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Abstract 27 

Individual-based models (IBMs) informing public health policy should be calibrated to data and 28 

provide estimates of uncertainty. Two main components of model-calibration methods are the 29 

parameter-search strategy and the goodness-of-fit (GOF) measure; many options exist for each 30 

of these. This review provides an overview of calibration methods used in IBMs modelling 31 

infectious disease spread. 32 

  33 

We identified articles on PubMed employing simulation-based methods to calibrate IBMs 34 

informing public health policy in HIV, tuberculosis, and malaria epidemiology published 35 

between 1 January 2013 and 31 December 2018. Articles were included if models stored 36 

individual-specific information, and calibration involved comparing model output to population-37 

level targets. We extracted information on parameter-search strategies, GOF measures, and 38 

model validation. 39 

 40 

The PubMed search identified 653 candidate articles, of which 84 met the review criteria. Of the 41 

included articles, 40 (48%) combined a quantitative GOF measure with an algorithmic 42 

parameter-search strategy – either an optimisation algorithm (14/40) or a sampling algorithm 43 

(26/40). These 40 articles varied widely in their choices of parameter-search strategies and GOF 44 

measures. For the remaining 44 (52%) articles, the parameter-search strategy could either not 45 

be identified (32/44) or was described as an informal, non-reproducible method (12/44). Of 46 

these 44 articles, the majority (25/44) were unclear about the GOF measure used; of the rest, 47 

only five quantitatively evaluated GOF. Only a minority of the included articles, 14 (17%) 48 

provided a rationale for their choice of model-calibration method. Model validation was 49 

reported in 31 (37%) articles.  50 

  51 

Reporting on calibration methods is far from optimal in epidemiological modelling studies of 52 

HIV, malaria and TB transmission dynamics. The adoption of better documented, algorithmic 53 
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calibration methods could improve both reproducibility and the quality of inference in model-54 

based epidemiology. There is a need for research comparing the performance of calibration 55 

methods to inform decisions about the parameter-search strategies and GOF measures. 56 

 57 

Author summary 58 

Calibration - that is, “fitting” the model to data - is a crucial part of using mathematical models to 59 

better forecast and control the population-level spread of infectious diseases. Evidence that the 60 

mathematical model is well-calibrated improves confidence that the model provides a realistic 61 

picture of the consequences of health policy decisions. To make informed decisions, 62 

Policymakers need information about uncertainty: i.e., what is the range of likely outcomes 63 

(rather than just a single prediction). Thus, modellers should also strive to provide accurate 64 

measurements of uncertainty, both for their model parameters and for their predictions. This 65 

systematic review provides an overview of the methods used to calibrate individual-based 66 

models (IBMs) of the spread of HIV, malaria, and tuberculosis. We found that less than half of the 67 

reviewed articles used reproducible, non-subjective calibration methods. For the remaining 68 

articles, the method could either not be identified or was described as an informal, non-69 

reproducible method. Only one-third of the articles obtained estimates of parameter 70 

uncertainty. We conclude that the adoption of better-documented, algorithmic calibration 71 

methods could improve both reproducibility and the quality of inference in model-based 72 

epidemiology. 73 

 74 

 75 

  76 

 77 

 78 
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Introduction 79 

Individual-based models (IBMs) intended to inform public health policy should be 80 

calibrated to real-world data and provide valid estimates of uncertainty [1], [2]. IBMs track 81 

information for a simulated collection of interacting individuals [3]. IBMs allow for more 82 

detailed incorporation of heterogeneity, spatial structure, and individual-level adaptation (e.g. 83 

physiological or behavioural changes) compared to other modelling frameworks [4]. This 84 

complexity makes IBMs valuable planning tools, particularly in settings where real-world 85 

intricacies that are not accounted for in simpler models have important effects [5], [6]. However, 86 

researchers and policymakers often battle with the question of how much value they can attach 87 

to the results of IBMs [7]. Fitting an IBM to empirical data (calibration) improves confidence that 88 

the simulation model provides a realistic and accurate estimate of the outcome of health policy 89 

decisions (e.g. projection of the disease prevalence under different intervention strategies, or the 90 

cost-effectiveness of different intervention strategies) [8]–[12]. Transparent reporting on 91 

calibration methods for IBMs is therefore required [11], [12]. 92 

 93 

Parameter values with accompanying confidence intervals used in IBMs are obtained from the 94 

literature and are often obtained through statistical estimation. When researchers cannot 95 

estimate parameters from empirical data, they obtain their likely values through calibration 96 

