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Abstract 29 

Infectious disease surveillance systems provide vital data for guiding disease prevention and 30 

control policies, yet the formalization of methods to optimize surveillance networks has largely 31 

been overlooked. Decisions surrounding surveillance design parameters—such as the number 32 

and placement of surveillance sites, target populations, and case definitions—are often 33 

determined by expert opinion or deference to operational considerations, without formal analysis 34 

of the influence of design parameters on surveillance objectives. Here we propose a simulation 35 

framework to guide evidence-based surveillance network design to better achieve specific 36 

surveillance goals with limited resources. We define evidence-based surveillance design as a 37 

constrained, multi-dimensional, multi-objective, dynamic optimization problem, acknowledging 38 

the many operational constraints under which surveillance systems operate, the many 39 

dimensions of surveillance system design, the multiple and competing goals of surveillance, and 40 

the complex and dynamic nature of disease systems. We describe an analytical framework for 41 

the identification of optimal designs through mathematical representations of disease and 42 

surveillance processes, definition of objective functions, and the approach to numerical 43 

optimization. We then apply the framework to the problem of selecting candidate sites to expand 44 

an existing surveillance network under alternative objectives of: (1) improving spatial prediction 45 

of disease prevalence at unmonitored sites; or (2) estimating the observed effect of a risk factor 46 

on disease. Results of this demonstration illustrate how optimal designs are sensitive to both 47 

surveillance goals and the underlying spatial pattern of the target disease. The findings affirm 48 

the value of designing surveillance systems through quantitative and adaptive analysis of 49 

network characteristics and performance. The framework can be applied to the design of 50 

surveillance systems tailored to setting-specific disease transmission dynamics and surveillance 51 

needs, and can yield improved understanding of tradeoffs between network architectures. 52 

 53 

Author summary 54 

Disease surveillance systems are essential for understanding the epidemiology of 55 

infectious diseases and improving population health. A well-designed surveillance system can 56 

achieve a high level of fidelity in estimates of interest (e.g., disease trends, risk factors) within its 57 

operational constraints. Currently, design parameters that define surveillance systems (e.g., 58 

number and placement of the surveillance sites, target populations, case definitions) are 59 

selected largely by expert opinion and practical considerations. Such an informal approach is 60 

less tenable when multiple aspects of surveillance design—or multiple surveillance objectives—61 

need to be considered simultaneously, and are subject to resource or logistical constraints. 62 

Here we propose a framework to optimize surveillance system design given a set of defined 63 

surveillance objectives and a dynamical model of the disease system under study. The 64 

framework provides a platform to conduct in silico surveillance system design, and allows the 65 

formulation of surveillance guidelines based on quantitative evidence, tailored to local realities 66 

and priorities. The approach facilitates greater collaboration between health planners and 67 

computational and data scientists to advance surveillance science and strengthen the 68 

architecture of surveillance networks. 69 
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1 Introduction 70 

Infectious disease surveillance systems provide vital information on patterns of disease 71 

occurrence across space, time, and populations of interest, and ultimately provide the basis for 72 

evidence-based disease control policy decisions [1]. Considerable progress has been made 73 

supporting infectious disease control decision-making with computational approaches to 74 

evaluate the outcomes of alternative decisions [2]. Examples include optimizing when, where, 75 

and among which populations to allocate public health resources [3, 4], determining the optimal 76 

balance between multiple intervention approaches (e.g., case detection, treatment, vaccination, 77 

and sanitation improvement) [5-8], and optimizing the start time, duration, and dose of drug 78 

treatment programs [9, 10]. In contrast, little attention has been paid to the development of tools 79 

for improving infectious disease surveillance system designs, and formalization of methods to 80 

optimize surveillance networks has largely been overlooked. 81 

The ‘design parameters’, which are the high-level characteristics that define infectious 82 

disease surveillance networks—such as the number and locations of surveillance sites, 83 

sampling frequency for laboratory testing or community-based surveys, and selection of 84 

diagnostic techniques—can greatly influence the degree to which the resulting surveillance data 85 

serves public health objectives, including early detection of outbreaks (e.g., the coronavirus 86 

disease outbreak in 2020) [11], improved understanding of disease emergence and spread [12], 87 

and accurate measurement of the impact of interventions [13]. Thus, key design parameters can 88 

be modified in a manner informed by optimization analysis such that the system better achieves 89 

specific surveillance goals. Examples include relocating and adding reporting sites to predict the 90 

temporal trend of diseases more accurately [14]; changing diagnostic approaches/case 91 

definitions to increase the chance of detecting cases [15]; and targeting of sampling towards 92 

specific subpopulations to improve the timeliness of outbreak detection [16, 17]. 93 

In practice, surveillance system design parameters are often set in an ad hoc fashion 94 

based on operational considerations (e.g., budget, convenience, political agendas), rather than 95 

through quantitative evaluation of how alternative designs might impact surveillance system 96 

objectives. For instance, World Health Organization (WHO) recommends selection of influenza 97 

surveillance sites based on the facilities’ willingness to participate, availability of necessary 98 

laboratory and information infrastructure, ability to cover the surveillance cost, and 99 

representativeness of the general population. Notably absent from these criteria is the degree to 100 

which the network’s performance on specific surveillance objectives will be enhanced [13]. The 101 

absence of objective criteria and methods to evaluate and iteratively reconfigure surveillance 102 

system design can lead to inefficient use of limited resources. For example, in China, current 103 

requirements specify that 5-15 influenza-like illness (ILI) cases are required to be sampled per 104 

week at each of the 556 influenza sentinel hospitals for laboratory confirmation [18]. If the total 105 

sample size is fixed, it may be that reducing the number of sentinel sites (e.g., prioritizing sites 106 

in populous regions and with high levels of population movement), while increasing the sample 107 

sizes at the remaining sites, could yield more timely detection of outbreaks with the same level 108 

of resources. What is more, because disease surveillance systems generally operate in pursuit 109 

of multiple objectives, decision-making surrounding optimal design can be highly 110 

counterintuitive. 111 

 112 
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Recent research has provided some early examples of quantitative infectious disease 113 

surveillance design optimization [19, 20]. In one study, researchers estimated that an optimal 114 

relocation of Iowa’s existing 22 ILINet sentinel sites could increase population coverage of the 115 

