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2

1 Genetic risk scores of disease and mortality capture 

2 differences in longevity, economic behavior, and insurance 

3 outcomes

4

5 Abstract:

6 Widespread genetic testing for diseases may cause adverse selection, escalating premiums, or 

7 discrimination in various insurance markets. Here, without systematically informing study 

8 participants of their genetic predisposition, we estimate to what extent genetic data are 

9 informative about differences in longevity, health expectations, and economic behavior. We 

10 compute measures of genetic liability (polygenic scores) for 27 common diseases and mortality 

11 risks in 9,272 participants of the Health and Retirement Study (HRS). Survival analysis 

12 suggests that the highest decile of cumulative genetic risk can distinguish a median lifespan up 

13 to 4.5 years shorter, a difference that is similar to or larger than that distinguished by 

14 conventional actuarial risk factors, including sex. Furthermore, greater genetic liability is 

15 associated with less long-term care insurance, among other economic behaviors. We conclude 

16 that the rapid developments in genetic epidemiology pose new challenges for regulating 

17 consumer genetics and insurance markets, requiring urgent attention from policymakers.
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1 1 Introduction

2 The precision of genetic tests for common diseases is rapidly increasing. While the prognostic 

3 accuracy of these tests is still limited, it will become substantial in the near future (Zeggini et 

4 al. 2019). Recent studies find that cumulative measures of genetic liability, which are called 

5 polygenic scores, are comparable in precision to other, established clinical risk factors 

6 (Abraham et al. 2019; Khera et al. 2019; Torkamani, Wineinger, and Topol 2018). Polygenic 

7 scores have quickly become a routine component of genetic health reports offered by 

8 companies in the exponentially growing market of consumer genetics, with several millions of 

9 customers worldwide (Khan and Mittelman 2018). Many customers report a strong motivation 

10 to explore their DNA for health information (Nelson, Bowen, and Fullerton 2019; Wang et al. 

11 2018). Thus, genetic testing is becoming an affordable and widely advertised service, and 

12 people can now purchase more or less noisy estimates of their genetic liability early in life, 

13 many years before any signs or symptoms of disease emerge (Khera et al. 2019). This study 

14 estimates to what extent polygenic scores for a range of common diseases and mortality risks 

15 from various medical domains can capture differences in longevity, subjective life expectancy, 

16 self-rated health, and insurance purchases, and we discuss the implications of our findings.

17 In summary, we generated polygenic scores for 13 common medical conditions related to 

18 mortality (including Alzheimer’s disease, atrial fibrillation, and type 2 diabetes) and 14 

19 mortality risk factors (including blood pressure, cholesterol, and smoking) by leveraging 

20 results from the largest genetic studies thus far made publicly available to the research 

21 community. In a series of survival analyses in 9,272 Health and Retirement Study (HRS) 

22 respondents, we found that the polygenic scores in combination could distinguish a median 

23 lifespan up to 4.4 years shorter and a median lifespan at least 2.4 years shorter in an extensively 

24 adjusted model that controlled for various lifestyle factors, diagnosed medical conditions, and 

25 socioeconomic variables.

26 Furthermore, while neither the organizers of the HRS nor the authors returned any information 

27 to the respondents about their genetic predisposition, the polygenic scores were found to be 

28 associated with subjective life expectancy and self-rated health. This finding suggests that the 

29 unobserved genetic risks had actually been partly observed by the respondents, likely through 

30 their health or acquired medical conditions. Finally, greater genetic liability was found to be 

31 associated with several economic behaviors and measures, including 2.2 months shorter long-

32 term care insurance coverage, but not with life insurance coverage.
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1 1.1 Genetic testing, economic behavior, and insurance

2 The revelation of genetic risks may influence people’s expectations about their future health 

3 and longevity and, in turn, influence their economic behavior (Hamermesh 1985). The expected 

4 value of any kind of insurance tied to the health, life, or death of a person should theoretically 

5 be affected by knowledge of genetic risks, as should the rationale for purchasing coverage 

6 (Rothstein 2004; Peter, Richter, and Thistle 2017; Oster et al. 2010). If an applicant has private 

7 knowledge of risks that are not reflected in the premium (or benefit), then a particular insurance 

8 product will be considered either cheap or expensive (that is, actuarially unfair) depending on 

9 whether the benefit is paid specifically upon the death, survival, or illness of the insured. Thus, 

10 depending on the insurance product in question, it could be considered in the financial interest 

11 of an applicant to either withhold or reveal private knowledge of genetic risks when applying 

12 for insurance.

13 Only a handful of studies have empirically tested whether the decision to purchase insurance 

14 can be influenced by giving people novel information about a few of their genetic risk factors 

15 (Zick et al. 2000; Aktan-Collan, Haukkala, and Kääriäinen 2001; Armstrong et al. 2003; Zick 

16 et al. 2005; Taylor et al. 2010; Oster et al. 2010). While the results are mixed, some studies did 

17 indeed find that the willingness to purchase coverage increased among people who received a 

18 test result that indicated greater genetic risk, but this was true only for certain types of 

19 insurance. However, these studies were limited by their examination of self-reported rather 

20 than revealed preferences, their use of small sample sizes, their narrow focus on a few genetic 

21 variants or diseases, or the very limited insights into the role of genetics for common diseases 

22 that were available prior to 2010 (Visscher et al. 2017; Mills and Rahal 2019). Furthermore, it 

23 appears that the public’s genetic literacy is weak, even among the highly educated (Gericke et 

24 al. 2017; Chapman et al. 2019; Carver et al. 2017). Therefore, it is also conceivable that 

25 disregard for or misinterpretation of genetic test results leads to no behavioral changes at all 

26 or, alternatively, leads to changes that could be considered unexpected or inappropriate (Wang 

27 et al. 2018; Tandy-Connor et al. 2018; Nelson, Bowen, and Fullerton 2019; Lea et al. 2011). 

28 Thus, it remains an interesting and relevant empirical question to what extent health 

29 expectations and economic decisions, such as insurance purchases, are related to or influenced 

30 by the increasing availability of genetic information.

31 Representatives of various insurance providers have expressed concerns about the viability of 

32 different insurance products in a time of widespread genetic testing (Nabholz and Rechfeld 

33 2017; Rechfeld et al. 2019; Hodgson and Haddow 2016). Their main worry is a situation in 
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1 which insurance applicants with private knowledge of genetic risks would be sanctioned to 

2 withhold that information from underwriting (Rothstein 2004; Peter, Richter, and Thistle 

3 2017). Theoretical analyses suggest that a ban on using genetic information for underwriting 

4 is Pareto suboptimal compared to alternative regulatory regimes of partial or full disclosure 

5 (Peter, Richter, and Thistle 2017). In addition, experts and stakeholders agree that sanctioned 

6 non-disclosure threatens the fundamental insurance principles of symmetric information and 

7 actuarial fairness, which can lead to adverse selection and escalating premiums (Harper 1993; 

8 Rothstein 2004; Nabholz and Somerville 2011). On the other hand, however, the danger of 

9 genetic discrimination could emerge if insurers were given access to genetic data, which could 

10 lead them to deny health care or financial support precisely to those individuals who need it 

11 most (Tiller et al. 2019; Newson et al. 2018). In some countries, there are reports of active 

12 genetic discrimination for some conditions (Joly, Ngueng Feze, and Simard 2013; Tiller et al. 

13 2019).