[12]. Parameter calibration is often difficult for IBMs because their greater complexity can 97 

render the likelihood function analytically intractable (i.e. it is impossible to write down the 98 

likelihood function in closed form) or prevent explicit numerical calculation of the likelihood 99 

function [13]–[15]. Consequently, simulation-based calibration methods that avoid the use of a 100 

likelihood function in closed form have been developed [16]. These methods run the model for 101 

different parameter sets to identify parameter sets producing model output that best resembles 102 

the summary statistics obtained from the empirical data (e.g. disease prevalence over time). 103 

Formal simulation-based calibration requires summary statistics (targets) from empirical data, a 104 

parameter-search strategy for exploring the parameter space, a goodness-of-fit (GOF) measure to 105 
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evaluate the concordance between model output and targets, acceptance criteria to determine 106 

which parameter sets produce model output close enough to the targets, and a stopping rule to 107 

determine when the calibration ends [9][17]. IBMs vary in their complexity (i.e. the number of 108 

parameters) and the amount of data available for calibration and validation [10]. Simulation-109 

based calibration of IBMs of higher complexity is typically more computationally intensive [18], 110 

[19]. 111 

 112 

In this review, we pay particular attention to the parameter-search strategy and GOF 113 

measure used. Algorithmic parameter-search strategies can be divided into optimisation 114 

algorithms and sampling algorithms [14], S2 table describes commonly used algorithms. 115 

Optimisation algorithms find the parameter combination that optimises the GOF, resulting in a 116 

single best parameter combination. Examples include grid-search and iterative, descent-guided 117 

optimisation algorithms using simplex-based or direct search methods (e.g. the Nelder-Mead 118 

method) [20], but many different algorithms exist [21]. Optimisation algorithms provide only 119 

point estimates of parameters; once these are found, another algorithm may be used to obtain 120 

confidence intervals (e.g. the profile likelihood method, Fisher information, etc.) [22], [23]. 121 

Sampling algorithms aim to find a distribution of parameter values that approximate the 122 

likelihood surface or posterior distribution. Examples include approximate Bayesian 123 

computation (ABC) methods and sampling importance resampling [8], [13], [14], [24], [25]. 124 

Parameter distributions obtained from sampling algorithms allow for the representation of 125 

correlations between parameters and for parameter uncertainty to be incorporated into model 126 

projections [2], [6], [8], [17], [26]. Quantitative measures of GOF include distance measures (e.g. 127 

relative distance, squared distance) and measures based on a surrogate likelihood function: the 128 

likelihood of observing the target statistic under the assumption that the model output is a 129 

random draw from a presumed distribution (e.g. binomial for prevalence statistics). As the 130 

model output is not necessarily distributed as presumed, we refer to this likelihood as the 131 

“surrogate” likelihood. A more subjective method of calibration involves the manual adjustment 132 
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of parameter values, followed by a visual assessment of whether the model outputs resemble 133 

empirical data [27].  134 

 135 

Previous research in the context of IBMs of HIV transmission found that 22 (69%) out of 136 

32 included articles described the process through which the model was calibrated to data [12]. 137 

The impact of stochasticity on the model results, defined as the random variation in model 138 

output induced by running the model multiple times using the same parameter value with a 139 

different random seed, was summarised in nearly half (15/32) of the articles [12]. The depth of 140 

reporting on calibration methods was highly variable [9], [12]. A systematic review in the 141 

context of population-level health policy models, including 37 articles, found that 25(71%) of 142 

these performed model calibration [28]. About half (12/25) of these articles reported on the 143 

calibration methods used, whereas the other half (13/25) used informal methods for parameter 144 

calibration or did not report on the calibration methods [28]. Previous research on calibration 145 

methods in cancer-simulation models in general – not IBMs specifically – found that 131 (85%) 146 

out of 154 included articles may have calibrated at least one unknown parameter. Of the 131 147 

articles that calibrated parameters, the majority (84/131) did not describe the use of a GOF 148 

measure, the rest either used a quantitative GOF (27/131) such as the likelihood or distance 149 

measures or used visual assessment of GOF (20/131) [9]. Only a few articles reported parameter 150 

distributions resulting from calibration; most only presented a single best parameter 151 

combination [9]. Information on the parameter-search strategy and stopping rules was generally 152 

not well described, and acceptance criteria were rarely mentioned [9], [29]. Of the 154 articles 153 

included in the review by Stout et al., 80 (52%) mentioned model validation [9].  However, while 154 

previous studies have reviewed specific portions of the modelling literature, they either did not 155 

focus on IBMs or did not focus on the calibration methods in much detail.  156 

 157 

We conducted a systematic review of epidemiological studies using IBMs of the HIV, 158 