network from 56% to 75% [21]. As another example, targeted surveillance of pregnant women 116 

over blood donors for compulsory diagnostic testing was estimated to increase the weekly 117 

probability of detecting at least one Zika case from 11% to 40% [15]. While these and other 118 

studies serve as foundational examples, the methods utilized in these analyses are targeted 119 

towards narrow, study-specific objectives and specific networks, and are challenging to 120 

generalize to other—even closely related—surveillance design optimization problems. What is 121 

more, prior studies have not attempted to articulate a general theory of surveillance design 122 

optimization and decision-making. 123 

Here, we present for the first time a unified analytical framework for quantitative 124 

infectious disease surveillance system optimization, accommodating multiple surveillance 125 

design parameters, objectives, operational constraints, and underlying disease processes. A 126 

common framework and standard terminology can enable closer collaboration between and 127 

among computational researchers, public health officials, and other stakeholders regarding the 128 

design and implementation of infectious disease surveillance systems. This in turn can 129 

accelerate the pace of methodological innovations and facilitate the development of surveillance 130 

design theories that anticipate and respond to current and future epidemiological challenges. 131 

Furthermore, a generalized framework can inspire the application of quantitative surveillance 132 

optimization across broader settings, resulting in system designs better aligned with local 133 

realities and public health priorities. 134 

2 Surveillance design as a multi-objective, multi-dimensional, 135 

constrained and dynamic optimization problem 136 

 The search for optimal disease surveillance designs is a highly complex problem. This 137 

results from the multiple, often competing goals of surveillance data collection, idiosyncratic 138 

surveillance network design, the need to represent operational constraints that govern 139 

surveillance systems, and the complexity and dynamic nature of diseases under surveillance. 140 

Simple optimization problems involving a single design parameter and objective for a given 141 

target disease—such as the optimal placement of a new surveillance site to maximize the 142 

proportion of influenza cases detected—may be solved in relatively straightforward fashion by 143 

testing all possible designs and choosing the design that generates optimal network 144 

performance (e.g., the new site location that results in the highest proportion of cases detected 145 

overall). However, surveillance network optimization quickly becomes non-trivial when the 146 

design space increases (e.g., selecting 10 sites out of 200 alternative sites), when multiple 147 

objectives (such as increasing case detection, improving spatial and temporal trend coverage, 148 

and risk factor identification) are subject to simultaneous analysis and optimization, or when 149 

optimization is subject to constraints regarding resource limitations and operational plausibility. 150 

Uncertainty regarding the functioning of the epidemiologic system and shifts in patterns of 151 

diseases further complicate matters. Hence, our optimization goals are multidimensional, 152 

dynamic, and stochastic. In this section, we describe the relevance of surveillance objectives, 153 
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network design parameters, operational constraints and dynamic disease systems to the pursuit 154 

of surveillance optimization. 155 

Multiple objectives. Disease surveillance systems are established and designed for 156 

diverse purposes, including to collect data to understand variations in disease frequency across 157 

populations, space, and time, to monitor pathogen composition over time, to detect outbreaks 158 

and forecast epidemics, to assess the impact of interventions, and to determine risk factors 159 

associated with diseases. Most surveillance systems operate with multiple public health 160 

objectives and multiple logistical constraints. Hence, surveillance system designs should 161 

generally be subject to multi-objective optimization, and tradeoffs between different objectives 162 

must be considered. For instance, if the goals of a system are to both estimate prevalence and 163 

assess the impact of risk factors, the network design should be subjected to optimization that 164 

considers both objectives using a framework that is capable of capturing tradeoffs between 165 

designs with respect to achieving the two objectives. 166 

Multiple design parameters. Surveillance system structure and design can be 167 

decomposed into a multitude of characteristics, operational details, and features that influence 168 

the performance of surveillance networks. Design parameters can lend themselves to 169 

representation and simulation within models. Multiple design parameters may be amenable to 170 

optimization analysis, either through single or multivariate optimization. For example, to improve 171 

estimation of disease incidence, either the accuracy of diagnostics at existing reporting facilities 172 

or the number of facilities in the reporting network, or both, can be modified. Other design 173 

parameters, such as when, where, and among which populations to implement targeted 174 

sampling efforts may also be entered into the analysis, greatly expanding the dimensionality of 175 

the problem. Moreover, the set of design parameters to optimize depends on the surveillance 176 

goals. For example, when the surveillance goal is accurate estimation of the temporal trend of a 177 

disease, it may be that the placement of sites is less important than sampling frequency. Table 178 

1 shows examples of design parameters from select real world infectious diseases surveillance 179 

systems, and their potential impacts on surveillance system performance. 180 

 181 
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Table 1. Example surveillance system design parameters and their potential impacts on surveillance performance. 182 

Design 

parameter 
Definition 

Potential impacts on surveillance 

performance 
Example designs 

Example surveillance 

system 
Ref. 

Target 

population 

Population to be 

monitored for 

outcomes of interest. 

Target populations representative of a 

general population provide a means of 

tracking overall disease incidence and 

trends in the population as a whole. Target 

populations informed by demographic 

differences in disease risk, transmission 

potential, or detection probability may 

provide advantages for monitoring outcomes 

in vulnerable populations, anticipating 

outbreaks, or tracking rare diseases. 

All persons >2 years of age residing 

in homes 

Republic of South Africa 

HIV prevalence survey 
[22] 

Pregnant women and infants 
US Zika Pregnancy and 

Infant Registry 
[23] 

Site 

enrollment 

The inclusion of 

hospitals and other 

facilities in passive 

reporting networks, or 

selection of locations 

for active or 

environmental 

surveillance 

Site selection influences factors such as 

population coverage and 

representativeness, diagnostic quality, the 

speed at which spreading outbreaks may be 

detected, and informational redundancy due 

to spatial proximity or other sources of 

similarity between locations 

Hospitals in Maluku, North 

Sulawesi, East Kalimantan, North 

Sumatra, Yogyakarta and West 

Nusa Tenggara 

Indonesia influenza 

sentinel surveillance 

system 

[24] 

Health centers in Dembi, Asendabo, 

Tulubolo, Guangua, Bulbula, Dhera, 

Welenchity, Metahara, Asebot, and 

Kersa 

Ethiopia malaria sentinel 

surveillance 
[25] 

Sampling 

strategy 

Type of sampling 

used to identify cases 

among the target 

population. 