14 Because of the real risk of genetic discrimination, many governments have taken a regulatory 

15 stance that favors consumer privacy over corporate interests by mostly limiting the rights of 

16 insurance providers to request and use genetic information to reject applications or determine 

17 premiums (Borry et al., 2012; Prince, 2019; Sijbrands et al., 2009). In countries that lack 

18 regulation, the insurance industry has frequently chosen to self-regulate with voluntary 

19 moratoriums. Over time, these developments could threaten the affordability and viability of 

20 several private insurance markets (Strohmenger and Wambach 2000; Hendren 2013), or in 

21 jurisdictions where insurance providers may request access to genetic data, providers could 

22 increase health or financial inequalities by discriminating on risk factors that are due to bad 

23 luck in the “genetic lottery” (Newson et al. 2018; Rothstein 2004). Therefore, the question of 

24 whether genetic test results should be disclosed to insurance providers is an urgent and 

25 controversial topic of societal relevance (Newson et al. 2018; Klitzman, Appelbaum, and 

26 Chung 2014). Recently, an international expert group of researchers and insurance stakeholders 

27 called for more research on this topic (Joly et al. 2014).

28 In practice, not all observable risks can be underwritten. Reasons include the negligible 

29 influence of certain risks on mortality or a lack of data to accurately define a fair premium 

30 (Nabholz and Somerville 2011). Thus, the accuracy and predictive scope of this new type of 

31 genetic information needs to be determined before polygenic scores can even be considered for 

32 use in underwriting. To date, only a handful of studies have investigated to what extent 

33 polygenic scores can classify people into groups of different mortality risks (Ganna et al. 2013; 
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1 Marioni et al. 2016; Timmers et al. 2019; McDaid et al. 2017; Pilling et al. 2016; Joshi et al. 

2 2017). The largest effect reported thus far is a 3.5-year difference in the median lifespan; this 

3 result was found by comparing the top versus bottom deciles of a polygenic score for parental 

4 lifespan. (Parental lifespan is a common proxy for individual longevity that imperfectly 

5 captures various diseases and lifestyle risks, among other factors.) However, estimates are still 

6 scarce, and most have been obtained without conditioning on observable confounders such as 

7 income, smoking, or medical conditions. Therefore, the main objective of this study is to 

8 estimate in another sample how well polygenic scores for common medical conditions and 

9 mortality risks can distinguish a difference in lifespan across groups of cumulative genetic 

10 liability and, in this regard, benchmark polygenic scores to conventional actuarial risk factors. 

11 In addition, as it is essentially unknown how much information polygenic scores can add on 

12 top of observable risk factors, we also investigate an extensively adjusted regression model.

13 Furthermore, we explore whether polygenic scores are associated with subjective life 

14 expectancy and self-rated health. Such an association may indicate whether the underlying 

15 genetic risks, which we assume are not directly observed by respondents, are nonetheless partly 

16 captured by these health measures. Finally, we investigate whether polygenic scores capture 

17 any differences in insurance purchases and other economically relevant variables in a situation 

18 where neither customers nor insurance providers have access to those data. We are aware of 

19 only a single recent study that tested for an association between polygenic scores for disease 

20 and economic behavior. Specifically, Shin, Lillard, and Bhattacharya (2019) tested whether a 

21 polygenic score for Alzheimer’s disease was associated with wealth composition in the HRS, 

22 and they found that greater genetic risk was associated with less wealth.

23 1.2 Genetic risks for common diseases

24 Genetic factors contribute substantially to the risk of disease (Visscher et al. 2017; Polderman 

25 et al. 2015). In a given population, genes may account for more than 30% of the variation in 

26 longevity (Pilling et al. 2017; Brooks-Wilson 2013; Ganna et al. 2013; Timmers et al. 2019). 

27 Diagnostic genetic tests for severe but rare single-gene disorders have been routine in clinical 

28 care for decades, for which thousands of tests are available (Phillips et al. 2018; Godard et al. 

29 2003). However, most people are not affected by rare genetic disorders, and the contribution 

30 of these disorders to the mortality burden from noncommunicable diseases (NCDs) is limited, 

31 particularly in adults (Kaplan et al. 2013). Instead, a few common and substantially heritable 

32 medical conditions, such as cardiovascular disease (CVD), cancer, and diabetes, account for a 
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1 majority of all NCD deaths (Khera et al. 2018; Jan et al. 2018; Bloom et al. 2011; Dagenais et 

2 al. 2019). A few prevalent, heritable, and potentially preventable mortality risks, such as high 

3 cholesterol and smoking, also cause a considerable NCD burden (Daar et al. 2007; Jan et al. 

4 2018). Accordingly, the current study is restricted to medical conditions and mortality risks 

5 that are common in the population.

6 1.2.1 Genome-wide association studies and polygenic scores

7 Common medical conditions are rarely, if ever, caused exclusively by any single gene. Instead, 

8 they are complex traits that are influenced by a large number of genetic variants with 

9 individually minute effects on disease risk (Dudbridge 2016; Visscher et al. 2017; Khera et al. 

10 2018). This so-called polygenicity also applies to mortality risks and lifestyle factors (Willer et 

11 al. 2013; Karlsson Linnér et al. 2019; Dudbridge 2016). However, in combination, these small 

12 genetic effects sum up to the heritability of a trait, which accounts for ~20–60% of the variance 

13 in longevity and many common diseases (Polderman et al. 2015; Witte, Visscher, and Wray 

14 2014). In recent years, there has been rapid progress in the effort to identify genetic variants 

15 that contribute to complex traits. Genome-wide association studies (GWAS) are currently the 

16 method of choice for this purpose (Mills and Rahal 2019; Tam et al. 2019; Young et al. 2019).

17 A typical GWAS tests millions of single-nucleotide polymorphisms (SNPs), one at a time, for 

18 association with a trait (Pasaniuc and Price 2017). SNPs refer to a base pair at a particular 

19 location in a genome that varies among people, which is the most common form of genetic 

20 variation that exists. It is now relatively cheap and easy to measure millions of SNPs across a 

21 genome (e.g., using DNA extracted from saliva samples, which is then genotyped using high-

22 throughput array technologies). Many recent GWAS have been performed in hundreds of 

23 thousands of participants, a few have been performed in more than a million participants, and 

24 larger studies are expected in the near future (Saunders et al. 2019; Mills and Rahal 2019; Tam 

25 et al. 2019). For example, the most recent GWAS on longevity studied more than five hundred 

26 thousand people (Timmers et al. 2019). To date, the GWAS literature has successfully linked 

27 tens of thousands of SNPs with hundreds of common diseases, health risks, and lifestyle 

28 behaviors, with a respectable replication record (Mills and Rahal 2019; Buniello et al. 2018; 

29 Tam et al. 2019; Young et al. 2019).

30 Estimated GWAS coefficients can be used to construct polygenic scores in hold-out samples 

31 that were not included in the GWAS (Pasaniuc and Price 2017). In essence, polygenic scores 

32 are simple linear combinations of a person’s genotype, weighed by each SNP’s trait-specific 
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1 effect (Dudbridge 2013). These scores can have substantial predictive accuracy when the trait 

2 in question is heritable and the input SNP effects have been estimated in a well-powered 

3 GWAS (Torkamani and Topol 2019; Khera et al. 2018; Mavaddat et al. 2019). For example, 

4 recent studies show that polygenic scores can stratify a severalfold increased risk of disease, a 

5 capacity that is comparable to or better than that of clinical risk factors or monogenic mutations, 

6 such as those involved in familial hypercholesterolemia (Abraham et al. 2019; Khera et al. 

7 2018; Escott-Price et al. 2017). The utility of the method is even greater when polygenic scores 

8 are analyzed jointly or together with other observable factors, such as family or medical history 

9 (Krapohl et al. 2017). In the future, polygenic scores may even substitute for expensive 

10 biomarkers or complement observable risk factors measured with imprecision (Torkamani, 

11 Wineinger, and Topol 2018).

12 2 Methods

13 2.1 Data

14 The analyses reported here were performed according to a preregistered analysis plana. We 

15 analyzed the HRS, a longitudinal household survey of elderly Americans that has been 

16 conducted biannually since 1992 (Sonnega et al. 2014). The purpose of the HRS is to facilitate 

17 studies on how the socioeconomic environment is related to health and aging, for which study 

18 participants provide broad consent. Overall, there were 13 waves of data available, spanning 

19 the years 1992–2018. In 2006, the HRS also started collecting genotype data (Domingue et al. 