malaria and tuberculosis (TB) epidemics, as these have been among the most investigated 159 
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epidemics with the highest global burden of disease [30]. We aim to provide an overview of 160 

current practices in the simulation-based calibration of IBMs. 161 

 162 

Results 163 

Selection of articles for inclusion 164 

The PubMed search resulted in 653 publications, of which 84 articles were included for 165 

review; 388 were excluded based on title and abstract, and another 181 were excluded based on 166 

a full-text review (see Fig 1). The number of articles selected by publication year increased from 167 

seven in 2013 to 20 in 2018.  168 

 169 

 170 

Fig 1. PRISMA flow diagram detailing the selection process of articles included in the 171 

review. 172 

 173 

Scope and objectives of included articles 174 
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S1 Table summarises the characteristics of the included articles. Fifty-eight (69%) of the 175 

included articles presented IBMs in HIV research, 16 (19%) concerned malaria, and another 10 176 

(12%) concerned tuberculosis.  177 

 178 

Most articles, namely 56 (67%), investigated the effect of an intervention, 17 articles 179 

looked at behavioural or biological explanations for the observed epidemic, and other goals (e.g. 180 

parameter estimation, model development) were used in 17. In total, six (7%) articles had two 181 

objectives. For most of these (5/6), one of the objectives was investigating the effect of an 182 

intervention (see S1 Table). 183 

 184 

Parameter-search strategies and measures of GOF 185 

Of the included articles, 40 (48%) combined a quantitative measure of GOF with an 186 

algorithmic parameter-search strategy, which was an optimisation algorithm (14/40) or a 187 

sampling algorithm (26/40) (see Fig 2). For the remaining 44 (52%) articles, the parameter-188 

search strategy could either not be identified (32/44) or was described as an informal, non-189 

reproducible method (12/44). Tables A, B and C in S1 appendix show that there is no convincing 190 

evidence that the parameter search strategy changed with publication year or differed by 191 

disease studied. A brief description of the methods referred to in Fig 2 under optimisation 192 

algorithm and sampling algorithm is provided in S2 Table. 193 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted April 8, 2020. ; https://doi.org/10.1101/19006056doi: medRxiv preprint 

https://doi.org/10.1101/19006056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 

 194 

 195 

Fig 2. Reporting and application of parameter search strategies in epidemiological 196 

studies.  197 

 198 

Detailed information on calibration methods for the 14 (17%) articles using optimisation 199 

algorithms is reported in Table 1. For the parameter-search strategy, most articles used either a 200 

grid search (7/14), Latin square (1/14) or random draw from tolerable range (1/14), followed 201 

by the selection of the single best parameter combination. Several iterative, descent-guided 202 

optimisation algorithms (i.e. Nelder-Mead, interior-point algorithm, coordinate descent with 203 

golden section search, random search mechanism) were used in the remaining articles (5/14). 204 

Of these five articles, most (4/5) accepted a single best parameter combination without 205 

confidence intervals, while the remaining article obtained confidence intervals around 206 

parameter estimates (see S1 Text.). For the GOF measure, the most common choice was a 207 

squared distance (6/14). Various GOF measures were used in the remaining articles; these 208 

include absolute distances (2/14) and R-squared (2/14). 209 

 210 
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Table 1. Details of the calibration methods used in articles using optimisation algorithms 211 

for calibration, sorted by parameter search strategy algorithm. 212 

Authors Year Pathogen 
Parameter search strategy 

algorithm 
GOF 

Luo et al. 2018 HIV Grid search Absolute distance 

Romero-Severson 

et al. 
2013 HIV Grid search Kolmogorov-Smirnov 

Marshall et al. 2018 HIV Grid search R-squared 

Goedel et al. 2018 HIV Grid search 
R-squared and Manhattan 

distance of parameters 

Brookmeyer et al. 2014 HIV Grid search Squared distance 

Suen et al. 2014 TB Grid search 

Number of model outputs 

within the confidence intervals 

around the targets 

Suen et al. 2015 TB Grid search 

Number of model outputs 

within the confidence intervals 

around the targets 

Bershteyn et al. 2013 HIV 

Iterative, descent-guided 

optimisation algorithm (Coordinate 

descent w. golden section search) 

Squared distance 

Klein et al. 2015 HIV 

Iterative, descent-guided 

optimisation algorithm (Coordinate 

descent w. golden section search) 
Squared distance 

Sauboin et al. 2015 Malaria 

Iterative, descent-guided 

optimisation algorithm (Interior 

point algorithm, hill-climbing) 