Sampling strategies influence the 

representativeness of surveillance data, as 

well as the ability of surveillance systems to 

detect rare or underreported conditions. 

Strategies that adequately characterize a 

general population may be biased with 

respect to critical subpopulations, especially 

those facing stigma. 

Hospital-based convenience 

sampling (e.g. every fourth patient 

meeting case definition) 

Bangladesh rotavirus 

surveillance system 
[26] 

Respondent-driven sampling, which 

uses existing samples in high-risk 

groups (e.g., intravenous drug user, 

men who have sex with men) to 

recruit new samples, then uses a 

model to correct for potential bias in 

the nonprobability sampling 

Central America sexual 

behaviors and HIV 

prevalence survey 

[27] 

Multistage cluster sampling, which 

selects districts first according to 

their population size, then selects 

communes within the selected 

districts by simple random sampling, 

Viet Nam national survey 

of tuberculosis prevalence 
[28] 
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and selects all residents aged ≥ 15 

years in the selected communes 

Sampling 

intensity 

Number of samples 

per sampling interval 

Under operational constraints, the choice 

between sampling more frequently but with 

low intensity or less frequently with higher 

intensity represents a tradeoff between the 

ability to resolve high frequency changes in 

outcomes of interest, or timeliness of 

detection, and reducing statistical 

uncertainty 

3 adults and 2 children per week 

Malaysia laboratory-based 

influenza surveillance 

system 

[29] 

5 mild cases serotyped per month 

per site 

China hand foot mouth 

disease sentinel 

surveillance system 

[30] 

Sampling 

seasonality 

Pre-determined 

changes in sampling 

intensity over time 

Year-round sampling increases the chances 

of detecting unexpected changes in disease 

incidence. However, if disease seasonality 

is static and well-understood, resources may 

be better used for intensive seasonal 

sampling 

Year-round 
New Zealand virological 

surveillance system 
[31] 

Transmission season (June-

October) 

China dengue virological 

surveillance system 
[32] 

Laboratory 

diagnostics 

Methods used to 

determine the 

presence of a 

pathogen or 

syndrome of interest. 

Diagnostic tests and other related factors 

such as specimen types, the quality of the 

specimen, and the time from onset to 

specimen collection can influence the 

sensitivity and specificity of the surveillance 

system.  

Isolation of Bordetella pertussis 

from clinical specimen and/or a four-

fold or greater increase in titer of 

antibody against B. pertussis 

between acute and convalescent 

sera 

China pertussis 

surveillance system 
[33] 

Isolation of B. pertussis from clinical 

specimen and positive polymerase 

chain reaction (PCR) for B. 

pertussis 

US CDC pertussis 

surveillance system 
[34] 

Case 

definition 

Diagnostic criteria to 

classify outcomes of 

interest. 

Case definitions can influence factors such 

as the severity and characteristics of cases 

identified, and the sensitivity and specificity 

of the system. 

Influenza-like illness, defined as an 

acute respiratory infection with 

measured fever of ≥ 38 °C and 

cough with onset within the last 10 

days 
WHO global influenza 

surveillance 
[35] Severe acute respiratory infection, 

defined as an acute respiratory 

infection with history of fever or 

measured fever of ≥ 38 °C and 

cough with onset within the last 10 

days and requires hospitalization 

183 
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 184 

Operational constraints. Operational restrictions on surveillance system designs—due 185 

to budgetary, logistical, political and cultural considerations—add critical constraints to the 186 

optimization problem. Absent constraints, the optimal design may be self-evident, e.g., sampling 187 

at maximal frequency and intensity. Yet when there is a fixed budget for samples, the optimal 188 

balance between design parameters—say, number of samples and sampling frequency—189 

depends on the relative value of precise cross-sectional estimates of disease prevalence versus 190 

characterizing disease incidence over time, which in turn depends on the specific objectives of 191 

surveillance and the dynamics of the underlying disease system. 192 

Dynamic and imperfectly understood disease systems. Surveillance systems must 193 

respond to shifts in the epidemiology of target infections. Optimal designs will likely shift in 194 

response to the evolution of underlying epidemiology and available knowledge. For instance, as 195 

infections emerge, become endemic, or approach elimination within populations or 196 

subpopulations, the goals of surveillance, and the resulting optimal designs, can (and must) 197 

evolve alongside them. The dynamic nature of optimal surveillance design may be especially 198 

important in emerging economies that are undergoing epidemiologic transitions. For instance, 199 

as a region or nation approaches elimination of a particular infectious disease, surveillance 200 

goals generally shift from enumeration of endemic cases occurring in the general population to 201 

detection of nexuses of sporadic transmission. This may require new designs (e.g., shifting to a 202 

more sensitive diagnostic test within a limited area, or increasing the coverage of 203 

subpopulations involved in ongoing transmission), and adjustment of system objectives (e.g., 204 

maximize detection of the few remaining cases instead of minimizing false positive detections). 205 

Additionally, as cases caused by novel pandemics (e.g., the 2020 coronavirus disease 206 

pandemic, or 2009 H1N1 pandemic) start to increase exponentially, surveillance systems may 207 

need to switch from tracking individual cases to population-based surveillance (e.g., pathogen 208 

testing for a proportion of patients with a non-specific syndrome) in order to monitor the 209 

progression of the outbreak and develop mitigation strategies without depleting public health 210 

resources. 211 

3 A framework for surveillance simulation and optimization 212 

The aforementioned challenges of surveillance optimization—multiple objectives, 213 

combinatorial complexity of relevant design parameters, operational constraints, and dynamic 214 

and uncertain epidemiology of target diseases—suggest the need for a generalized framework 215 

for surveillance network optimization. Advances in computation for simulation-based studies 216 

have benefitted many related fields, including optimal disease control [36-39], yet applications of 217 

simulation optimization to the design of disease surveillance networks have scarcely been 218 

pursued. In the following sections, we detail a simulation and optimization framework for 219 

designing infectious disease surveillance networks, and demonstrate its application in a site 220 

selection context. Our framework facilitates a quantitative approach to designing surveillance 221 

systems tailored to local disease transmission dynamics and surveillance needs, as well as a 222 

more general study of optimal network design principles under varying objectives and 223 

epidemiological circumstances. 224 
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 Broadly, our framework (Figure 1) allows for evaluation of surveillance system 225 

performance across a predefined design space under different epidemiologic scenarios 226 