20 2017). We analyzed the publicly available HRS Longitudinal File 2016 (v1), curated by the 

21 RAND Corporation, together with restricted-access genetic data that are available upon request 

22 from the National Center for Biotechnology Information (NCBI) database of Genotypes and 

23 Phenotypes (dbGaP) (Mailman et al. 2007).

24 The HRS Longitudinal File contains rich demographic data from the family; health and 

25 medical; education, occupation, income and wealth; and retirement domains. We extensively 

26 searched and narrowed down a selection of approximately 30 variables that we considered 

27 important to include as covariates. Because of the unbalanced panel structure and many missing 

28 observations, we did not implement a panel data model. Instead, to vastly increase the sample 

29 size, we collapsed the panel structure into a cross-section in the following way: binary, ordinal, 

30 and categorical variables were assigned the most frequently occurring value across the waves, 

a The analysis plan is available at https://osf.io/qzx6p/
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1 and continuous variables were assigned the median. All dollar values were converted to 2016 

2 prices. We report the full set of variables and sample descriptive statistics in Table 1.

3 2.1.1 Respondent inclusion criteria

4 We restricted all analyses to respondents who self-reported that they categorize as both 

5 “White/Caucasian” and “Not Hispanic”, which we hereafter refer to as European ancestryb. 

6 The reason for this inclusion criterion is that the vast majority of GWAS have been performed 

7 in individuals of this descent, which drastically limits the possibility of constructing accurate 

8 polygenic scores in other ancestries (Duncan et al. 2019; Martin et al. 2017, 2019). In addition, 

9 in the HRS, this ancestral group is about three times larger than all the others combined. We 

10 analyzed the second release of the HRS genotype data, which had been imputed with the 1000 

11 Genomes Project phase 1 version 3 reference panel (Auton et al. 2015). The second release 

12 includes 15,620 genotyped respondents, out of whom 10,958 reported that they were of 

13 European ancestry.

14 Next, we generated genetic principal components (PCs) to identify genetic outliers (Price et al. 

15 2006, 2010). Specifically, we projected the European ancestry subsample of the 1000 Genomes 

16 phase 3 (version 5) reference panel onto the PCs and excluded respondents who had a value on 

17 any of the first four PCs that exceeded the range of the reference panel by more than 10%. In 

18 total, 10,701 individuals remained after this step. Thereafter, as is recommended (Price et al. 

19 2006), we re-estimated 10 genetic PCs in the more homogenous HRS subsample, which were 

20 later included as covariates to control for population stratification. Population stratification 

21 refers to incidental covariation between allele frequencies and the outcome of interest, which 

22 can induce bias if not adjusted for (Price et al. 2006; Hamer and Sirota 2000). To be extra 

23 cautious, we excluded respondents who were more than 5 standard deviations from the mean 

24 on any of the newly generated PCs. This procedure removed 105 additional outliers. In total, 

25 10,596 respondents remained at this stage. In summary, we proceeded conservatively to try to 

26 minimize the chance of bias, which can easily be introduced by ancestry admixture (Martin et 

27 al. 2017).

b In this study, we adhere to the definition of European ancestry that is standard in genetic epidemiology, which 
distinguishes “Hispanic/Latin American” (Mills and Rahal 2019). 
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1 2.1.2 Mortality selection and restriction of birth years

2 The HRS first started collecting genotype data in 2006, approximately 14 years after the first 

3 wave was collected. Thus, the genetic data could be subject to nonrandom selection based on 

4 mortality. In a thorough investigation of mortality selection in the HRS, Domingue et al. (2017) 

5 verified that the genotyped HRS respondents were indeed healthier, displayed fewer health-

6 risk behaviors, and lived longer than the overall sample. We confirmed that there was mortality 

7 selection by comparing Kaplan-Meier survival functions (Supplementary Figure 1). 

8 Following recommendations given by Domingue et al., and with the aim to exclude birth years 

9 with fewer than a hundred observations with non-missing birth and death data, we restricted 

10 all further analyses to individuals born between 1920 and 1955. At this stage, we retained 9,272 

11 respondents, of whom 2,332 were deceased by the most recent wave. We hereafter refer to 

12 these 9,272 genotyped respondents as our “study sample”. Any remaining mortality selection 

13 would most likely lead to an underestimation of the influence of polygenic scores, particularly 

14 for mortality risks that manifest before old age and that could have contributed to mortality 

15 selection, such as cardiovascular disease (Yusuf et al. 2019).
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Table 1. Descriptive statistics

 
European HRS 

respondents
European HRS genotyped 

study sample

Variable Type Wave N %, Mean (SD), 
or range N %, Mean (SD), 

or range
Panel A. Demographics

Sex 27,345 9,272
– Male 12,256 44.82% 4,036 43.53%
– Female

Categorical 1–13
15,089 55.18% 5,236 56.47%

Birth year Categorical 1–13 27,345 1890–1995 9,272 1920–1955
HRS birth cohort 27,345 9,272
– AHEAD, born before 1924 6,112 22.35% 531 5.73%
– the Children of Depression (CODA), born 1924-
1930 3,403 12.44% 1,530 16.50%

– HRS, born 1931-1941 7,438 27.20% 3,695 39.85%
– War Babies (WB), born 1942-1947 2,677 9.79% 1,527 16.47%
– Early Baby Boomers (EBB), born
1948-1953 2,666 9.75% 1,642 17.71%

– Mid Baby Boomers (MBB), born 1954-1959 2,583 9.45% 347 3.74%
– Late Baby Boomers, born 1960–1965 2,016 7.37% 0 0.00%
– Born after 1965

Categorical 1–13

450 1.65% 0 0.00%
Deceased by the last wave 27,345 9,272
– Yes 11,300 41.32% 2,332 25.15%
– No

Binary 1–13
16,045 58.68% 6,940 74.85%

Deceased before genotype data collection (before 
2006) 27,345 9,272

– Yes 5,940 21.72% 0 0.00%
– No

Binary 1–13

21,405 78.28% 9,272 100.00%
Census region, 1992–2014 25,507 9,272
– Northeast 4,372 17.14% 1,477 15.93%
– Midwest 6,957 27.27% 2,690 29.01%
– South 9,646 37.82% 3,400 36.67%
– West

Categorical 1–13

4,532 17.77% 1,705 18.39%
Years of schooling (17+ years coded as 17) Continuous 1–13 27,199 12.8 (2.8) 9,246 13.2 (2.5)
Veteran status 27,333 9,266
– Yes 6,440 23.56% 2,354 25.40%
– No

Binary 1–13
20,893 76.44% 6,912 74.60%

Married or partnered in any wave 27,345 9,272
– Yes 21,220 77.60% 8,042 86.73%
– No

Binary 1–13
6,125 22.40% 1,230 13.27%

Divorced or separated in any wave 27,345 9,272
– Yes 3,705 13.55% 1,373 14.81%
– No

Binary 1–13
23,640 86.45% 7,899 85.19%

Widowed in any wave 27,345 9,272
– Yes 7,890 28.85% 2,846 30.69%
– No

Binary 1–13
19,455 71.15% 6,426 69.31%

Number of children Continuous 1–13 26,381 2.4 (1.7) 9,263 2.6 (1.6)

Panel B. Health
Body Mass Index (BMI) Continuous 1–13 27,284 27.1 (5.5) 9,268 27.7 (5.2)
Subjective life expectancy Continuous 1–13 23,802 1.2 (1.8) 9,265 1.04 (0.8)
Self-rated health 27,341 9,272
– 5. Poor 2,586 9.46% 410 4.42%
– 4. Fair 4,834 17.68% 1,242 13.40%
– 3. Good 8,639 31.60% 3,044 32.83%
– 2. Very good 8,195 29.97% 3,439 37.09%
– 1. Excellent