Squared distance 

Knight et al. 2015 TB, HIV 

Iterative, descent-guided 

optimisation algorithm (Nelder-

Mead) 

Squared distance 

Kasaie et al. 2018 HIV 

Iterative, descent-guided 

optimisation algorithm (Random 

search mechanism) 

Absolute distance 

Shrestha et al. 2017 TB Latin hypercube sampling Surrogate likelihood 

Jewell et al. 2015 HIV Sampling from tolerable range Squared distance 

 213 

Table 2 contains the details of the calibration methods in the 26 (31%) articles using 214 

sampling algorithms. Random sampling from the prior, followed by rejection ABC, was used the 215 

most (8/26).  Different types of Bayesian calibration (7/26), Bayesian melding (3/26) and 216 

history matching with model emulation (3/26) were also used. Most articles (10/26) used the 217 

surrogate likelihood as a measure of GOF, and Various GOF measures were used in the 218 
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remaining articles, these include absolute distances (4/26), relative distances (4/26) and 219 

squared distances (4/26). (see Table 2). 220 

 221 

Table 2. Details of the calibration methods in articles using sampling algorithms for 222 

calibration, sorted by parameter search strategy algorithm. 223 

Authors Year Pathogen Parameter search strategy algorithm GOF 

Cameron et al. 2015 Malaria 
Bayesian calibration (Combining model 

emulation with MCMC) 
Surrogate likelihood 

Huynh et al. 2015 TB 
Bayesian calibration (Latin hypercube with 

IMIS) 

Surrogate likelihood 

Chang et al. 2018 TB 
Bayesian calibration (Latin hypercube with 

IMIS) 

Surrogate likelihood 

Penny et al. 2015 Malaria Bayesian calibration (MCMC) Surrogate likelihood 

Penny et al. 2015 Malaria Bayesian calibration (MCMC) Surrogate likelihood 

White et al. 2018 Malaria Bayesian calibration (MCMC) Surrogate likelihood 

Schalkwyk et al. 2018 HIV 
Bayesian calibration (Random draw from 

prior with SIR) 

Surrogate likelihood 

Abuelezam et al. 2016 HIV Bayesian melding Squared distance 

McCormick et al. 2014 HIV Bayesian melding Surrogate likelihood 

McCormick et al. 2017 HIV Bayesian melding Surrogate likelihood 

Ciaranello et al. 2013 HIV 
Grid search, step-wise acceptance of 
parameter sets resulting in GOF < cut-off 

Absolute distance 

McCreesh et al. 2017 HIV History matching with model emulation Implausibility measure 

McCreesh et al. 2017 HIV History matching with model emulation Implausibility measure 

McCreesh et al. 2018 HIV History matching with model emulation Implausibility measure 

Shcherbacheva et 

al. 
2018 Malaria Markov chain Monte Carlo Absolute distance 

Johnson et al. 2016 HIV 
Random draw from prior with selection of 

best 500 parameter combinations 
Surrogate likelihood 

Pizzitutti et al. 2015 Malaria 
Random draw from prior, stepwise 

calibration 
Absolute distance 

Pizzitutti et al. 2018 Malaria 
Random draw from prior, stepwise 

calibration  
Squared distance 

Nakagawa et al. 2016 HIV Rejection ABC (Random draw from prior)  Relative distance 

Nakagawa et al. 2017 HIV Rejection ABC (Random draw from prior)  Chi-square 

Cambiano et al. 2018 HIV Rejection ABC (Random draw from prior)  Relative distance 

Hontelez et al. 2013 HIV Rejection ABC (Random draw from prior)  Squared distance 

Phillips et al. 2013 HIV Rejection ABC (Random draw from prior)  Relative distance 

Phillips et al. 2015 HIV Rejection ABC (Random draw from prior)  Relative distance 

Shrestha et al. 2017 HIV Rejection ABC (Random draw from prior)  Absolute distance 

Tuite et al. 2017 TB Rejection ABC (Random draw from prior)  Squared distance 
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IMIS, Incremental-mixture importance sampling; SIR, Sampling importance resampling; MCMC, Markov chain Monte 224 

Carlo. 225 

 226 

From the 44 (52%) articles with unidentifiable or informal parameter-search strategies, 227 

the majority (25/44) are also unclear about the GOF used, while the rest either relied on visual 228 

inspection as a GOF (14/44) or used a quantitative GOF (5/44). 229 

 230 

Only 14 (17%) of the 84 included articles provided a rationale for their choice of model-231 

calibration method. For example, McCreesh et al. [31] reported: “The model was fitted to the 232 

empirical data using history matching with model emulation, which allowed uncertainties in 233 

model inputs and outputs to be fully represented, and allowed realistic estimates of uncertainty 234 

in model results to be obtained” (see S2 Text. for more examples). Other examples indicate that 235 

an algorithmic calibration method failed to provide either a good fit or parameter estimates: 236 