(disease system model) and network characteristics (surveillance model). Numerical 227 

optimization algorithms are applied to efficiently identify the region(s) of design space that yield 228 

superior network performance based on one or more specific surveillance goals (simulation 229 

optimization search). The optimization procedure (Figure 1 and Box 1) yields a set of network 230 

designs (i.e., optimal design parameter values) that maximize performance with respect to the 231 

specified public health goal(s), according to the specified data and models. 232 

 233 
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  236 

Figure 1. Schematic of surveillance system optimization. The surveillance system optimization 237 

procedure uses data and knowledge about disease transmission and case ascertainment to identify 238 

optimal surveillance designs with regard to predefined surveillance goals. First, a disease system model 239 

𝒟 is defined, using observed epidemiologic data and/or theory, and taking into account relevant factors 240 

influencing disease dynamics or distribution. Multiple realizations of disease data (𝒹) may be generated to 241 

explore optimal designs under uncertainty or variability of the underlying system (Section 3.1). 242 

Furthermore, an ensemble of disease models can be combined to reduce the chance of model 243 

misspecification. Next, a surveillance model is defined to represent how information on the state of the 244 

disease system is captured as a function of design parameters 𝜃 and any other relevant variables (e.g., 245 

factors known to affect the sensitivity and specificity of a diagnostic test, or estimated underreporting 246 

rates for an area; Section 3.2). To initiate the optimization process, an initial design parameter set, 𝜃1, is 247 

drawn from the design space subject to operational constraints 𝑔(𝜃𝑖) ≤ 0, ℎ(𝜃𝑖) = 0 and, along with 248 

underlying disease data 𝒹, input to the surveillance model to generate a realization of surveillance 249 

information,  ℐ1 =  ℐ(𝜃1, 𝑑). The objective function, 𝑓, is evaluated based on the disease data 𝒹, and 250 

surveillance information ℐ1 (Section 3.3). If a stopping criterion (e.g., reaching a large number of iterations; 251 

de minimis improvement in objective function) is not met, a new design parameter set, 𝜃𝑖, is proposed 252 

from the design space using metaheuristic search algorithms (e.g., simulated annealing, genetic 253 

algorithm, particle swarm algorithm) when the design space is large, or enumeration when the design 254 

space is small. This new design parameter set is then used to generate a new realization of surveillance 255 

information and evaluation of the objective functions (Section 3.4). After a stopping criterion is met, 256 

design parameter sets with the best objective function values are output as optimal surveillance designs.  257 

 258 

Box 1. Surveillance System Optimization Procedure 

Input: Epidemiologic data and/or theory, surveillance performance data and/or theory, 
and other auxiliary data (e.g., disease risk factors) 
Output: the design parameter set with the highest/lowest (i.e., optimal) objective function 
value 
 
Initialization: 

Define a disease system model to represent the underlying dynamics of the target 
disease system in the spatial, temporal, and demographic context of interest 

Generate disease distributions 𝒹 as realization(s) of the system 
Sample initial design parameter set, 𝜃1, within the design space subject to constraints 

𝑔(𝜃𝑖) ≤ 0, ℎ(𝜃𝑖) = 0 
Generate realization(s) of surveillance information, ℐ1, given 𝒹  and 𝜃1 

Evaluate objective function(s) 𝑓 given  ℐ1 and 𝒹 
 
while stop criterion is not met do 

Propose a new design parameter set, 𝜃𝑖, within the design space using metaheuristic 
search algorithms or enumeration 

Generate realization(s) of surveillance information, ℐ𝑖, given 𝒹 and 𝜃𝑖 
Evaluate objective function(s), 𝑓, given ℐ𝑖 and 𝒹 

end while 
 
return the best design parameter set, 𝜃̂ (i.e., with the optimal objective function value) 

 259 
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3.1 Specify and parameterize disease system model 260 

An accurate representation of epidemiologic characteristics of the target disease(s) is 261 

essential for a successful optimization. This representation can be generated using 262 

observational data, outputs of mechanistic transmission models, or other approaches, and 263 

represents the best estimate of the disease’s epidemiology that is used to evaluate surveillance 264 

network performance using objective functions (defined in section 3.3 Define objective 265 

function(s), below). To avoid potential model-misspecification, an ensemble of disease models 266 

and multiple realizations of disease models (i.e., with varying epidemiologic parameter values) 267 

can be utilized in the framework. The structure of the disease system model output—such as 268 

spatial and temporal resolution—should be tailored to the surveillance objectives and design 269 

parameters. For instance, if a surveillance objective is to better estimate the spatial distribution 270 

of a disease, the target disease data must include geographical information about cases.  271 

3.2 Specify and parameterize surveillance model 272 

In order to identify optimal network designs, a model representing key aspects of the 273 

sampling of and extraction of information from underlying disease processes by the surveillance 274 

system is needed. The surveillance model must represent the mechanisms through which 275 

variation in network design parameters is expected to impact the epidemiologic information 276 

obtained and thus governs optimization with respect to system objectives. Surveillance models 277 

generally comprise a set of probability distributions relating target estimands to the underlying 278 

disease distribution, conditional on network design and other relevant considerations. For 279 

example, to optimize the diagnostic protocol for minimal bias in reporting, a surveillance model 280 

may be constructed for the distribution of reported cases conditioned on diagnostic method, 281 

background prevalence of the target disease and conditions with similar clinical presentation, 282 

and the distribution across subpopulations of factors that impact diagnostic sensitivity and 283 

specificity. When random errors contributed by surveillance processes are not explicitly taken 284 

into account, as may be the case when seeking to maximize the size of the population covered 285 

by a surveillance network, the surveillance model becomes a set of conditional Dirac delta 286 

distributions, and is deterministic. During the process of surveillance model specification, 287 

aspects of surveillance design that will be allowed to vary during optimization (i.e., the 288 

parameters to be optimized), and those that will be fixed (i.e., design aspects that are relevant 289 

to performance, but which it is not feasible or desirable to change) must be decided upon. 290 

