available for the central agency at time period ¢. Constraint (5g) and (5h) enforce that the
total number of outgoing ventilators from the central agency to the regions cannot be larger than the
available inventory, after incorporating the newly produced ventilators and the incoming ones from
other regions. Similar to (2b) and (2c), constraints (2e) are also divided into sets for t < L and ¢t > L
in (5g) and (5h). _

By incorporating the finiteness of the support of d, a linearized reformulation of model (1) can be
written as a mixed-binary linear program in the following extensive form: Similar to (3), model (4)
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can be written as a mixed-binary linear program in the following extensive form:

min 0Y > @+ Y p¥ lz > e‘fl,t] (6a)

teT neN weN teT neN

St Yn o1 = 2 = Yt VweQ, VneN,VteTift<L, (6b)
Y to1 T Trt—L = %t = Yot VweQ, VneN, Vte T ift>L, (6
SO Qe— Y Ty =Y, VweQ Ve Tift <L, (6d)

neN
SEAF Qi Y 2, = Y T =i, VweQ, Ve Tift>L, (6¢)
neN neN

Yoot — (L= T0)ys o — pndss , > M (g, — 1), YVweQ, Vne N, VteT, (6f)
Z:,t < yru;,t -(1- T)y:,o - Pnd;‘{,t + M(1— gru:,t)? VweQ, VneN,VteT, (6g)
Zny < Mgy, Ywe, VneN,VteT, (6h)
> s <57+ @, VweQ Ve Tift<L, (6i)
neN
S wna <SE Qe Y 2, g, VweQ, Ve Tift>L, (6
neN neN
Yo = (L =7)Yn, YweQ, YneN, (6k)
s9 =1, Yw e, (6])
e > dy = yn s, YVweQ, Vne N, VteT, (6m)
Tnyt >0, YneN,VteT, (6n)
20 en >0, Ywe, VneN,VteT, (60)
Yt =0, YVweQ, Vne N, Vte {0}UT, (6p)
sy >0, YweQ, ViEe{0}UT, (6q)
g+ €1{0,1}, Ywe, VneN,VteT, (6r)

4 Ventilator Allocation Case Study: The US

The ventilator allocation model (3), described in Section 3, was implemented in Python 3.7. All
computations were performed using GUROBI 9.0.1, on a Linux Ubuntu environment on two machines.
In the first machine, we used 14 cores, with 3.4 GHz processor and 128 GB of RAM, and set the time
limit to two hours. In the second machine, we used 64 cores, with 2.2 GHz processor and 128 GB of
RAM, and set the time limit to three hours.

4.1 Ventilator Demand Data

Since projected ventilator need is a key input for the model, it is important to use accurate estimates
of the demand forecasts. The forecasts of ventilator needs generated by [25] were used in our com-
putational study. These forecasts were first made available on 03/26,/2020, and used the most recent
epidemiological data and advanced modeling techniques. The available information closely tracks the
real-time data [4]. This COVID-19 needs forecast data was recently used in a recent presidential news
brief [8]. Although it is difficult to validate the ventilator need forecasts against actual hospital and
state level operational data, as this information is not readily available, we find that this model’s
forecasts for deaths are quite accurate. For example, the model forecasted 217.9 deaths (CI: [176.95,
271.0]) on 03/29/2020 for NY state. The number of reported deaths in the state on 03/29/2020 were
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237. Similarly, the model forecasted 262.2 deaths (CI: [206.9, 340]) on 03/30/2020 against the actual
deaths of 253 on that day. A new update of the forecasts were published on 04/02/2020, and is used
in the current version of our paper.

4.2 Demand Scenario Generation

We considered a seventy-day planning period, starting from 03/23/2020 and ending on 05/31/2020.
We generated the random demands in ways that correspond to projected future demands under
different mitigation effects. More precisely, we considered six different cases to generate random
samples for the number of ventilators needed to care for COVID-19 patients. These cases are listed
below:

Case I. Average-I: Each of the demand scenarios have equal probability and the distribution is
uniform over the range of the CI provided in [25],

Case II. Average-II: The demand scenarios in the top 25% of CI have 0.25 probability (equally
distributed); and scenarios in the bottom 75% have 0.75 probability,

Case III. Above Average: The demand scenarios in the top 25% of CI have 0.50 probability; and
the scenarios in the bottom 75% have 0.50 probability.

Case IV. Well Above Average: The demand scenarios in the top 25% of CI have 0.75 probability;
and the demand scenarios in the bottom 75% have 0.25 probability,

Case V. Severe (CI Worst Quartile): The demand scenarios in top 25% have 100% probability,
i.e., 0% probability is assigned for the bottom 75% demand scenarios.