“Ultimately, we chose to use visual inspection because the survival curves did not fit closely 237 

enough using the other two more quantitative approaches.” [32] Or “[Calibration] was unable to 238 

resolve co-varying parameters. These parameters were adjusted by hand…” [33]. 239 

Ten out of the 84 articles included (12%) used a weighted calculation of GOF. Four 240 

articles weighted the GOF based on the amount of data behind the summary statistic fitted to, for 241 

example by weighting based on the inverse of the width of the confidence interval around the 242 

data. In contrast, one article increased the weight for a data source for which fewer data was 243 

available. Other strategies included weighting based on a subjective assessment of the quality of 244 

the data, or weighting based on which data they wanted the model to fit best. One article down-245 

weighted particular data to improve fit. Others stressed the importance of determining weights 246 

a priori since weights are chosen subjectively.  247 

 248 

Acceptance criteria and stopping rules  249 

None (0/14) of the articles applying optimisation algorithms mentioned the acceptance 250 

criteria or stopping rules. Acceptance criteria and stopping rules applied in studies using 251 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted April 8, 2020. ; https://doi.org/10.1101/19006056doi: medRxiv preprint 

https://doi.org/10.1101/19006056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

 

sampling algorithms can be summarised as running the model until obtaining an arbitrary 252 

number of accepted parameter combinations. 253 

 254 

The number of target statistics, the number of calibrated parameters and the size 255 

of the simulated population 256 

The number of target statistics was explicitly mentioned in only three (4%) of the 84 257 

included articles, for 62 (74%) articles we had enough information to attempt to deduce this 258 

number from either text or figures. The remaining 19 (23%) articles either provided incomplete 259 

information (11/19) or no information (8/19). Some (4/65) of the articles for which we were 260 

able to obtain the number of target statistics had different numbers of target statistics for 261 

calibration in different locations or calibration to different diseases. The 61 (73%) articles for 262 

which we were able to obtain a single count had a median number of target statistics of 23 263 

(range 1 – 321). A histogram of the number of target statistics is provided in figure A in S2 264 

Appendix. The number of target statistics differed between parameter search strategies (See Fig 265 

3B, Kruskal-Wallis chi-square = 8.610, p = 0.035), with articles using sampling strategies having 266 

more target statistics compared to articles for which we could not identify the parameter search 267 

strategy (Wilcoxon rank-sum, Benjamini-Hochberg adjusted p-value = 0.025). 268 

The number of calibrated parameters was explicitly mentioned in 11 (13%) of the 84 269 

included articles, for another 53 (63%) articles it was possible to deduce this number from 270 

either text or figures. The remaining 20 (24%) articles either provided incomplete information 271 

(10/20) or no information at all (10/20). The 64 (75%) articles for which we were able to obtain 272 

a count had a median number of calibrated parameters of 10 (range 1 – 96). A histogram of the 273 

number of calibrated parameters is provided in figure B in S2 Appendix. The number of 274 

calibrated parameters differed between parameters search strategies (See Fig 3A, Kruskal-275 

Wallis chi-square = 9.304, p = 0.026), with articles using sampling strategies having higher 276 

numbers of calibrated parameters compared to articles for which we could not identify the 277 

parameter search strategy (Wilcoxon rank-sum, Benjamini-Hochberg adjusted p-value = 0.050). 278 

 279 
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 280 

Fig 3. Comparison of the number of calibrated parameters and target statistics between 281 

different parameter search strategies. 282 

(A) Boxplots of the number of calibrated parameters for different parameter search strategies. 283 

(B) Boxplots of the number of target statistics for different parameter search strategies. 284 

 285 

For 55 (66%) articles, we obtained counts for both the number of target statistics and 286 

the number of calibrated parameters. For many of these articles (17/55), the number of 287 

calibrated parameters appeared to exceed the number of target statistics. A plot of the number 288 

of target statistics against the number of calibrated parameters is provided in figure C in S2 289 

Appendix.  290 

The size of the simulated population was explicitly mentioned in 54 (64%) of the 84 291 

included articles, for another 9 (11%) articles it was possible to deduce this number from either 292 

text or figures. The remaining 21 (25%) articles either provided incomplete information (3/21) 293 

or no information at all (18/21). For the 63 (75%) articles for which we obtained a number, the 294 

median population size was 78000 (range: 250 - 47000000).  A histogram of the log10 of the size 295 

of the simulated population is provided in figure D in S2 Appendix. 296 

 297 

Computational aspects and the use of platforms 298 
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The software used to build IBM was not reported in 33 (39%) of the articles. Sixteen 299 

articles (19%) used the low-level programming language C++, six (7%) used MATLAB, and 300 

another six (7%) used Python. Various other computing platforms were used in the remaining 301 