Surveillance models may be as granular (e.g., modeling the full sequence of events necessary 291 

for each individual case to be reported) or abstract (e.g., modeling the overall proportion of 292 

cases detected in a population) as is deemed necessary for the optimization procedure, 293 

recognizing, however, that computational complexity may limit the feasibility of certain 294 

representations. 295 

3.3 Define objective function(s) 296 

Changes to design parameters can be analyzed in relation to their influence on network 297 

performance in the context of specific surveillance system objectives. That is, performance is 298 

evaluated with respect to achieving a specific goal or goals. This evaluation is formalized by 299 
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defining objective functions, which define the specific minimization or maximization problem to 300 

be solved, based on the design parameters and surveillance goals of interest. Thus, network 301 

performance is estimated through the iterative evaluation of objective functions, which are 302 

minimized (or maximized) as the design parameter space is searched. Table 2 presents 303 

canonical objective functions available for use in surveillance network optimization. Our 304 

examples do not explicitly include operational considerations within objective functions, but 305 

these can easily be taken into account. For example, the objective function could be established 306 

so as to yield the marginal information gain per added site or sample, or per dollar spent on 307 

surveillance.  308 

 309 

Table 2. Examples of objective functions for optimization analysis of surveillance networks 310 

Objective 
function type 

Description Example objective functions 

Minimize mean 
error magnitudes 

On average, how different a quantity, 
QI, measured or estimated from the 

ascertained data ℐ(θ, 𝒹), is from the 

same quantity, QD, estimated or 
measured from the underlying 
disease data D. Includes mean 
squared error, mean squared 
percentage error, root mean squared 
error, mean absolute error, mean 
absolute percentage error, or other 
expressions. 

To better characterize geographic, temporal, or 
demographic distribution of disease, the objective 
function may be expressed as: 

𝑓 = ∑(𝐶𝐼,𝑖 − 𝐶𝐷,𝑖)2/𝑛

𝑛

𝑖=1

 

n – number of subpopulations 
CI,i – number of ascertained cases in subpopulation i 
CD,i – number of true cases from D in subpopulation i 

To assess the impact of interventions more 
accurately, the objective function may be expressed 
as: 

𝑓 =  |
𝐷𝐼

𝐹𝐼
−

𝐷𝐷

𝐹𝐷
| 

DI – observed number of cases in ascertained cases 
after intervention 
FI – predicted number of ascertained cases in 
absence of the intervention 
DD – observed number of cases in all cases after 
intervention 
FD – predicted number of all cases in absence of the 
intervention 

Minimize 
uncertainty of 
surveillance 
estimands 

If bias in surveillance sampling and 
estimation is not a concern (e.g. for 
asymptotically unbiased estimators), 
then minimizing uncertainty may be 
the primary goal. Uncertainty can be 
represented by standard error, 
standard deviation, inter-quantile 
range, or other expressions. 

To determine the effect of a risk factor on 
infection more precisely when assuming a linear 
relationship between the risk factor and disease rate, 
the objective function may be expressed as: 

𝑓 =  var(𝛽̂𝐼) 

𝛽̂𝐼 – estimated regression coefficient of the effect of 
the risk factor on the disease rate from the 
ascertained data 

To forecast the peak case count more precisely, 
the objective function may be expressed as: 

𝑓 =  var(𝑃𝐼) 
𝑃𝐼 – forecasted peak case count based on 
ascertained data overall or for a specific area 

Maximize log-
likelihood 

If a probability distribution 

𝑄𝐼~𝒬(𝜃, … ) can be expressed by the 
surveillance model, then maximizing 
the likelihood of true data 𝑄D under 
the estimated distribution can be 
used to simultaneously address bias 
and variance. 

To better estimate the effect of a risk factor on 
infection rates when assuming a linear relationship 
between the risk factor and disease rate, the 
objective function may be expressed as: 

𝑓 =  log (
1

𝜎√2𝜋
𝑒

−
1

2
(

𝛽̂𝐼−𝛽𝐷 

𝜎
)

2

), 

if a normal distribution with a variance of σ2 is 

assumed for the true effect of a risk factor 𝛽𝐷 
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To improve estimation of outbreak probabilities, 
the objective function may be expressed as: 

𝑓 =  ∑ [𝑌𝑡 log(𝑝̂𝑡) + (1 − 𝑌𝑡) log(1 − 𝑝̂𝑡)]𝑇
𝑡=1  , 

if outbreak probabilities in subsequent weeks are 
assumed to be conditionally independent. 
𝑝̂𝑡 – estimated outbreak probability in time period 𝑡 

𝑌𝑡 – indicator (0 or 1) for actual occurrence of an 

outbreak in time period 𝑡 

Maximize 
classification 
performance 

When QI and QD are categorical, the 
performance of the surveillance 
system can be measured by 
classification evaluation metrics, 
such as sensitivity, specificity, 
positive predictive value, F1 scores, 
area under the receiver operating 
characteristic curve, etc.  

To improve our ability to discriminate outbreaks 
from false alarms, the objective function may be 
expressed as the area under the ROC curve: 

𝑓 =  ∫ 𝜋𝑡𝑝(𝜋𝑓𝑝)𝑑𝜋𝑓𝑝

1

0

 

πtp – proportion of true outbreaks correctly identified 

πfp – proportion of non-outbreak time periods falsely 

identified as outbreaks 

To improve our ability to detect a rare disease, the 
objective function may be expressed as the 

maximum of the average 𝐹1 score: 

𝑓 = 2 ∫
𝜋𝑡𝑝|𝑝(𝜏) × 𝜋𝑡𝑝(𝜏)

𝜋𝑡𝑝|𝑝(𝜏) + 𝜋𝑡𝑝(𝜏)

1

0

 𝑑𝜏 

𝜋𝑡𝑝 – proportion of true cases reported 

𝜋𝑡𝑝|𝑝 – proportion of reported cases that are true  

𝜏 – threshold condition for reporting a case, assumed 
in this example to represent a probability 

 311 

3.4 Simulation optimization search 312 

The goal of the optimization process (while block in Box 1; the loop in Simulation 313 

optimization search component of Figure 1) is to thoroughly explore the response surface of the 314 

objective function(s) over the design space so as to identify designs likely to yield optimal or 315 

near-optimal surveillance performance. Candidate surveillance designs are drawn from the 316 

design space, and the expectations of resulting objective function values across realizations are 317 

evaluated with respect to the simulated true and ascertained disease data; this process is 318 

repeated iteratively until a stopping criterion is reached, e.g., the convergence on estimated 319 

optimum(a); exhaustive sampling of the design space; or the exceedance of a computational 320 

budget. When the design parameter space is small, exhaustive evaluation of objective function 321 

values across the entire design parameter space is possible. Sufficient and efficient searching 322 

of large design parameter spaces, by contrast, requires heuristic or metaheuristic optimization 323 

algorithms (e.g., simulated annealing, genetic algorithms, particle swarm optimization, or 324 