Categorical 1–13

3,087 11.29% 1,137 12.26%
Alcoholic drinks per week Continuous 1–13 25,706 2.8 (6.4) 9,271 2.8 (5.5)
Ever smoker 27,345 9,272
– Yes 16,111 58.92% 5,285 57.00%
– No

Binary 1–13
11,234 41.08% 3,987 43.00%

Current smoker 27,339 9,272
– Yes 4,690 17.15% 1,233 13.30%
– No

Binary 1–13
22,649 82.85% 8,039 86.70%

Ever diagnosed with high blood pressure (or 
hypertension) 27,345 9,272

– Yes 15,954 58.34% 6,193 66.79%
– No

Binary 1–13

11,391 41.66% 3,079 33.21%
Ever diagnosed with diabetes (or high blood 
sugar) 27,345 9,272

– Yes 5,916 21.63% 2,365 25.51%
– No

Binary 1–13

21,429 78.37% 6,907 74.49%
Ever diagnosed with cancer (or malignant tumor 
except skin cancer) 27,345 9,272

– Yes
Binary 1–13

5,786 21.16% 2,310 24.91%
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– No 21,559 78.84% 6,962 75.09%
Ever diagnosed with chronic lung disease (except 
asthma such as chronic bronchitis or emphysema) 27,345 9,272

– Yes 4,275 15.63% 1,522 16.42%
– No

Binary 1–13

23,070 84.37% 7,750 83.58%
Ever diagnosed with heart conditions (such as 
heart attack, coronary heart disease, angina, 
congestive heart failure, or other heart problems)

27,345 9,272

– Yes 9,539 34.88% 3,548 38.27%
– No

Binary 1–13

17,806 65.12% 5,724 61.73%
Ever diagnosed with stroke (or transient ischemic 
attack) 27,345 9,272

– Yes 3,944 14.42% 1,312 14.15%
– No

Binary 1–13

23,401 85.58% 7,960 85.85%
Ever diagnosed with emotional, nervous, or 
psychiatric problems 27,345 9,272

– Yes 1,462 5.35% 352 3.80%
– No

Binary 1–13

25,883 94.65% 8,920 96.20%
Ever diagnosed with arthritis (or rheumatism) 27,345 9,272
– Yes 16,576 60.62% 6,618 71.38%
– No

Binary 1–13
10,769 39.38% 2,654 28.62%

Ever diagnosed with Alzheimer's disease 27,345 9,272
– Yes 496 1.81% 299 3.22%
– No

Binary 1–13
26,849 98.19% 8,973 96.78%

Ever diagnosed with dementia 27,345 9,272
– Yes 786 2.87% 445 4.80%
– No

Binary 1–13
26,559 97.13% 8,827 95.20%

Ever reported back problems 27,345 9,272
– Yes 15,939 58.29% 6,490 70.00%
– No

Binary 1–13
11,406 41.71% 2,782 30.00%

Whether health limits work 27,345 9,272
– Yes 15,059 55.07% 6,091 65.69%
– No

Binary 1–13
12,286 44.93% 3,181 34.31%

Self-reported probability of having a work 
limiting health problem in the next 10 years Continuous 1–6 9,984 40.2% (25.0%) 5,368 39.4% (23.9%)

Panel C. Occupation, income, wealth, and retirement
Labor force status 26,580 9,272
– Works full-time 8,215 30.91% 2,696 29.08%
– Works part-time 1,259 4.74% 368 3.97%
– Unemployed 295 1.11% 37 0.40%
– Not in labor force 2,084 7.84% 625 6.74%
– Retired 12,909 48.57% 4,971 53.61%
– Partly retired 1,249 4.70% 57 0.61%
– Disabled

Categorical 1–13

569 2.14% 518 5.59%
Household income in 2016 prices (in thousands of 
US$) Continuous 1–13 27,345 82.6 (83.6) 9,272 76.8 (76.0)

Total household wealth in 2016 prices (in 
thousands of US$) Continuous 1–13 27,345 476.4 (1,299) 9,272 563.7 (957.0)

Received Social Security (OASDI) in any wave 27,345 9,272
– Yes 20,005 73.16% 8,220 88.65%
– No

Binary 1–13
7,340 26.84% 1,052 11.35%

Self-reported probability of working full-time 
after age 65 Continuous 1–13 17,255 25.4% (31.9%) 7,195 22.6% (30.5%)

Plans to continue paid work in retirement 7,400 3,771
– Yes 5,368 72.54% 2,761 73.22%
– No

Binary 1
2,032 27.46% 1,010 26.78%

Concerned about having enough retirement 
income 6,275 3,331

– 1. A lot 1,762 28.08% 868 26.06%
– 2. Somewhat 1,799 28.67% 982 29.48%
– 3. Little 1,518 24.19% 867 26.03%
– 4. Not at all

Categorical 1

1,196 19.06% 614 18.43%
Planned retirement age (i.e., planned retirement 
year minus birth year) Continuous 1–13 6,331 64.3 (5.3) 3,463 64.6 (5.3)

Satisfied with retirement 15,868 7,484
– 1. Very 8,680 54.70% 4,381 58.54%
– 2. Moderately 5,800 36.55% 2,664 35.60%
– 3. Not at all

Categorical 1–13

1,388 8.75% 439 5.87%
Expectation of total retirement wealth in 2016 
prices (in thousands of US$) Continuous 1 6,346 201.9 (571.4) 3,354 214.4 (580.3)

Life-insurance coverage in any wave 27,212 9,272
– Yes 22,050 81.03% 8,330 89.84%
– No

Binary 1–13
5,162 18.97% 942 11.31%

Percentage of waves covered by life insurance Continuous 1–13 27,212 65.4% (40.0%) 9,272 68.9% (35.9%)
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Long-term care insurance coverage in any wave 27,165 9,272
– Yes 6,561 24.15% 3,107 33.51%
– No

Binary 1–13
20,604 75.85% 6,165 66.49%

Percentage of waves covered by long-term care 
insurance, 1992-2014 Continuous 1–13 27,165 10.4% (23.4%) 9,272 13.4% (25.9%)

Financial planning horizon 21,905 9,196
– 1. Next few months 3,245 14.81% 1,154 12.55%
– 2. Next year 2,433 11.11% 979 10.65%
– 3. Next few years 6,463 29.50% 2,862 31.12%
– 4. Next 5-10 years 7,364 33.62% 3,293 35.81%
– 5. Longer than 10 years

Categorical 1, 4–8, 
11–13

2,400 10.96% 908 9.87%

1
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1 2.2 Statistical analyses

2 2.2.1 Quality control, heritability, and genetic correlations

3 We performed an extensive search of the published GWAS literature to identify the largest 

4 studies on common medical conditions and mortality risks that have thus far been made 

5 publicly available to the research community. The search was performed in the National 

6 Human Genome Research Institute (NGHRI) GWAS Catalog, which curates all published 

7 genome-wide association studies (MacArthur et al. 2017; Buniello et al. 2018), in the March 

8 1, 2019, version of the database. To choose among the many hundreds of traits available in the 

9 database, we prespecified a selection that was guided by the medical literature. More 

10 specifically, we collected recognized predictors of mortality that had either been expert-curated 

11 by a panel of clinicians in a study by Ganna et al. (2013) or been determined to causally 

12 influence lifespan in a genetic study by McDaid et al. (2017). In addition, we prespecified the 

13 inclusion of only traits that had been studied in more than a hundred thousand people, since the 

14 accuracy of polygenic scores is a strong function of GWAS sample size (Daetwyler, 

15 Villanueva, and Woolliams 2008).

16 As reported in Table 2, we collected results from 29 GWAS (two were excluded see below) 

17 that spanned many medical domains, including cardiology, oncology, neurology, and 

18 psychiatry; in total 15 common medical conditions and the following 14 mortality risks: three 

19 measures of blood pressure, body mass index (BMI), four measures of blood cholesterol, 

20 educational attainment, height, parental lifespan, smoking initiation and cigarettes per day 

21 (smoking intensity), and (alcoholic) drinks per week. The average sample size was ~455,000, 

22 and the largest was above a million (atrial fibrillation).