Case VI. Extreme (CI Upper Limit): There is only demand scenario, which happens at the
upper limit of Cls.

We further discuss the demand generation procedure. A demand scenario contains the demand
data for all days and states. In all Cases I-VI, we assumed that the forecast CI provided in [25], for
each day and for each state, represents the support of the demand distribution.

Case I and II are generated to develop average demand scenario representations that use the
information provided in the CI given in [25] in two different ways. In Case I, it is assumed that the
mean is the median of the demand distribution (i.e., the right- and left-tail of the demand distribution
have 0.5 probability). We randomly generated a number to indicate which tail to sample from, where
both tails have the same 0.5 probability of being chosen. Once the tail is determined, we divided the
tail into 50 equally-distanced partitions, and chose a random partition to uniformly sample from. We
repeated this process for all days and states. We sampled from the same tail and partition for all days
and states, although the range from which we sample depends on the CI. In this case, all scenarios
are equally likely.

In Case II, we randomly generated a number to indicate which tail to sample from, where the
top 25% of the CI (i.e., the right tail) has a 0.25 probability and the bottom 75% (i.e., the left tail)
has a 0.75 probability of being chosen. If the right tail is chosen, we set the weight of the scenario
to 0.25, and we set it to 0.75 otherwise. The rest of the procedure is similar to Case I. In order to
determine the probability of scenarios, we normalized the weights. Demand scenarios in Cases III-V
are generated in the same fashion as in Case II, where the only difference is in the probability of which
tail to choose from, which is determined by the sampling scheme described in the definition of the
case.

For Cases I-VI, we generated 24 scenarios, while in Case VI, there is only one scenario which
happens at the upper limit of CI. Note that in each case, different quantities for the random demand
d°,, te€T,n e N, and w € Q, might be generated. An illustration of the trajectory of demand

n,t’
scenarios over time is given in Figures 1-3 for the US and the States of New York and California.
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Figure 1: Summary of generated scenarios (Cases I-VI) for the US, adapted from the data provided
in [25] on 04/02/2020.
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Figure 2: Summary of generated scenarios (Cases I-VI) for the State of New York, adapted from the
data provided in [25] on 04/02/2020.
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Figure 3: Summary of generated scenarios (Cases I-VI) for the State of California, adapted from the
data provided in [25] on 04/02/2020.

4.3 Ventilator Inventory, Stockpile and Production

Another key input to the planning model is the initial ventilator inventory. As of 03/23/2020, before
the rapid rise of COVID-19 cases in NY, FEMA had about 20,000 ventilators in reserve, i.e., I =
20,000. We used this for our model which suggests ventilator allocation decisions from 03/23/2020.

Estimates for the initial inventory of ventilators at different states were obtained from [2]. These
estimates are based on a hospital survey [24, 6]. The estimates for new ventilator production were
obtained based on information provided at the US presidential briefings on 03/27/20 [7]. These esti-
mates suggest that the normal yearly ventilator production capacity is about 30,000 ventilators/year.
However, under the US Defense Production Act, with the participation of additional companies, pro-
duction of approximately 10,000 ventilators/month could be possible [7]. Using this information, for
the baseline case we assumed that the current daily ventilator production rate is @Q; = 80 ventila-
tors/day; and it will be increased to @; = 320 ventilators/day starting on 04/15/2020. We refer to
this case, as “baseline production”, and analyzed in Section 4.5.1. We also analyze the case that the
ramp-up in production happens on 04/01/2020 or 04/07/2020 in Section 4.5.2.

4.4 Inventory Sharing Parameters

Recall that in the model, parameter v is used to indicate the fraction of ventilators used to care
for non-COVID-19 patients. Additionally, a parameter 7 is used in the model to estimate a state’s
willingness to share the fraction of their initial COVID-19-use ventilators. Similarly, the parameter
p is used to control the state’s risk-aversion to sending their idle ventilators to FEMA for use in a
different state. We suppose that for all states n, n € N, we have vy, =7, p. = p, and 7, = 7. In order
to systematically study the ventilator allocations and shortfalls, we used the following parameters:
v € {50%,60%, 75%}, p € {1.25,1.5,3}, and 7 € {0%, 10%, 25%}.
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4.5 Numerical Results

In this section, we present and discuss the numerical results for the case that there is no lead-time, i.e.,
L = 0 or there is a lead-time of 1 day. For most instances, we observed that even obtaining an integer
feasible solution to (3) and (4) in the time limit was not possible. Therefore, we replaced these models
with their expected value problem, where the stochastic demand is substituted with the expected
demand. Then, we solved the resulting model. This heuristic yields an integer feasible solution to
model (3) and (3) for all instances we tested in the time limit, and we report those results here. In
Section 4.5.1, we provide the results on ventilator’ shortage and inflow/outflow from/to FEMA for
the case that there is no lead-time. We also analyze the effect of early ramp-up in production and
lead-time on ventilators’ shortage in Sections 4.5.2 and 4.5.3, respectively.