Bayesian model based optimization). 325 

Multiple surveillance objectives can be optimized simultaneously through multi-objective 326 

optimization approaches, such as through weighted sums of objective functions or Pareto 327 

optimization [40]. Generating weighted sums of objective function values allows for the 328 

specification of relative importance of different objectives. If one objective is less important, it 329 

would be assigned a smaller weight when compared with other objectives. In this way, optimal 330 

designs are not overly influenced by less important objectives. Pareto optimization outputs a set 331 

of optimal solutions (Pareto optimal set) for which no other solutions can perform better under 332 

all objectives. That is, improving the performance on one objective leads to worsening at least 333 

one of the other objectives. Decision makers are then tasked with choosing the “best” design 334 
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from the Pareto optimal set based on other considerations. Multi-objective optimization in the 335 

presence of a large design space can be handled by modified metaheuristic algorithms [41]. For 336 

example, to accommodate multiple objectives, Pareto simulated annealing approaches seek to 337 

express the acceptance probability of a new design as a function of its improvements in all 338 

objectives when compared with the current best design [42]. 339 

 340 

4 Demonstration of the surveillance simulation and optimization 341 

framework: optimal selection of new surveillance sites 342 

Here, we demonstrate an application of our surveillance system optimization framework 343 

in the context of selecting candidate sites to add to an existing cross-sectional survey network. 344 

We consider two surveillance design objectives—optimal prediction of the geographical 345 

distribution of the disease (hereafter referred to as spatial prediction) and optimal estimation of 346 

the effect of a risk factor (hereafter referred to as effect estimation). We demonstrate how 347 

optimal designs can vary in relation to epidemiological characteristics of the target disease; in 348 

this case, the rate of decrease in correlation of disease prevalence rates over distance, which 349 

determines whether prevalence changes abruptly or smoothly over the spatial domain. 350 

We first describe the demonstration setting, the data available for design optimization, 351 

the specification and parameterization of the disease and surveillance system models, and the 352 

resulting formalized objective functions for optimizing spatial predictions and effect estimation. 353 

We demonstrate the use of an exhaustive search strategy to find the single most optimal site to 354 

add to the existing network for both goals, as well as the Pareto-optimal set of single sites to 355 

add when considering both objectives simultaneously. We simulate the addition of an arbitrary 356 

number of sites, acknowledging that in real-world applications of the framework, the number of 357 

sites might be determined by budgetary constraints and/or the marginal informational gains per 358 

added site. We conclude our demonstration by considering the best set of three sites to add, 359 

which introduces substantial combinatorial complexity, motivating the use of a metaheuristic 360 

algorithm to efficiently search for optimal regions of design space.  361 

 362 

4.1 Demonstration setting 363 

We generated a set of 100 potential surveillance sites scattered uniformly at random 364 

across a unit grid, and randomly selected 30 sites to represent a virtual existing surveillance 365 

network. We seeded two point sources for a risk factor influencing expected disease prevalence 366 

rates (Figure 2A), then simulated disease prevalence under two scenarios of spatial auto-367 

correlation by adjusting the scale parameter (𝜌) of a log-Gaussian spatial process centered on a 368 

linear function of the risk factor. We refer to these as spatially patchy (𝜌 = 0.1; Figure 2B) and 369 

spatially smooth (𝜌 = 0.3; Figure 2C) disease scenarios. Additional details of data generation 370 

are provided in Text S1.  371 

 372 
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 373 
Figure 2. Simulated data used for surveillance system optimization. Spatial variation of (A) 374 

the risk factor X and (B) log prevalence when ρ = 0.1 and (C) ρ = 0.3. Triangles represent the 375 

existing 30 surveyed sites; dots represent the 70 candidate sites; crosses represent two point 376 

sources of the risk factor of interest (e.g. locations of mass gatherings); background color in 377 

Panel A and contour lines in panels B and C represent the levels of risk factor X. Three 378 

realizations of the log prevalence surface when ρ = 0.1 or 0.3 are shown in Figure S1. 379 

 380 

4.2 Data and knowledge inputs 381 

Available epidemiologic data to characterize the relevant aspects of the disease system 382 

include simulated prevalence rates observed at the 30 sites enrolled in the surveillance network. 383 

Data characterizing the surveillance system and design space include the coordinates of the 30 384 

enrolled and 70 candidate sites. Additional data to support optimization include levels of risk 385 

factor X at each sampling location. Theoretical inputs include the assumption of a log-linear 386 

relationship between X and disease prevalence, and that spatial disease prevalence residuals 387 

follow a Gaussian process with exponential covariance function. 388 

 389 

4.3 Set up and initialization 390 

Disease system model specification and simulation. In this demonstration, relevant 391 

aspects of the disease system include the correlation of disease outcomes over space, as well 392 

as the association of disease outcomes with risk factor X. Based on the observed disease 393 

prevalence at participating sites, we assume the log of the prevalence value Y is generated from 394 

an underlying random spatial process with an i.i.d mean-zero normally distributed noise ε with a 395 

variance of σd
2, and can be modelled by: 396 

Y = exp(𝛽0 + 𝛽1𝑋 + 𝜂 + 𝜀), 397 

where β0 represents log of the overall mean prevalence rate, β1 represents the effect of a unit 398 

increase in risk factor 𝑋, and η represents a mean-zero Gaussian process accounting for spatial 399 

correlation induced by additional dependence not captured by X. The spatially correlated error 400 

term η follows a multivariate normal distribution with a variance-covariance matrix C, in which 401 

each entry cij represents the covariance between the residuals at the ith and the jth location 402 

when i ≠ j, and the variance of the residuals at the ith location when i = j. Covariance between 403 
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sites i and j is specified cij= σs
2e-dij/ρ, where dij is the distance between sites i and j, and ρ is the 404 

scale parameter as before; and the variance at site i is σd
2 + σs

2. The correlation of the residuals 405 

between two sites as a function of the distance between them is shown in Figure S1. 406 