23 (28%) articles. A high-performance computing facility was used in 16 (19%) articles. 302 

  303 

Several simulation tools (i.e. CEPAC [34], EMOD [35] HIV-CDM [36], MicroCOSM [37], 304 

PATH [38], STDSIM [39] and TITAN [40]) were used in the articles modelling HIV. Similarly, two 305 

platforms (i.e. EMOD [41] and OpenMalaria [42]) were used in the articles modelling malaria. In 306 

the articles modelling tuberculosis, the only tool reported was EMOD [43]. 307 

  308 

Model validation 309 

Only 31 (37%) articles mentioned that a validation of the model had been performed.  310 

 311 

Discussion 312 

More than half of IBMs we studied used non-reproducible or subjective calibration methods. 313 

Articles that reported the use of formal calibration methods used a wide range of parameter-314 

search strategies and GOF measures. Only one-third of articles used calibration methods that 315 

quantify parameter uncertainty. These findings are important because choices concerning the 316 

calibration method can have substantial effects on model results and policy implications [2], 317 

[6]–[8], [44]–[46].  318 

 319 

We encourage authors to use the standardised Calibration Reporting Checklist of Stout et 320 

al. [9]. Additionally, we propose an extended checklist in S3 appendix based on the work 321 

presented in this paper. While algorithmic parameter-search strategies are in principle 322 

reproducible, unclear or incomplete reporting, and non-disclosure of software code can render 323 

them de facto non-reproducible. [47]. Manual adjustment of parameter values and visual 324 
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inspection of GOF may perform equally well compared to other methods in terms of GOF alone 325 

[48], may provide researchers with valuable insights into and familiarity with the model [49], 326 

and can be useful for purely didactic purposes [50]–[52]. However,  we advise against using 327 

these methods in analyses intended to inform public health as they do not favour reproducibility 328 

and involve subjective judgment, which may produce less than optimal calibration results and 329 

usually leads to the acceptance of a single parameter set (i.e. does not provide parameter 330 

uncertainty) [17]. On occasion, authors justified their choice of an informal method by indicating 331 

that algorithmic calibration methods did not converge to provide parameter estimates, or failed 332 

to provide a satisfactory fit to the targets. A potential explanation for non-convergence of an 333 

algorithmic calibration method is that the parameters in question are unidentifiable, which is 334 

the case when a vast array of different parameter combinations provide a comparably good fit to 335 

the target statistics. Performing manual calibration in such an instance will deliver one set of 336 

parameters out of all of the parameter combinations that provide a fit. However, using this single 337 

parameter combination hides the fact that there is not enough information to uniquely identify 338 

the best parameter values. Furthermore, model-stochasticity provides the possibility that a great 339 

fit is found by chance for a parameter combination for which the probability of observing the 340 

target statistics is lower than for other parameter combinations. 341 

 342 

There are several methodological challenges in the calibration of individual-based 343 

models, including the choice of calibration method – i.e. the combination of algorithmic 344 

parameter-search strategy and GOF measure. The findings of the current review and previous 345 

research suggest that there is no consensus on which calibration method to use [9], [10], [17], 346 

[53], [54]. Additionally, some of the articles reviewed here indicated that algorithmic calibration 347 

methods had failed, leading the researchers to calibrate the model, either fully or partially, by 348 

hand. These issues suggest that there is a need for research comparing the performance of 349 

calibration methods to inform the choice of parameter-search strategy and GOF [10]. Previous 350 

research on calibration methods focused on the GOF [27], computation time and analyst time 351 

[48].  Where applicable, correct estimation of the posterior [55] should be a core aspect of 352 
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performance. We further suggest investigating several contextual variables, including the 353 

amount and nature of the empirical data to calibrate against, the number and type of model 354 

parameters to be calibrated and insights to be derived from the calibrated model. As evident 355 

from our review, these contextual variables vary widely across IBM studies in epidemiology. 356 