4.5.1 Baseline Production with No Lead-Time

In this section, for each setting (v, p,7), we solved the expected value problem of model (3) under
Cases [-VI. A summary of ventilators’ shortage results is reported in Tables 1-3. We briefly describe
the columns in these tables. Column “Total” denotes the expected total shortage, and is calculated

as
Total := Z Z W, t,

teT neN

where w,; = (czt,n —Lin)", Jt,n = Zwegpwdﬁ,tv Iin = yon + FEMA,,, and FEMA,, =
min{Zt’gt Tty (e — Yon) "}

Quantity “Worst day” in column “Worst day (¢)” denotes the expected shortage in the worst day,
and is calculated as

Worst day :=
orst day Itnea%c Z W, t,
neN

where t denotes a day that the worst expected shortage happens, i.e., t € argmax;cy >, Wnt-
Moreover, quantity “Worst day-state” in column “Worst day-state (¢)” denotes the expected shortage
in the worst day and state, and is calculated as

Worst day-state := max max w,, ¢
teT neN ’

where (¢,n) € arg max, o, arg max,, ¢ ar Wn ¢

The results in Tables 1-3 suggest that when up to 60% of a state’s ventilator inventory is used for
non-COVID-19 patients, FEMA’s current stockpile of 20,000 ventilators is nearly sufficient to meet
the demand imposed by COVID-19 patients in mild cases (i.e., Cases I-III). The ventilator availability
situation gets worse in the case where 75% (or greater %) of the available ventilators must be used
for non-COVID-19 patients and states’ risk-aversion parameter to send the idle ventilators to FEMA
to be used in a different state is 3. In this case, if states are willing to share up to 50% of their
excess inventory with other states, then 12,700 number of ventilators will be required beyond FEMA’s
current stockpile to meet demand in Cases I-IV. However, if no such sharing is considered, then the
need for ventilators would increase to 14,200. This situation gets even worse for Cases V and VI,
where the inventory shortfall on the worst day (04/19/2020) is between 17,200-30,600. This shortfall
decreases moderately to 15,900-28,000 if states are willing to share part of their initial ventilator
inventory. If parameter p goes down to 1.25, the inventory shortfall on the worst day (04/19/2020)
is between 13,800-22,800. This shortfall decreases moderately to 12,800-21,300 if states are willing to
share part of their initial ventilator inventory.

We also analyzed the ventilators’ reallocation to/from different states for the setting (v, p,7) =
(0.75,3,0), which is the most dramatic case we considered from the inventory and stockpile perspec-
tives. We report a summary of results in Table 4 under the two worst demand situations, Cases V
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(Severe) and VI (Extreme). Column “Total inflow” in this table denotes the total incoming ventilators

Table 1: Ventilators’ shortage summary under Cases I-VI, with @ = 320 and (p, L) =