Parameters β0, β1, σs, σd, and ρ were estimated based on the prevalence rates and risk factor 407 

levels at the 30 in-network sites, after which 1000 realizations of log-prevalence rates at the 70 408 

candidate sites were drawn according to the fitted parameters, observed prevalence at in-409 

network sites, risk factor levels at candidate sites, and distance matrix between in-network and 410 

candidate sites. 411 

Surveillance model specification. Relevant aspects of information captured by the 412 

surveillance system in this demonstration pertain to the extrapolation of prevalence from 413 

enrolled to unenrolled sites, as well as the variance in X at enrolled sites. Assuming perfect 414 

enumeration of disease prevalence at each enrolled site, as well as known values of the risk 415 

factor 𝑋 for all sites, information drawn by each candidate design is represented by 416 

improvements in estimates of 𝛽1 and predictions at 70-n out-of-network sites obtained by fitting 417 

a universal kriging predictor to data from enrolled sites [43].  418 

Design space. In our hypothetical example, we have an existing network of 30 419 

surveillance sites {𝑠1 … 𝑠30}, and 70 additional locations {𝑠31 … 𝑠100} from which we may select n  420 

new sites to be added to the network. Therefore, our design parameter 𝑠𝜃 is the set of n sites to 421 

be added to the network, and the discrete design space is all possible sets of n sites chosen 422 

from 70.  423 

 424 

4.4 Optimization 425 

Objective functions: Spatial interpolation. The first surveillance function we wish to 426 

optimize is prediction of the geographical distribution of the disease. Therefore, we define the 427 

objective function as the mean squared error (MSE) of log predicted prevalence at the 70-n out-428 

of-network locations after adding sθ to the network: 429 

𝑓1(𝑠𝜃) =  ∑ ∑ (𝑌𝑑𝑘,𝑗
− 𝑌̂𝑑𝑘,𝑗

(𝑠𝜃) )
2

/((70 − 𝑛) ∗ 1000)70−𝑛
𝑗=1 

1000
𝑘=1 , 430 

where 𝑌𝑑𝑘,𝑗
 represents the log prevalence rate at the jth unenrolled site in the kth disease 431 

system model realization, while 𝑌̂𝑑𝑘,𝑗
(𝑠𝜃) represents the predicted log prevalence rate at the jth 432 

site after augmenting the existing network with sθ in the kth realization. We denote the objective 433 

function value for this objective as OFV1. Other objective functions, such as the MSE of log 434 

predicted prevalence rate at the existing 30 sites or across all 100 sites, can also be used. 435 

Existing literature on optimal spatial design provides more options for relevant objective 436 

functions [44-46]. 437 

Objective functions: Effect estimation. Our second surveillance goal is precise 438 

estimation of the effect of the risk factor X on the disease outcome, so the objective function is 439 

formalized as: 440 

𝑓2(𝑠𝜃) =  ∑ 𝑣𝑎𝑟(𝛽1̂𝒅𝒌
(𝑠𝜃))/10001000

𝑘=1 , 441 

where 𝛽1̂𝒅𝒌
(𝑠𝜃) represents the estimate of β1 after augmenting the existing network with sθ in the 442 

kth disease system model realization.  443 

  444 

 445 
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Search algorithms. When a single site is to be added to the network, the design space 446 

is small enough to allow for enumeration of objective function values at all possible designs. 447 

Therefore, the algorithm for proposing new designs simply steps sequentially through sites 448 

{𝑠31 … 𝑠100}. However, when the optimization question is shifted to the best three sites to add, 449 

the design space expands to 54,740 combinations, making sequential enumeration a 450 

prohibitively expensive search strategy. Under these conditions, heuristic (greedy) or 451 

metaheuristic algorithms play an important role in finding the optimal or near-optimal solution 452 

within a reasonable amount of time [47]. Moreover, the evaluation of objective function values 453 

across realizations can be paralleled to further reduce computational time. 454 

We illustrate the use of a simulated annealing (SA) meta-heuristic algorithm popular in 455 

spatial sampling network design [48, 49] to more efficiently explore the design space when three 456 

sites are to be added. In SA, a random initial design is proposed, after which, at each iteration, a 457 

new design is sampled from the neighborhood of the current design and the objective function 458 

value (OFV) for the new design is evaluated. Here, the neighborhood of a set of n sites to enroll 459 

is defined as designs sharing n-1 sites with the current design. If the new OFV is superior to the 460 

current OFV, the new design is accepted as the next design; otherwise, it is accepted with a 461 

probability of 𝑒−
∆𝑂𝐹𝑉

𝑇 , where ∆𝑂𝐹𝑉 is the change in the OFV and T is a tuning parameter 462 

analogous to temperature [50]. T decreases at a rate α after each iteration, causing SA to 463 

accept deterioration in the OFV more frequently at the beginning of the run and rarely towards 464 

the end. Probabilistically accepting worse solutions early in the search enables the algorithm to 465 

escape local optima. For our demonstration, we set the initial temperature T0 and cooling rate α 466 

separately for each objective and epidemiologic scenario, following suggestions by Sait and 467 

Youssef [50], and set the stopping criteria is to be T≤10-6. We repeat the SA process 3 times to 468 

examine the convergence of the result. 469 

 470 

4.5 Optimal surveillance designs 471 

Selecting one additional site to optimize spatial prediction. The mean squared error 472 

of spatial predictions across unenrolled sites (OFV1) is minimized by enrolling sites that are in 473 

close proximity to multiple out-of-network sites — especially clusters of unmeasured sites at 474 

long distances from existing network locations (Figure 3, panels A and B). These optimal 475 

placements address informational gaps by enrolling sites that increase the average covariance 476 

between measured and unmeasured locations, and tend to fall in areas close to several 477 

unenrolled sites but away from the initially enrolled locations. Furthermore, the amount of 478 

information that can be inferred from the same set of neighboring sites increases with the scale 479 

parameter ρ. Thus, in the spatially patchy disease scenario, where the scale of spatial 480 

autocorrelation is small, optimal placement occurs in the center of a tight cluster of unenrolled 481 

sites (Figure 3, panel A). Under the spatially smooth scenario, the same cluster is correlated 482 

with initially enrolled sites, and optimal site placement falls in the center of a loose cluster of 483 