23 Next, we performed quality control to exclude rare and low-quality SNPs (minor allele 

24 frequency less than 0.01 and imputation quality less than 0.9), in accordance with the standards 

25 of the field (Winkler et al. 2014). It is recommended to exclude such SNPs to increase the 

26 signal-to-noise ratio in polygenic scores (Kuchenbaecker et al. 2017). We estimated SNP 

27 heritabilities (the proportion of variation explained by a set of SNPs) by applying LD Score 

28 regression on the GWAS results (Bulik-Sullivan, Loh, et al. 2015; Bulik-Sullivan, Finucane, 

29 et al. 2015). The method utilizes the fact that under a polygenic model, genetic variants that 

30 are correlated—in linkage disequilibrium (LD)—with many other variants are more likely to 

31 capture genetic signals across a genome. A variant’s LD Score, the sum of its squared 

32 correlations with other variants, has a proportional relationship with the expectation of its 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.30.20047290doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.30.20047290


15

1 association test statistic. This relationship can be transformed to an approximate lower-bound 

2 SNP heritability and to test for population stratification under various conditions (Lee, McGue, 

3 et al. 2018).

4 To eliminate GWAS with negligible genetic signals, we excluded two traits for which LD Score 

5 heritability was not distinguishable from zero at the preregistered threshold P value less than 

6 0.001: (1) large artery stroke (h2 = 0.07%; P = 0.59) and (2) small vessel stroke (h2 = 0.25%; 

7 P = 0.037). The heritability of the 27 remaining traits ranged from 0.7% (cardioembolic stroke) 

8 to 45.9% (height). Next, we estimated pairwise LD Score genetic correlations (rg) (Bulik-

9 Sullivan, Finucane, et al. 2015) (Supplementary Table 1 and Supplementary Figure 2). The 

10 method estimates genetic correlations by utilizing the overlap in association test statistics 

11 across SNPs as a measure of genetic covariance while adjusting for LD and sample overlap. It 

12 has been shown that the method can robustly estimate genetic overlap across a range of 

13 plausible confounding scenarios (Lee, McGue, et al. 2018). Importantly, we found that most 

14 of the common medical conditions and mortality risks we collected were moderately 

15 genetically correlated with parental lifespan, which suggests that they should be able to capture 

16 variation in survival (Timmers et al. 2019; McDaid et al. 2017; Marioni et al. 2016; Daetwyler, 

17 Villanueva, and Woolliams 2008).
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Table 2. GWAS results for common medical conditions and mortality risks
Traits Domain Relevance GWAS N LD Score h2 SE (h2) P value (h2) λ GC Mean χ2 M SNPs in 

polygenic score Reference

Alzheimer's disease Neuropsychiatry Medical condition 455,258 1.4% 0.20% 0.000 1.086 1.126 58,587 (Jansen et al. 2019)

Any ischemic stroke Neurology Medical condition 446,696 1.3% 0.13% 0.000 1.121 1.140 61,911 (Malik et al. 2018)

Any stroke Cardiology/Neurology Medical condition 446,696 1.3% 0.14% 0.000 1.124 1.148 62,712 (Malik et al. 2018)

Atrial fibrillation Cardiology Medical condition 1,030,836 2.4% 0.21% 0.000 1.293 1.517 89,934 (Nielsen et al. 2018)

Body mass index (BMI) Metabolic/Lifestyle Mortality risk 795,640 19.0% 0.54% 0.000 2.787 3.986 208,732 (Yengo  et al. 2018)

Breast cancer Oncology Medical condition 228,951 13.3% 1.04% 0.000 1.362 1.683 95,858 (Michailidou et al. 2017)

Cardioembolic stroke Cardiology Medical condition 446,696 0.7% 0.12% 0.000 1.108 1.120 59,268 (Malik et al. 2018)

Chronic kidney disease Urology Medical condition 444,971 1.4% 0.17% 0.000 1.146 1.199 67,634 (Wuttke et al. 2019)

Cigarettes per day Oncology/Lifestyle Mortality risk 109,804 9.5% 1.01% 0.000 1.184 1.216 68,207 (Abbott et al. 2017)

Coronary artery disease Cardiology Medical condition 547,261 5.9% 0.32% 0.000 1.362 1.619 100,938 (van der Harst and Verweij 2018)

Depression Psychiatry Medical condition 500,199 6.0% 0.23% 0.000 1.453 1.604 107,705 (Howard et al. 2019) 

Diastolic blood pressure Cardiology Mortality risk 757,601 13.0% 0.53% 0.000 2.047 3.191 186,290 (Evangelou et al. 2018)

Drinks per week Metabolic/Lifestyle Mortality risk 414,343 6.9% 0.30% 0.000 1.407 1.584 106,587 (Karlsson Linnér et al. 2019)

Educational attainment Behavior/Lifestyle Mortality risk 756,382 10.7% 0.27% 0.000 2.090 2.642 184,905 (Lee et al., 2018)

HDL cholesterol Metabolic Mortality risk 187,167 21.4% 2.85% 0.000 1.020 1.210 45,927 (Willer et al. 2013)

Height Cross-domain Mortality risk 709,706 45.9% 2.13% 0.000 3.613 9.042 271,528 (Yengo et al. 2018)

Insomnia Psychiatry Medical condition 386,533 4.6% 0.20% 0.000 1.310 1.367 84,329 (Jansen et al. 2019)

Large artery stroke Cardiology Medical condition 446,696 0.1% 0.13% 0.538 1.108 1.113 Excluded (Malik et al. 2018)

LDL cholesterol Metabolic Mortality risk 173,082 20.3% 3.24% 0.000 1.014 1.194 45,388 (Willer et al. 2013)

Parental lifespan Cross-domain Mortality risk 640,189 2.4% 0.13% 0.000 1.300 1.342 82,676 (Timmers et al. 2019)

Prostate cancer Oncology Medical condition 140,254 14.8% 1.81% 0.000 1.217 1.460 60,248 (Schumacher et al. 2018)

Pulse pressure Cardiology Mortality risk 745,820 11.4% 0.40% 0.000 1.914 2.822 171,127 (Evangelou et al. 2018)

Schizophrenia Psychiatry Medical condition 105,318 42.0% 1.52% 0.000 1.691 1.977 134,764 (Pardiñas et al. 2018)

Small vessel stroke Cardiology Medical condition 446,696 0.3% 0.12% 0.037 1.080 1.094 Excluded (Malik et al. 2018)

Smoking initiation Oncology/Lifestyle Mortality risk 518,633 8.9% 0.29% 0.000 1.637 1.929 136,392 (Karlsson Linnér et al. 2019)

Systolic blood pressure Cardiology Mortality risk 745,820 13.3% 0.49% 0.000 2.090 3.154 187,442 (Evangelou et al. 2018)

Total cholesterol Metabolic Mortality risk 187,365 21.2% 2.73% 0.000 1.014 1.237 47,713 (Willer et al. 2013)

Triglycerides Metabolic Mortality risk 177,861 21.5% 3.49% 0.000 1.002 1.219 45,077 (Willer et al. 2013)

Type 2 diabetes Metabolic Medical condition 231,426 19.4% 0.86% 0.000 1.626 1.958 130,042 (Mahajan et al. 2018)
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1 2.2.2 Polygenic scores

2 In our study sample, we computed polygenic scores as linear combinations of individual-level 

3 genotypes weighed by trait-specific GWAS effects. Thus, polygenic scores aggregate an 

4 individual’s genetic liability (or propensity) towards a trait or disease into a genetic predictor 

5 (Dudbridge 2013; Khera et al. 2018; Torkamani, Wineinger, and Topol 2018). The ith 

6 respondent’s polygenic score for the kth trait, , was computed as𝑆𝑖𝑘

(1) 𝑆𝑖𝑘 =
𝑀

∑
𝑗 = 1

𝛽𝑗𝑘𝑔𝑖𝑗

7 where the respondent’s genotype  at SNP j was weighed by the corresponding trait-specific 𝑔𝑖𝑗

8 GWAS effect, , and then summed across M SNPs. In the regression analyses below, we 𝛽𝑗𝑘

9 entered multiple polygenic scores on the right-hand side of the regression equation, which can 

10 increase the predictive accuracy of genetically correlated outcomes (Krapohl et al. 2017).