(1.25,0).
(0.50,0.00) | I | 3 0 0
11 1 0 0
IIT | 4 0 0
vt | 3565 961 (04,/15/2020) 544 (04/16/2020, Nlinois)
vt | 14966 | 2641 (04/16/2020) | 713 (04/16/2020, Alabama)
vIt| 121259 10513 (04/17/2020) 2929 (04/16/2020, Alabama)
(0.50,0.25) | I 15 2 (04/21/2020) 1 (04/22/2020, New Mexico)
II 1 0 0
I | 17 1 (04/24/2020) 1 (04/07/2020, King and Snohomish Counties, WA)
vt | 100 7 (04/17/2020) 2 (04/21,/2020, Idaho)
vt | 350 133 (04/16/2020) 78 (04/16/2020, Alabama)
VIT| 73020 | 7512 (04/16/2020) | 2306 (04/16/2020, Alabama)
(0.50,0.50) | I | 5 0 0
II 2 0 0
I | 15 1 (03/28,/2020) 1 (04/20/2020, Other Counties, WA)
IV | 46 5 (04/15/2020) 1 (04/24/2020, Idaho)
vi | 88 8 (04/19/2020) 1 (04/25/2020, Montana)
VIT| 58379 | 6834 (04/17/2020) | 2283 (04/16/2020, Alabama)
(0.60,0.00) | I | 6 1 (04/17/2020) 0
II 4 0 0
I | 27 3 (04/15,/2020) 1 (04/22/2020, Nebraska)
Ivi| 29681 | 4317 (04/16/2020) | 1021 (04/16/2020, Alabama)
vt | 53698 | 6435 (04/16/2020) | 1608 (04/16/2020, Alabama)
VIT| 204905 | 15128 (04/17/2020) | 3827 (04/16/2020, Alabama)
(0.60,0.25) I 10 1 (04/12/2020) 1 (04/12/2020, Other Counties, WA)
II 5 0 0
I | 50 5 (04/19/2020) 1 (04/19/2020, Rhode Island)
Ivl| 14808 | 2726 (04/16/2020) | 757 (04/16/2020, Alabama)
vt | 34218 | 4548 (04/17/2020) | 1191 (04/16/2020, Alabama)
vIt| 163019 13334 (04/17/2020) 3396 (04/16/2020, Alabama)
(0.60, 0.50) I 15 1 (04/26/2020) 1 (03/25/2020, King and Snohomish Counties, WA)
I |o 1 (04/05/2020) 0
IIT 17 3 (04/19/2020) 1 (04/21/2020, Iowa)
vt| 8553 2031 (04/16/2020) 600 (04/16/2020, Florida)
v 26916 3958 (04/17/2020) 1110 (04/16/2020, Alabama)
vIt| 139404 12755 (04/16/2020) 2835 (04/16/2020, Alabama)
(0.75,0.00) | I | 10 1 (04/19/2020) 0
II 23 2 (04/27/2020) 1 (05/01/2020, South Dakota)
mit| 9390 1907 (04/15/2020) 835 (03/23/2020, New York)
vt| 131614 11430 (04/16/2020) 2407 (04/16/2020, Alabama)
v 173004 13768 (04/16/2020) 3001 (04/16/2020, Alabama)
vIt| 381943 22801 (04/17/2020) 4411 (04/16/2020, Alabama)
(0.75,0.25) | I | 56 6 (04/14/2020) 1 (04/15/2020, Other Counties, WA)
i |7 1 (04/22/2020) 0
It | 5732 1350 (04/14/2020) | 835 (03/23/2020, New York)
vl | 118583 | 10637 (04/16/2020) | 2395 (04/16/2020, Alabama)
vt | 157319 | 13337 (04/16/2020) | 2988 (04/16/2020, Alabama)
VIT | 359230 | 22200 (04/17/2020) | 4382 (04/16/2020, Alabama)
(0.75,0.50) I 36 3 (04/14/2020) 1 (04/14/2020, Maine)
I |s 1 (05/01/2020) 0
11t | 3608 953 (04,/14/2020) 835 (03/23/2020, New York)
IV | 109542 | 10446 (04/16/2020) | 2407 (04/16/2020, Alabama)
V1 | 146505 | 12774 (04/15/2020) | 2837 (04/16/2020, Alabama)
VIt | 336767 | 21321 (04/17/2020) | 4345 (04/16/2020, Alabama)

T Reached the time limit. The reported results correspond to the best integer solution found.
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to a state n € N from FEMA, and is calculated as
Total inflow := Z Tt
teT

Table 2: Ventilators’ shortage summary under Cases I-VI, with @) = 320
and (p, L) = (1.50,0).

| (v,7) | Case | Total | Worst date (t) | Worst date-state (¢, n)

(0.50,0.00) | I 5 0 0

II 1 0 0

II1 3 0 0

wt | 6775 1677 (04/16/2020) | 459 (04/17/2020, Illinois)

vi 20009 | 3352 (04/17/2020) | 713 (04/16/2020, Alabama)

VIt | 130989 | 11206 (04/17/2020) | 3164 (04/16/2020, Alabama)
(0.50,0.25) | I 4 0 0

II 1 0 0

IIT 3 0 0

vt | 30 4 (04/17/2020) 1 (04/24/2020, Idaho)

vi 4370 1105 (04/16/2020) | 352 (04/16/2020, Alabama)

VIt | 85197 | 8719 (04/17/2020) | 2461 (04/16/2020, Alabama)
(0.50,0.50) | I 3 0 0

II 4 0 0

111 8 1 (04/15/2020) 0

wt | a7 4 (04/24/2020) 1 (05/02/2020, Florida)

vt | 531 199 (04/17/2020) 142 (04/17/2020, Florida)

vit | 75157 | 7850 (04/17/2020) | 2359 (04/16/2020, Alabama)
(0.60, 0.00) I 4 0 0

II 4 0 0

III 10 2 (04/19/2020) 1 (04/22/2020, Nebraska)

vt | 37140 | 5209 (04/16/2020) | 1117 (04/16/2020, Alabama)

vi 62710 | 7059 (04/17/2020) | 1644 (04/16/2020, Alabama)

VIt | 216449 | 15348 (04/18/2020) | 3449 (04/16/2020, Alabama)
(0.60,0.25) | I 8 1 (04/01,/2020) 0

II 4 0 0

111 36 4 (04/20,/2020) 1 (04/22/2020, Utah)