 357 

Another methodological challenge in the calibration of IBMs is determining a priori 358 

whether the target statistics provide sufficient information to calibrate the parameters [56], 359 

especially when the model has many parameters [57]. Firstly, the target statistics are based on 360 

variable amounts of raw data. Secondly, a time series of target statistics is often used, typically 361 

violating the assumption of independence implied by many calibration methods. Thirdly, the 362 

complexity of the model may hamper an appropriate specification of a prior parameter-363 

distribution (including the specification of a correlation between parameters) that is fully 364 

informed by prior knowledge of the data-generating processes represented by the model. These 365 

problems preclude the use of standard statistical methods for calculating the number of target 366 

statistics that is sufficient for parameter calibration. A related problem is that target summary 367 

statistics are based on data from different sources, including observational data that are 368 

potentially affected by treatment-confounder feedback (e.g. time-dependent confounder CD4 369 

cell count affected by prior cART treatment) [58]. Another related problem is that of validation, 370 

i.e. testing model performance on data that was not included in the calibration step. There is 371 

considerable debate on when data should be reserved for this purpose [54]. 372 

 373 

The last methodological aspect of IBMs we would like to draw attention to is the size of 374 

the simulated population [1], [59]. Intuitively, one would recommend that the simulated 375 

population size should be similar to the size of the population from which the samples were 376 

drawn that gave rise to the target statistics. However, for many studies, modelling the full 377 

population is not feasible with currently available computational infrastructure. Instead, 378 

researchers often adjust for the inflated stochasticity in the modelled system by averaging 379 

outcomes of interest over multiple simulations runs per parameter set [59]. How choices around 380 
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modelled population size and analysis of model output affect the validity of model inference 381 

deserves further attention in future research. 382 

 383 

Our results in the setting of HIV, TB and malaria IBMs indicate that the use of formal 384 

calibration methods (48% of articles) is higher than in previous research on simulation models 385 

in general – not IBMs specifically. Previously, only one-fifth to one-third of articles reporting on 386 

epidemiological models used a quantitative GOF [9], [60]. Our results concerning parameter 387 

uncertainty are also optimistic compared to previous research by Stout et al. on calibration 388 

methods in cancer models, which found that almost no articles quantified parameter 389 

uncertainty, but instead accepted a single best-fitting parameter set as the result of the 390 

calibration [9]. The same researchers reported that several different combinations of parameter-391 

search strategies and GOFs were used [9], outcomes which are similar to our findings. Stout et al. 392 

report that articles rarely describe acceptance criteria and stopping rules. Stout et al. also report 393 

that a standard description of the calibration process lacks in almost all articles [9]. Similarly, 394 

previous research on IBMs of HIV transmission found that reporting was lacking in the 395 

description of calibration methods [12]. All of this is in agreement with the results of the current 396 

review. Concerning the goals of the included articles, our results broadly agree with 397 

Punyacharoensin et al. They found that the main goals of HIV transmission models for the study 398 

of men who have sex with men are: making projections for the epidemic, investigating how the 399 

incorporation of various assumptions around the behavioural or biological characteristics affect 400 

these projections, and evaluating the impact of interventions [60]. 401 

 402 

To our knowledge, this is the first detailed review of methods used to calibrate IBMs of 403 

HIV, malaria and TB epidemics. A limitation of our study is that we are unsure to what extent the 404 

results are generalisable to other infectious diseases. We encourage future research on other 405 

diseases to confirm or refute our current findings on the use of and reporting on methods in the 406 

calibration of IBMs in epidemiological research. Similarly, since our PubMed search excluded 407 

articles matching “molecular”, we may have missed relevant articles. However, we don’t believe 408 
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this selection is likely to bias the findings of this review. Another possible concern is that we 409 

don’t control for overlaps in authorship; thus, we effectively treat articles that come from a given 410 

”research group” as independent observations, even though the calibration method used by a 411 

particular group is often the same, as we show in Tables 1 and 2. Another limitation is that the 412 

counts presented in this review often had to be deduced from the article, this was a difficult and 413 

laborious task involving manual counting of target statistics in either the text, figures or tables, a 414 

process that is prone to error. A final limitation is that we did not go into the strengths and 415 

weaknesses of each method. Existing literature compares the performance of alternative 416 

algorithms for calibrating the same model but does not allow us to draw general conclusions 417 

[10]. As a starting point for comparison, we provide a brief description of calibration methods in 418 

S2 Table.   419 

 420 

In conclusion, it appears that calibrating individual-based models in epidemiological studies of 421 

HIV, malaria and TB transmission dynamics remains more of an art than a science. Besides 422 

limited reproducibility for a majority of the modelling studies in our review, our findings raise 423 

concerns over the correctness of model inference (e.g., estimated impact of past or future 424 

interventions) for models that are poorly calibrated. The quality of inference and reproducibility 425 

in model-based epidemiology could benefit from the adoption of algorithmic parameter-search 426 

strategies and better-documented calibration and validation methods. We recommend the use of 427 

sampling algorithms to obtain valid estimates of parameter uncertainty and correlations 428 

between parameters. There is a need for simulation-based studies that compare the 429 

performance, strengths and limitations of different methods for calibrating IBMs to 430 

epidemiological data. 431 

 432 
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Materials and methods 433 