11 We excluded weak GWAS associations at a P value greater than 0.05 to reduce noise from 

12 estimation error (Choi and O’Reilly 2019) and then constructed polygenic scores using the 

13 remaining SNPs that overlapped with the 1.4 million SNPs in the high-quality consensus 

14 genotype set established by the International HapMap 3 Consortium (Altshuler et al. 2010; 

15 Chang et al. 2015). This is a common approach that achieves reasonable genome-wide 

16 coverage with high imputation accuracy without including too many correlated SNPs, which 

17 can reduce predictive accuracy (Karlsson Linnér et al. 2019; Lee, Wedow, et al. 2018). The 

18 final number of SNPs in the scores ranged from 45,077 to 271,528 (Table 2). HRS participants 

19 did not obtain any information about their polygenic values.

20 2.2.3 Univariate survival analysis and Cox proportional hazards regression

21 We first performed a series of nonparametric univariate analyses of respondent, maternal, and 

22 paternal survival by estimating stratified Kaplan-Meier survival functions (Supplementary 

23 Table 2) (Kaplan and Meier 1958; Clark et al. 2003). A benefit of analyzing parental survival 

24 is reduced censoring and mortality selection, but a disadvantage is that offspring genotypes are 

25 a noisy measure of parental genotypes (Wright et al. 2019). Additionally, mortality risks 

26 change over time, and it is questionable whether the same genetic and environmental risks 

27 remain relevant. We analyzed monthly survival in the respondents but observed only yearly 

28 survival in the parents.
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1 While the univariate analysis can suggest factors that appear to be associated with survival, it 

2 is not statistically conditioned on other variables (Hosmer and Lemeshow 1998). Therefore, 

3 we proceeded by performing multiple regression of respondent survival by estimating a series 

4 of Cox proportional hazards (PH) models (Table 3 and Supplementary Table 3) (Bradburn 

5 et al. 2003a; Royston and Altman 2013). We did not perform Cox regression of parental 

6 survival because we could not observe its covariates. In these analyses, we included 10 

7 standardized genetic PCs. Because of the HRS household structure, we clustered the standard 

8 errors at the household level. We estimated four nested regression models hierarchically. In 

9 summary, the models included the following regressors in addition to the genetic PCs:

10 1. all polygenic scores except the score for parental lifespan;

11 2. model (1) together with sex-specific birth-year dummies, birth-month dummies, and 

12 demographic and socioeconomic covariates, including years of schooling and income;

13 3. model (2) together with the polygenic score for parental lifespan; and

14 4. model (3) together with covariates from the health and lifestyle risk domains, including 

15 BMI, smoking, drinking, parental lifespan, subjective life expectancy, self-rated health, 

16 and 11 indicators for categories of diagnosed medical conditions.

17 Overall, we consider model (3) to be our preferred model for the development of a prognostic 

18 index of genetic risk that could be evaluated early in life before any signs or symptoms of 

19 disease emerge (see below). At the same time, model (4) indicates whether polygenic scores 

20 have any capacity to distinguish lifespan above and beyond the inclusion of intermediate 

21 variables that lie on the causal pathway between genetic risk and mortality, such as manifested 

22 medical conditions.

23 2.2.4 Model diagnostics and fit

24 We evaluated a series of model diagnostics for the Cox models (Moore 2016; Bradburn et al. 

25 2003b; Klein and Moeschberger 2003). First, we checked whether the models or any of the 

26 regressors violated the PH assumption by testing the scaled Schoenfeld residuals for 

27 association with time to event. Second, we examined whether we had chosen a suitable 

28 functional form for the covariates by visually inspecting their relationship with the Martingale 

29 residuals. Third, we examined the deviance residuals for outliers or influential observations.

30 We then assessed the model fit. We computed likelihood-ratio tests, Wald tests, and log-rank 

31 tests to evaluate whether the regressors improved the model fit above the null model. Next, we 
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1 computed the Cox-Snell pseudo-R2, Harrel’s c statistic, and Gönen & Heller's K statistic 

2 (Harrell Jr et al. 1982). The latter two are concordance measures that compare the observed 

3 time to event with the ranks of the respondents’ hazards as predicted by the fitted model, akin 

4 to an area under the ROC curve (AUC) measure (Royston and Altman 2013). In the next 

5 section, we explain how we computed the Royston & Sauerbrei  measure of model fit. 𝑅2
𝐷

6 Finally, we performed likelihood-ratio tests between the nested models to examine whether 

7 model fit improved. Because of the large number of events, Ndeceased = 2,332, we performed no 

8 stepwise covariate selection.

9 2.2.5 Prognostic indices of survival

10 To investigate how well the polygenic scores, when combined, could stratify survival relative 

11 to (i) genetic PCs and (ii) covariates, we computed three prognostic indices (PI) for each of the 

12 four Cox models. In this context, a PI is a weighted sum of multiple variables, which are 

13 weighed by their Cox coefficients. In other words, we aggregated the influence of sets of 

14 variables into hazard indices. The ith respondent’s PI across the polygenic scores was 

15 computed as

(2) 𝑃𝐼𝑃𝐺𝑆,𝑖 =
𝐾

∑
𝑘 = 1

𝛼𝑘𝑆𝑖𝑘

16 where the respondent’s polygenic score, , was weighed by its Cox regression coefficient, 𝑆𝑖𝑘

17 , and then summed across the K polygenic scores. The PIs for the genetic PCs ( ) and the 𝛼𝑘 𝑃𝐼𝑃𝐶

18 covariates ( ) were computed analogously, with the exception that excluded 𝑃𝐼𝐶𝑂𝑉𝐴𝑅 𝑃𝐼𝐶𝑂𝑉𝐴𝑅 

19 the sex-specific birth-year dummies and the birth-month dummies, because we considered 

20 those to capture time and sampling effects rather than meaningful individual differences.

21 To evaluate the relative variance explained by the three PIs— , , and —we 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝑃𝐶 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

22 computed the Royston & Sauerbrei  measure of model fit (Royston and Sauerbrei 2004; 𝑅2
𝐷

23 Royston and Altman 2013; Bradburn et al. 2003b). This method orders respondents according 

24 to a PI and then projects them onto a normal distribution to attain so-called rankits (expected 

25 Z-scores based on the order and number of the individuals). Then, an auxiliary Cox regression 

26 is performed on the rankits alone, and the resulting regression coefficient can be transformed 

27 into a measure of explained variation on the log hazard scale. Thus,  is more similar to the 𝑅2
𝐷

28 traditional coefficient of determination (R2) of linear regression than to the Cox-Snell pseudo-
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1 R2, which is computed as ratios of log-likelihoods. We performed this comparison across all 

2 four Cox models (Supplementary Table 3).