Ivh | 23097 | 3827 (04/17/2020) | 756 (04/16/2020, Alabama)

vt 46101 | 5944 (04/17/2020) | 1524 (04/16/2020, Alabama)

VIt | 178867 | 14269 (04/17/2020) | 3404 (04/16/2020, Alabama)
(0.60,0.50) | I 11 1 (04/28/2020) 1 (04/30/2020, Hawaii)

11 11 1 (04/19/2020) 1 (04/19/2020, Idaho)

111 29 4 (04/01,/2020) 1 (04/01/2020, New Jersey)

vt | 16658 | 3001 (04/17/2020) | 862 (04/18/2020, Illinois)

vi 36029 | 5012 (04/18/2020) | 1179 (04/16/2020, Alabama)

VIt | 157337 | 13400 (04/17/2020) | 3347 (04/16/2020, Alabama)
(0.75,0.00) | I 16 1 (04/16/2020) 0

II 30 2 (04/22/2020) 1 (04/04/2020, New Jersey)

it | 14997 | 2790 (04/15/2020) | 835 (03/23/2020, New York)

IVl | 143039 | 12376 (04/17/2020) | 2674 (04/16/2020, Alabama)

vt 185441 | 14537 (04/17/2020) | 3324 (04/16/2020, Alabama)

VIt | 304587 | 23457 (04/18/2020) | 4802 (04/16/2020, Alabama)
(0.75,0.25) | I 26 3 (04/14/2020) 0

11 10 1 (05/01/2020) 0

it | 11209 | 2388 (04/15/2020) | 835 (03/23/2020, New York)

vt | 131086 | 11824 (04/16/2020) | 2674 (04/16/2020, Alabama)

vt 172744 | 13957 (04/17/2020) | 2998 (04/16/2020, Alabama)

vIt | 375323 | 23105 (04/18/2020) | 4802 (04/16/2020, Alabama)
(0.75,0.50) | I 51 4 (04/14/2020) 1 (04/15/2020, New Hampshire)

I 13 1 (04/09/2020) 1 (04/09/2020, Washington)

urt | 8698 2082 (04/15/2020) | 835 (03/23/2020, New York)

vt | 122866 | 11314 (04/16/2020) | 2407 (04/16/2020, Alabama)

vi 161075 | 13839 (04/17/2020) | 3001 (04/16/2020, Alabama)

vit | 357178 | 22452 (04/18/2020) | 4384 (04/16/2020, Alabama)

T Reached the time limit. The reported results correspond to the best integer solution

found.
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Similarly, column “Total outflow” denotes the expected total outgoing ventilators from a state n € A/
to FEMA in order to be shared with other states to be used to treat COVID-19 patients, and is

Table 3: Ventilators’ shortage summary under Cases [-VI, with @ =
320 and (p, L) = (3.00,0).

| (v,7) | Case | Total | Worst date (t) | Worst date-state (¢, n)

(0.50,0.00) | I 3 0 0

II 1 0 0

II1 3 0 0

vl | 22239 | 2974 (04/19/2020) | 917 (04/21/2020, Illinois)

vt 48434 | 5591 (04/19/2020) | 1626 (04/21/2020, Florida)

VIT | 247524 | 18006 (04/17/2020) | 4387 (04/16/2020, Alabama)
(0.50,0.25) | I 3 0 0

II 1 0 0

II1 3 0 0

vt | 7749 1250 (04/20/2020) | 410 (04/20/2020, Illinois)

vt 25576 | 3348 (04/19/2020) | 1003 (04/16/2020, Alabama)

VIt | 190771 | 14883 (04/17/2020) | 3916 (04/16/2020, Alabama)
(0.50,0.50) | I 3 0 0

II 1 0 0

IIT 3 0 0

vt | 2666 750 (04/19/2020) 289 (04/20/2020, Florida)

vi 14403 | 2567 (04/20/2020) | 1115 (04/21/2020, Florida)

vit | 132855 | 11965 (04/18/2020) | 3161 (04/21/2020, Illinois)
(0.60,0.00) | I 4 0 0

II 4 0 0

I 8 1 (04/24,/2020) 0

vt | 62677 | 6506 (04/19/2020) | 1529 (04/16/2020, Alabama)

vt 100644 | 9489 (04/19/2020) | 2435 (04/23/2020, Illinois)

vIt | 337955 | 22532 (04/17/2020) | 4831 (04/16/2020, Alabama)
(0.60,0.25) | I 4 0 0

II 4 0 0

11 12 1 (04/20/2020) 0

vt | 50770 | 5565 (04/19/2020) | 1271 (04/16/2020, Alabama)

vt 81225 | 8120 (04/19/2020) | 1969 (04/16/2020, Alabama)

vIt | 297366 | 20457 (04/17/2020) | 4581 (04/16/2020, Alabama)
(0.60,0.50) | I 7 1 (03/24,/2020) 0