unmeasured sites located quite far from the initial network (Figure 3, panel B). Under the 484 

parameter values used to generate demonstration data, there is no clear influence of risk factor 485 

level X on site selection to optimize spatial prediction. 486 

Selecting one additional site to optimize effect estimation. The variance of the effect 487 

of risk factor X on log disease prevalence (OFV2) is lower when the value of X at the cell to be 488 
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added lies towards an extreme of X’s observed range and when the site to be added is relatively 489 

uncorrelated with (i.e., distant from) initially enrolled sites (Figure 3, panels C and D). In the 490 

spatially patchy disease scenario, where the scale of spatial autocorrelation is limited, optimal 491 

site placement is dominated by the level of risk factor X, and the available site with highest X is 492 

chosen (Figure 3C). In the spatially smooth scenario, with an extended scale of spatial 493 

autocorrelation , the correlation of outcomes between the site with the highest X level and 494 

nearby initially enrolled sites results in selection of an alternative location where the value of X is 495 

less extreme, but prevalence is expected to be more independent of previously observed 496 

outcomes (Figure 3D).  497 

 498 
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499 
Figure 3. Optimal site placement to augment a surveillance network for spatial prediction 500 

or effect estimation under scenarios of spatially patchy or smooth disease distributions. 501 

Black triangles represent initially enrolled sites, gray circles represent unselected candidate 502 

sites, and the cyan circle indicates the optimal site to add to the network. White crosses 503 

represent point sources for risk factor X. Raster colors represent objective function values for 504 

hypothetical sites added across a regular 41*41 grid in order to visualize the response surface 505 

in relation to initial network locations and the underlying risk factor. 506 

 507 
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Single site selection based on multiple objectives. When simultaneously optimizing site 508 

enrollment for spatial prediction and effect estimation, the output is a Pareto optimal set 509 

containing designs that are considered equally optimal because no objective function value can 510 

be improved without impairing the other objective function values. A set of six candidate sites 511 

emerges for the spatially smooth disease scenario, including four alternative selections to the 512 

optimal locations for each single objective (Figure 4). The Pareto optimal set for the spatially 513 

patchy scenario includes only one non-dominated site in addition to the optimal locations for 514 

either objective individually (Figure S2). Since the solution given by Pareto optimization is not 515 

unique, some way of reconciling the objective criteria, such as a weighted sum or expression of 516 

total cost may be required to choose the optimal design. Notably, we did not incorporate cost 517 

associated with adding sites in our analysis, but this could be accomplished by including a third 518 

objective function representing the marginal information gain per added site. In this case, the 519 

spatial prediction OFV, effect estimation OFV, and the cost-effectiveness OFV would be jointly 520 

optimized.  521 

 522 

 523 

 524 
Figure 4. Results from Pareto optimization under the spatially smooth disease scenario 525 

(ρ=0.3). (A) Mean squared error of log predicted disease prevalence (OFV1) and variance of 526 

causal effect estimate (OFV2) of the Pareto set (colored dots) and all other candidate sites 527 

(hollow dots). (B) Locations of the Pareto set (colored triangles) colored coded as in Panel A. 528 

Black triangles represent initially enrolled sites, and gray dots represent unchosen candidate 529 

sites. Background color in Panel B represents log prevalence when ρ = 0.3 using the same 530 

color scheme as in Figure 2C, while contour lines represent levels of risk factor X. 531 

 532 

Selecting three additional sites to optimize spatial prediction. As a final example, we 533 

demonstrate the use of metaheuristic algorithms to search larger design spaces, applying 534 

simulated annealing to select three additional sites out of seventy candidate sites 535 
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simultaneously. Simulated annealing optimizations seeded with different initial designs 536 

converged to the same best set of three additional sites to enroll for enhanced spatial prediction 537 

under the spatially smooth disease scenario (Figure 5). All three SA runs (Figure 5A, colored 538 

lines) converged to the same optimal design within 6,000 iterations. Given the parameters and 539 

the stopping criteria we used, each run terminated after 8,630 iterations. Even with three runs, 540 

the total number of objective function evaluations was 25,890, less than half of what would be 541 

required if using enumeration. Figure 5B shows the location of the optimal three-site set. The 542 

results effect estimation, as well as for the spatially patchy outcome scenario are shown in 543 

Figures S3-5. 544 

 545 

 546 
Figure 5. Metaheuristic optimization with simulated annealing (spatial prediction, 547 

spatially smooth disease scenario). (A) Mean squared error of predicted log prevalence 548 

(OFV1) across iterations of three SA runs. (B) The locations of the optimal 3 sites. Black 549 

triangles represent existing sites, blue triangles represent the optimal additional sites, and gray 550 

dots represent unchosen alternative sites. Background color in Panel B represents log 551 

prevalence when ρ = 0.3 using the same color scheme as in Figure 2C, while contour lines 552 

represent levels of risk factor X. 553 

 554 

5. Conclusion 555 

Surveillance system designs that provide reliable, timely estimates of the spatial-556 

temporal distributions of endemic and epidemic diseases, are critical to the efficient allocation of 557 

resources for public health responses. However, opportunities to apply numerical optimization to 558 

surveillance system design have heretofore been overlooked in the literature. In this paper, we 559 

have presented a framework for surveillance optimization via simulation to enhance design 560 

decision making and facilitate research into optimal design principles under uncertain or 561 
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changing epidemiological conditions. While we focus on surveillance of human disease, the 562 

framework could also be applied to the optimization of vector or environmental surveillance. 563 

The framework presented can arrive at improved surveillance system designs through 564 

the incorporation of data and models of local disease transmission status, diverse surveillance 565 

goals, resource and operational constraints, and by stimulating collaboration between health 566 

planners, researchers, and software developers. However, it should also be recognized that the 567 

rationality of the output optimal design will be highly dependent on the accuracy and relevance 568 

of data or models used to represent disease and surveillance processes during optimization, as 569 

well as the performance of the optimization search algorithm. There is much future work to be 570 

done to develop and validate simulation models that can represent relevant case generating 571 

and measurement processes accurately; to analyze the sensitivity of optimal design to the 572 

specification of disease system models and changes in disease epidemiology; and to adopt 573 

optimization approaches from related fields—such as environmental monitoring network design 574 

and signal processing [51-53]—to disease surveillance design applications. 575 

 576 
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