3 2.2.6 Comparison of stratified survival functions

4 Next, for Cox models (3) and (4), we compared stratified survival functions in two ways: the 

5 first comparison (a) was stratified by the top versus lower nine deciles of the PI distribution, 

6 and the second comparison (b) was stratified by the top versus bottom deciles. Comparison (a) 

7 was deliberately chosen to mirror medical underwriting, where primarily individuals with a 

8 substantially increased risk are classified as substandard and charged a higher premium 

9 (Nabholz and Somerville 2011; Rothstein 2004), while comparison (b) was similar to a 

10 traditional extreme-groups approach (Preacher et al. 2005; Timmers et al. 2019). We report 

11 both comparisons but focus our discussion on the first comparison (a), which did not discard 

12 any data. In these analyses, the  based on model (3) was our preferred genetic predictor 𝑃𝐼𝑃𝐺𝑆

13 of interest (Table 4 and Figure 1). We performed a log-rank test to determine whether the 

14 survival functions of the two groups in each comparison differed, and we evaluated the size of 

15 the difference in median lifespan (Clark et al. 2003). Thereafter, we stratified survival by the 

16 three PIs simultaneously but only for comparison (a), as simultaneously stratifying by the top 

17 and bottom deciles of the three PIs would include too few respondents (Table 5 and Figure 2).

18 2.2.7 Benchmark to conventional actuarial risk factors

19 To benchmark the , we stratified Kaplan-Meier survival functions by each of the 𝑃𝐼𝑃𝐺𝑆

20 following conventional actuarial risk factors (Supplementary Table 4 and Supplementary 

21 Figure 6): smoking (never, current, and former); BMI; years of schooling; log of household 

22 income; sex; and ever diagnosed with (a) high blood pressure (or hypertension), (b) diabetes 

23 (or high blood sugar), (c) cancer (or malignant tumor except skin cancer), (d) chronic lung 

24 disease (except asthma such as chronic bronchitis or emphysema), (e) heart conditions (such 

25 as heart attack or coronary heart disease), or (f) stroke (or transient ischemic attack). To avoid 

26 mortality selection from the genotyping procedure, we performed this analysis in both our 

27 study sample and the full sample of 27,345 European HRS respondents.

28 2.2.8 Cross-validation of the preferred Cox model

29 To maximize the sample size, we analyzed the PIs in the same sample as the one used to 

30 estimate the Cox coefficients. Therefore, we performed a cross-validation with 1,000 iterations 

31 for our preferred model (3) to evaluate the possibility of overfitting (Royston and Sauerbrei 
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1 2004). In each iteration, we trained the coefficients of the  in a random sample containing 𝑃𝐼𝑃𝐺𝑆

2 65% of the households (Htraining = 4,325) and used the remaining households as a validation 

3 sample (Hvalidation = 2,329). First, we evaluated the so-called “calibration slope” by fitting the 

4  in model (3) instead of the polygenic scores (Royston and Altman 2013). If the slope is 𝑃𝐼𝑃𝐺𝑆

5 different from one, then the cross-validation discrimination is either better (>1) or worse (<1). 

6 To test that hypothesis, we evaluated the median  across the iterations. Second, 𝑍 =
𝛼𝑃𝐼.𝑃𝐺𝑆 ‒ 1

𝑆𝐸𝑟𝑜𝑏𝑢𝑠𝑡

7 across the iterations, we evaluated the median of the  and the median difference in lifespan, 𝑅2
𝐷

8 analogous to section 2.2.6.

9 2.2.9 Subjective life expectancy, self-rated health, and economic variables

10 We tested whether the  based on the Cox model (3) was associated with subjective life 𝑃𝐼𝑃𝐺𝑆

11 expectancy and self-rated health (Supplementary Table 5). Subjective life expectancy is 

12 defined as the ratio between respondents’ self-reported probability of surviving to a specific 

13 age divided by the life table prediction adjusted for age and sex. Because subjective life 

14 expectancy is normally distributed but left censored on 0, we performed both OLS and Tobit 

15 regressions on that outcome. Self-rated health was measured on a five-point Likert scale with 

16 the following categories: 1. Excellent; 2. Very good; 3. Good; 4. Fair; and 5. Poor. Thus, we 

17 estimated an ordinal logit regression. Both models controlled for the same covariates as our 

18 preferred model (3), and we clustered the standard errors at the household level.

19 We also tested the  based on the Cox model (3) for association with the following 11 𝑃𝐼𝑃𝐺𝑆

20 preregistered variables of relevance to economic research (Supplementary Table 6)c: (a) 

21 whether health limits the ability to work; (b) the self-reported probability of having a work-

22 limiting health problem in the next 10 years; (c) the self-reported probability of working full-

23 time after age 65; (d) plans to continue paid work in retirement; (e) concern about having 

24 enough retirement income; (f) planned retirement age (defined as planned retirement year 

25 minus birth year); (g) retirement satisfaction; (h) expectation of total retirement wealth; the 

26 percentage of waves covered by (i) life insurance or (j) by long-term care insurance; and (k) 

27 financial planning horizon. Depending on the distribution of each outcome, we applied either 

28 OLS, logit, or ordinal logit regression, with model (3) covariates and clustered standard errors.

c We also preregistered that we would study private health-insurance coverage. However, we found little 
variation in health-insurance coverage in the HRS, and thus, we dropped this particular analysis from power 
considerations.
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1 3 Results

2 3.1 Results from the univariate survival analysis

3 With the 27 polygenic scores we constructed, we first performed univariate survival analyses 

4 of respondent, maternal, and paternal survival. The results are reported in Supplementary 

5 Table 2 and Supplementary Figures 3–5. When survival was stratified by the top versus lower 

6 nine deciles of the score distribution, we found that 18 polygenic scores could significantly 

7 discriminate survival in either the respondents or their parents (at P < 0.05), and eight were 

8 Bonferroni-significant corrected for 27 traits. With respect to respondent survival, the 

9 following polygenic scores had a strong and significant influence (defined here as a >1 year 

10 difference in the median lifespan): (a) Alzheimer’s disease (1.2 y), (b) any ischemic stroke (1.3 

11 y), (c) any stroke (1.6 y), (d) BMI (1.3 y), (d) cigarettes per day (2.2 y), (e) educational 

12 attainment (1.3 y), (f) prostate cancer (1.2 y), and (g) type 2 diabetes (1.6 y). As for the parents, 

13 the score for parental lifespan had the strongest influence (4 and 6 y in the mothers and fathers, 

14 respectively).

15 All univariate associations with respondent and parental survival were in the expected 

16 direction, except the association between respondent survival and the score for prostate cancer. 

17 (That score was not associated with parental survival.) Therefore, we performed an ad hoc 

18 robustness check to ensure that this score was associated with the likelihood of reporting a 

19 cancer diagnosis, and this association indeed was in the expected direction (P = 0.0007). 

20 Considered on its own, prostate cancer has an overall high survival rate as long as it is detected 

21 before metastasizing (Noone et al. 2018). We speculate that the genetic risk of prostate cancer 

22 may lead to certain health benefits if diagnosed early, such as more frequent doctor checkups 

23 or changes in lifestyle, which could explain the unexpected direction of effect; however, we 

24 emphasize that replication is necessary.

25 3.2 Results from the Cox proportional hazards regression

26 We report a selection of the multivariate survival analysis results in Table 3 and the complete 

27 results in Supplementary Table 3. In our preferred model (3), we identified associations with 

28 the polygenic scores for Alzheimer’s disease ( = 0.052; P = 0.022), atrial fibrillation ( = 𝛼 𝛼 

29 0.054; P = 0.019), cigarettes per day ( = 0.073; P = 0.001), height ( = 0.049; P = 0.046), 𝛼 𝛼 

30 type 2 diabetes ( = 0.054; P = 0.036), and parental lifespan ( = –0.087; P < 0.001). All 𝛼 𝛼 

31 estimated effects were in the anticipated direction. Importantly, we could not detect a violation 
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1 of the PH assumption (P of the global  = 0.404), and the model attained a satisfactory fit 𝜒2

2 (e.g., a Cox and Snell R2 of 0.23). The  of the  was 0.039 (95% CI = 0.028–0.052), 𝑅2
𝐷 𝑃𝐼𝑃𝐺𝑆

3 while the  of the  and  were 0.006 (0.002–0.011) and 0.113 (0.095–0.133), 𝑅2
𝐷 𝑃𝐼𝑃𝐶 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

4 respectively. Thus, the polygenic scores explained substantially more of the variation on the 

5 log hazard scale than the genetic PCs, but it explained only about a third of the variation that 

6 the other model covariates did.