I 7 1 (04/17/2020) 0

111 16 1 (04/19/2020) 1 (04/06/2020, New York)

IVl | 39464 | 4727 (04/19/2020) | 1021 (04/16/2020, Alabama)

vt 64578 | 7000 (04/19/2020) | 1618 (04/16/2020, Alabama)

VIt | 246365 | 17870 (04/18/2020) | 3954 (04/22/2020, Illinois)
(0.75,0.00) | I 7 1 (04/19/2020) 0

1I 9 1 (05/01/2020) 0

mit | 20710 | 3463 (04/19/2020) | 835 (03/23/2020, New York)

vl | 179044 | 14176 (04/19/2020) | 2829 (04/16/2020, Alabama)

vt 231612 | 17201 (04/19/2020) | 3429 (04/16/2020, Alabama)

vIt | 527275 | 30596 (04/17/2020) | 5700 (04/16/2020, Alabama)
(0.75,0.25) | I 23 3 (04/15/2020) 1 (04/15/2020, Ohio)

11 22 2 (04/08,/2020) 2 (04/09,/2020, Washington)

mit | 27362 | 3410 (04/19/2020) | 835 (03/23/2020, New York)

vt | 169753 | 13504 (04/19/2020) | 2674 (04/16/2020, Alabama)

vt 218080 | 16487 (04/19/2020) | 3324 (04/16/2020, Alabama)

vIt | 506928 | 20776 (04/17/2020) | 5700 (04/16/2020, Alabama)
(0.75, 0.50) I 20 1 (04/14/2020) 1 (04/22/2020, Indiana)

11 8 1 (05,/01,/2020) 0

It | 24204 | 3155 (04/19/2020) | 835 (03/23/2020, New York)

vt | 160279 | 12675 (04/19/2020) | 2407 (04/16/2020, Alabama)

vt 205062 | 15889 (04/19/2020) | 3289 (04/16/2020, Alabama)

vif 464863 28015 (04/17/2020) 5447 (04/16/2020, Alabama)

T Reached the time limit.
solution found.
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calculated as

Total outflow := Z Z PY 2t
teT we

Also, column “Net flow” represents the difference between “Total inflow” and “Total outflow”.

The results in Table 4 indicates that in Cases VI (Severe) and V (Extreme), the State of New York
requires between 11,100-17,500 additional ventilators for COVID-19 patients during its peak demand.
However, between 400 to 17,000 of these ventilators can be given to a different state after the peak
demand in the State of New York has subsided. The insights about other states can also be obtained
from this table.

4.5.2 The Effect of Early Ramp-up in Production on Ventilators’ Shortage

In this section, we consider the cases that the ramp-up in production happens on 04/01/2020 or
04/07/2020, as opposed to the baseline production, where the ramp-up in production happens on
04/15/2020. A summary of ventilators’ shortage is given in Table 5 for the parameter setting (v, p, 7) =
(0.75,3.00,0), under the two worst demand situations, Cases V (Severe) and VI (Extreme). As it is
evident from Table 5, early ramp-up in production could save up more than 80,000 and 100,000 lives
in Case V (Severe) and Case VI (Extreme), respectively.

4.5.3 The Effect of Lead-Time on Ventilators’ Shortage

In this section, we analyze ventilators’ shortage for the case that there is a lead-time of one day. A
summary of results under Case VI is presented in Table 6. It can be seen from this table that, as
expected, the inventory shortfall increases with an increase in the lead-time (approximately up to 500
on the worst day).

5 Viewing Results using an Online Tool

A companion online planning tool is developed in order to view the outputs on the number of ventila-
tors needed and the shortage that might happen under various conditions [9]. This website is available
at https://covid-19.iems.northwestern.edu. The users can choose the demand scenario (Cases
I-VI) and choose different options for parameter «, the fraction of ventilators used to care for non-
COVID patients, parameter 7, state’s willingness to share the fraction of their initial COVID-19-use
ventilators, parameter p, the state’s risk-aversion to sending their idle ventilators to FEMA for use in
a different state, and parameter L for lead-time. The results on the website are shown in interactive
graphical and tabular formats. A snippet of this online planning tool is given in Figure 4.

Interested readers can refer to this online companion for more details and analysis beyond what is
presented in this paper. The results on [9] will be updated as additional computations are conducted
and new forecast confidence intervals become available.