This review was performed following the Preferred Reporting Items for Systematic 434 

Reviews and Meta-Analyses (PRISMA) statement [61]. The PRISMA flow diagram details the 435 

selection process of articles included for review (see Fig 1). 436 

 437 

Search strategy and selection criteria 438 

We identified articles on PubMed that employed simulation-based methods to calibrate 439 

IBMs of HIV, malaria and tuberculosis, and that were published between 1 January 2013 and 31 440 

December 2018. Six years seemed to be long enough to yield a sizeable amount of information 441 

and to observe recent time trends, and short enough to be feasible and to speak to recent 442 

practices in model calibration in epidemiological modelling studies. The following search query 443 

was performed on 31 January 2019: ‘((HIV[tiab] OR malaria[tiab] OR tuberculo*[tiab] OR 444 

TB[tiab]) AND (infect* OR transmi* OR prevent*) AND (computer simulation[tiab] OR 445 

microsimulation[tiab] OR simulation[tiab] OR agent-based[tiab] OR individual-based[tiab] OR 446 

computer model*[tiab] OR computerized model*[tiab]) AND ("2013/01/01"[Date - publication] : 447 

"2018/12/31"[Date - publication]) NOT(molecular))’.  448 

 449 

Eligibility criteria were agreed upon by WD, JD and CMH before screening. Articles were 450 

included if models stored individual-specific information and calibration involved running the 451 

model and comparing model output to population-level targets expressed as summary statistics. 452 

We excluded review articles, statistical simulation studies, and studies that focused on molecular 453 

biology and immunology because we were primarily interested in studies informing public 454 

health policy. 455 

 456 

Titles and abstracts were screened for eligibility by CMH, and difficult cases were 457 

discussed with WD. If the title and abstract did not provide sufficient information for exclusion, a 458 
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full-text examination was performed. Full-text inclusion was performed by two independent 459 

researchers (CMH and either ZM or ED) for a subset of 100 articles. CMH included 28 articles, of 460 

which ZM and ED did not include six; these six articles were double-checked by WD and 461 

consequently included for review. ZM included four articles that CMH did not include; these four 462 

articles were double-checked by WD and consequently not included for review. After that, full-463 

text inclusion was performed by CMH in consultation with WD. 464 

 465 

Data extraction 466 

For each article, we extracted information on the objective of the study (i.e. estimating 467 

the effect of an intervention, investigating a behavioural or biological explanation for the 468 

observed infectious disease outbreak or other goals including estimation of parameters or 469 

model development), the parameter-search strategy and the GOF measure, the rationale for 470 

choosing this calibration strategy over alternatives, and model validation. Acceptance criteria 471 

and stopping rules are only relevant for articles applying algorithmic parameter-search 472 

strategies and collected for that subset of articles. For readability purposes, we say “used” to 473 

mean “reported the use of” throughout this review. 474 

 475 

Information was collected independently by two reviewers (CMH and either ZM or ED) 476 

for each article included using a prospectively developed form. This form was based on the 477 

Calibration Reporting Checklist of Stout et al. [9] and was extended by several items, including; 478 

the software and hardware used to build the model, the size of the initial population of agents 479 

and the name of the modelling platform. Additionally, we inserted several items to collect 480 

information on the number of calibrated parameters, the number of fixed parameters, and the 481 

number of targets. We noted how information on these counts was reported in the articles (i.e. 482 

the number was explicitly provided, could be deduced from text or figures, was provided 483 

incompletely or was not provided).  484 

 485 
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Information on calibration methods was extracted verbatim, allowing for later 486 

classification. Articles on which there was disagreement in the classification were discussed by 487 

WD, JD and CMH until an agreement was reached. We classified articles reporting both 488 

algorithmic and informal calibration as informal since doing part of the calibration informally 489 

makes the entire calibration irreproducible. 490 

 491 

Statistical analysis 492 

R 3.5.0 (www.r-project.org) was used to perform the statistical analyses [62]. Differences 493 

between groups in non-normally distributed continuous variables were analysed by the 494 

nonparametric Kruskal-Wallis test [63]. Wilcoxon rank-sum test was used to determine which 495 

groups differed significantly [63]. Benjamini-Hochberg (BH) correction was used to adjust for 496 

multiple testing [64]. 497 

 498 
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