6 Concluding Remarks

We have presented a model for procuring and sharing life-saving resources whose demand is stochastic.
The demand arising from different entities (states) peaks at different times, and it is important
to meet as much of this demand as possible to save lives. Each participating state is risk averse
to sharing their excess inventory at any given time, and this risk-aversion is captured by using a
safety threshold parameter. Specifically, the developed model is applicable to the current COVID-19
pandemic, where many US states are in dire need of mechanical ventilators to provide life-support
to severely- and critically-ill patients. Computations were performed using realistic ventilator need
forecasts and availability under a wide combination of parameter settings.
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Table 4: Inflow and outflow from/to FEMA summary with @ = 320 and (y,p,7,L) =
(0.75, 3.00, 0.00, 0).

Case V Case VI
State Total inflow Total outflow Net flow Total inflow Total outflow Net flow
Alabama 2025.00 0.00 2025.00 1496.00 0.00 1496.00
Alaska 53.00 0.00 53.00 50.00 0.00 50.00
Arizona 451.00 0.00 451.00 486.00 0.00 486.00
Arkansas 185.00 0.00 185.00 197.00 0.00 197.00
California 1154.00 0.00 1154.00 1445.00 0.00 1445.00
Colorado 762.00 0.00 762.00 702.00 0.00 702.00
Connecticut 242.00 0.00 242.00 183.00 0.00 183.00
Delaware 33.00 0.00 33.00 13.00 0.00 13.00
District of Columbia 0.00 0.00 0.00 0.00 0.00 0.00
Florida 4307.00 0.00 4307.00  5131.00 0.00 5131.00
Georgia 1057.00 0.00 1057.00 1051.00 0.00 1051.00
Hawaii 162.00 0.00 162.00 184.00 0.00 184.00
Idaho 208.00 0.00 208.00 202.00 0.00 202.00
Illinois 4361.00 53.50 4307.50  4555.00 0.00 4555.00
Indiana 910.00 0.00 910.00 1050.00 0.00 1050.00
Towa 641.00 0.00 641.00 664.00 0.00 664.00
Kansas 282.00 0.00 282.00 304.00 0.00 304.00
Kentucky 166.00 0.00 166.00 231.00 0.00 231.00
King and Snohomish Counties, WA 212.00 0.00 212.00 209.00 0.00 209.00
Louisiana 615.00 4.75 610.25 543.00 230.00 313.00
Maine 105.00 0.00 105.00 92.00 0.00 92.00
Maryland 1324.00 0.00 1324.00 1511.00 0.00 1511.00
Massachusetts 589.00 0.00 589.00 447.00 0.00 447.00
Michigan 1354.00 42.08 1311.92 1037.00 885.00 152.00
Minnesota 289.00 0.00 289.00 254.00 0.00 254.00
Mississippi 434.00 0.00 434.00 443.00 0.00 443.00
Missouri 204.00 0.00 204.00 294.00 0.00 294.00
Montana 112.00 0.00 112.00 114.00 0.00 114.00
Nebraska 129.00 0.00 129.00 130.00 0.00 130.00
Nevada 332.00 0.00 332.00 337.00 0.00 337.00
New Hampshire 106.00 0.00 106.00 92.00 0.00 92.00
New Jersey 718.00 19.71 698.29 505.00 384.00 121.00
New Mexico 204.00 0.00 204.00 195.00 0.00 195.00
New York 11144.00 420.75 10723.25 14187.00 13544.00 643.00
North Carolina 656.00 0.29 655.71 727.00 0.00 727.00
North Dakota 35.00 0.00 35.00 33.00 0.00 33.00
Ohio 216.00 0.00 216.00 176.00 0.00 176.00
Oklahoma 325.00 0.00 325.00 274.00 0.00 274.00
Oregon 114.00 0.00 114.00 149.00 0.00 149.00
Other Counties, WA 181.00 0.00 181.00 193.00 0.00 193.00
Pennsylvania 209.00 0.00 209.00 76.00 0.00 76.00
Rhode Island 68.00 0.00 68.00 64.00 0.00 64.00
South Carolina 324.00 0.00 324.00 353.00 0.00 353.00
South Dakota 81.00 0.00 81.00 93.00 0.00 93.00
Tennessee 866.00 0.00 866.00 590.00 0.00 590.00
Texas 2471.00 0.00 2471.00  3010.00 0.00 3010.00
Utah 209.00 0.00 209.00 227.00 0.00 227.00
Vermont 1.00 0.00 1.00 0.00 0.00 0.00
Virginia 1852.00 0.00 1852.00  2211.00 0.00 2211.00
Washington 160.00 0.00 160.00 168.00 0.00 168.00
West Virginia 146.00 0.00 146.00 175.00 0.00 175.00
Wisconsin 451.00 0.00 451.00 545.00 0.00 545.00
Wyoming 58.00 0.00 58.00 68.00 0.00 68.00
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Our findings suggest that the fraction of currently available ventilators that are to be used for non-
COVID-19 patients strongly impacts state and national ability to meet demand arising from COVID-
19 patients. When more than 40% of the existing inventory is available for COVID-19 patients, the
national stockpile is nearly sufficient to meet the demand in mild cases. However, if less than 25%
of the existing inventory is available for COVID-19 patients, the current national stockpile and the
anticipated production may not be sufficient under extreme demand scenarios. As expected, the
magnitude of this shortfall increases when one considers more and more extreme demand scenarios.

Overall, the model developed in this paper can be used as a planning tool/framework by state and
federal agencies in acquiring and allocating ventilators to meet national demand. The results reported
in this paper can also provide a guide to states in planning for their ventilator needs. We, however,
emphasize that these results are based on certain modeling assumptions. This include the process of
demand forecast scenario generation, estimates of initial ventilator inventory, and future production
quantities. Each one of these, as well as other model parameters, can be changed in the model input
to obtain more refined results. Nevertheless, an important finding is that a state’s willingness to share
its idle inventory can help address overall shortfall.

While this paper has focused on ventilator needs in the US, such a model can also be adapted
for use in international supply-chain coordination of equipment such as ventilators across countries.
COVID-19 is expected to have different peak dates and demand cycles in other countries, and one or
two additional disease spread cycles are likely until an effective vaccine becomes available.

In conclusion, we point out that the model developed in this paper has a one-time planning
decision, i.e., there are no “wait-and-see” decisions in the model over time. One can also formulate

Table 5: Ventilators’ shortage summary with early ramp-up in production
under Cases V and VI, with @ = 320 and (v, p, 7, L) = (0.75, 3.00,0.00, 0).

Ramp-up date | Case | Total | Worst date (t)

Worst date-state (¢, n)

04/01,/2020 vi 254354 | 17741 (04/18/2020) 3713 (04/16/2020, Alabama)
VIt | 420675 | 25965.69 (04/18/2020) | 5183 (04/16/2020, Alabama)
04/07/2020 vi 305466 | 20101 (04/18/2020) 4075 (04/16/2020, Alabama)
vit | 480100 | 28437 (04/17/2020) 5481 (04/16/2020, Alabama)
04/15,/2020 vi 346571 | 22140 (04/18/2020) 4334 (04/16/2020, Alabama)
vit | 527275 | 30596 (04/17/2020) 5700 (04/16/2020, Alabama)

T Reached the time limit. The reported results correspond to the best integer solution
found.

Table 6: Ventilators’ shortage summary with a lead-time of one
day, under Case V and VI, with @ = 320 and p = 3.00.

Total

(v, 7) Worst date (t) | Worst date-state (¢, n)

(0.50,0.00) 7| 263587

18085 (04/18/2020) | 4421 (04/16/2020, Alabama)

(0.50,0.25) T| 204526 | 14896 (04/18/2020) | 3942 (04/16/2020, Alabama)

(0.50,0.50) T| 147805 | 12432 (04/19/2020) | 3249 (04/16/2020, Alabama)

(0.60,0.00) T| 356540 | 22815 (04/18/2020) | 5160 (04/16/2020, Alabama)

(0.60,0.25) 7| 314168

(0.60,0.50) T| 253921 | 18332 (04/19/2020) | 4389 (04/16/2020, Alabama)

(0.75,0.00) T| 545022 | 31008 (04/18/2020) | 5733 (04/16/2020, Alabama)

(0.75,0.25) T| 526368 | 30140 (04/18/2020) | 5481 (04/16/2020, Alabama)

|

| |

| |

| |

| |

20711 (04/18/2020) | 4802 (04/16/2020, Alabama) |
| |

| |

| |

| |

(0.75,0.50) T| 487666 | 28704 (04/18/2020) | 5448 (04/16/2020, Alabama)

T Reached the time limit. The reported results correspond to the best
integer solution found.
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Model parameters:

COVID-19 ventilator demand scenarios: s Lead time (days):

Extreme (CI Upper 0=

Proportion of the States’ initial ventilator 750 & States’ historic inventory of ventilators that can 5, 4
inventory for NON-COVID-19 patients: be shared with other states:

The States’ risk-aversion factor for sharing 125 & Request a Custom Analysis
ventilators with FEMA:

(a) Plugging in the parameters.

0 500 1000 1500

(b) The dynamic US map comparing the ventilators’ shortage in different states, on any date
in the planning horizon.

Figure 4: Online COVID-19 ventilator allocation and sharing planning tool [9].

the ventilator allocation problem as a time-dynamic multistage stochastic program, where the decision
maker can make recourse decisions as time evolves based on the information available so far on the
stochastic demands and past decisions. We are currently working on such an extension.
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