7 The only difference between model (2) and our preferred model (3) is the score for parental 

8 lifespan. That particular score was added separately because it may capture the influence of 

9 other scores, as suggested by the genetic correlations (Supplementary Table 1 and 

10 Supplementary Figure 2). However, doing so did not notably influence the parameter 

11 estimates of the others, and the set of significant scores was the same between models (2) and 

12 (3). Notably, the effect of the score for parental lifespan in model (3) was the largest effect 

13 estimated for any of the polygenic scores across all four models ( = –0.087; P = 0.0004).𝛼 

14 Model (4) was our most extensively adjusted model; it additionally included the two health 

15 measures subjective life expectancy and self-rated health, various lifestyle factors (such as 

16 smoking and drinking), observed parental lifespan, and 11 indicators for categories of medical 

17 diagnoses, such as “ever diagnosed with cancer (or malignant tumor except skin cancer)”. 

18 Unfortunately, medical diagnoses were available only as binary indicators. Nevertheless, our 

19 primary interest is in model (3), which can be evaluated early in life. As could be expected by 

20 including directly observed health variables, model (4) drastically improved the model fit over 

21 both the null model and model (3) (both P ~ 0). However, model (4) also strongly violated the 

22 PH assumption (P of the global  = 0.00003). Reassuringly, the estimates of the polygenic 𝜒2

23 scores, which we were particularly interested in, appeared highly stable across all four model 

24 specifications.
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Table 3. Selection of hierarchical Cox regression results1

Model 3 (N = 9,246; deaths = 2,321) Model 4 (N = 9,007; deaths = 2,223)

Regressors (polygenic scores shown in bold) Coefficient (Robust SE) Coefficient (Robust SE)
Alzheimer's disease 0.052 (0.023)* 0.057 (0.024)*
Atrial fibrillation 0.054 (0.023)* 0.046 (0.025) †
Cigarettes per day (smoking intensity) 0.073 (0.023)*** 0.064 (0.024)**
Height 0.049 (0.025)* 0.045 (0.026)
Type 2 diabetes 0.054 (0.026)* 0.029 (0.028)
Parental lifespan -0.087 (0.025)*** -0.058 (0.028)*
Sex (0 = Male; 1 = Female) -0.872 (0.241)*** -0.568 (0.302) †
Census region (base: Northeast)
– Midwest -0.107 (0.072) -0.035 (0.075)
– South 0.048 (0.068) 0.034 (0.072)
– West -0.063 (0.080) 0.023 (0.083)
Years of schooling -0.058 (0.010)*** -0.024 (0.010)*
Log of total household income (2016 prices) -0.201 (0.046)*** -0.089 (0.047) †
Labor force participation (base: Works full-time)
– Works part-time -0.167 (0.169) -0.066 (0.165)
– Unemployed 0.276 (0.532) 0.243 (0.552)
– Partly retired -0.335 (0.111)** -0.355 (0.118)**
– Retired -0.251 (0.073)*** -0.385 (0.076)***
– Disabled 1.119 (0.270)*** 0.725 (0.314)*
– Not in labor force -0.148 (0.117) -0.198 (0.118) †
Received “Social Security” (OASDI) in any wave -0.430 (0.117)*** -0.496 (0.124)***
Married or partnered in any wave -0.200 (0.071)** -0.158 (0.072)*
Widowed in any wave -0.357 (0.056)*** -0.348 (0.057)***
Sex-specific birth-year dummies YES YES
Birth-month dummies YES YES
Subjective life expectancy -0.086 (0.029)**
Self-rated health (Base: 1. Excellent)
– 2. Very good -0.050 (0.089)
– 3. Good 0.304 (0.091)***
– 4. Fair 0.633 (0.102)***
– 5. Poor 1.069 (0.134)***
BMI 0.013 (0.006)*
Alcoholic drinks per week 0.012 (0.005)*
Current smoker 0.812 (0.071)***
Ever smoker 0.193 (0.053)***
Maternal max attained age -0.003 (0.002) †
Paternal max attained age -0.003 (0.002)*
Ever diagnosed with high blood pressure -0.022 (0.054)
Ever diagnosed with diabetes 0.136 (0.054)*
Ever diagnosed with cancer 0.244 (0.049)***
Ever diagnosed with chronic lung disease 0.348 (0.058)***
Ever diagnosed with heart conditions 0.069 (0.049)
Ever diagnosed with stroke 0.091 (0.058)
Ever diagnosed with psychiatric disorder 0.082 (0.105)
Ever diagnosed with arthritis -0.165 (0.056)**
Ever diagnosed with Alzheimer's disease 0.208 (0.090)*
Ever diagnosed with dementia -0.180 (0.082)*
Ever diagnosed with back problems -0.356 (0.053)***
Global test if model violates PH assumption P = 0.404𝜒2(128 𝑑𝑓) = 131.0; P < 0.001𝜒2(150 𝑑𝑓) = 203.0; 
Cox-Snell R2 0.231 0.286
Harrel’s c statistic 0.816 (0.004) 0.850 (0.004)
Gönen & Heller’s K statistic 0.857 (0.003) 0.862 (0.003)
Notes:  P  0.1; * P  0.05: ** P  0.01; *** P  0.001. Robust standard errors were clustered at the household level.† ≤ ≤ ≤ ≤
1 The complete results are reported in Supplementary Table 3.
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1 3.3 Results from the prognostic index analysis

2 With the Cox coefficients, we computed PIs for three sets of regressors: (i) the polygenic scores 

3 ( ), (ii) the genetic PCs ( ), and (iii) the covariates ( ). We first evaluated the 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝑃𝐶 𝑃𝐼𝑐𝑜𝑣𝑎𝑟

4 relative influence of the three PIs within each model using the Royston & Sauerbrei  𝑅2
𝐷

5 (Supplementary Table 3). Across the four models, the proportion of variation explained on 

6 the log hazard scale by the  was between 0.03 and 0.041. The  of that index was stable 𝑃𝐼𝑃𝐺𝑆 𝑅2
𝐷

7 across the four models, which suggested that the polygenic scores explained a non-negligible 

8 proportion of variation even when we adjusted for socioeconomic variables, observable health 

9 risks, and other potential confounders.

10 Next, we used the PIs based on models (3) and (4) to stratify Kaplan-Meier survival functions, 

11 first using only  (Table 4 and Figure 1).  based on model (3) could distinguish a 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝑃𝐺𝑆

12 3.5-year difference in median lifespan in comparison (a) between the top decile (N = 927) and 

13 the lower nine deciles (N = 8,345) and a 4.4-year difference in comparison (b) between the top 

14 decile and the bottom decile (N = 928). As expected, the  based on model (4) could 𝑃𝐼𝑃𝐺𝑆

15 distinguish somewhat less: 2.9 and 4.1 years in comparisons (a) and (b), respectively. The P 

16 values of the log-rank tests between the groups were all less than 7.91×10–13. Thus, the  𝑃𝐼𝑃𝐺𝑆

17 could distinguish a greater difference in median lifespan than any of the scores could on their 

18 own in the univariate analysis, even when based on the most extensively adjusted model (4).

19 Thereafter, we stratified survival using the three PIs simultaneously (Table 5 and Figure 2). 

20 Here, we performed only comparison (a) (see Methods). With respect to the PIs based on 

21 model (3), respondents’ median lifespan was 3.1 years shorter in the top decile of  (N = 𝑃𝐼𝑃𝐺𝑆

22 736) than in the lower nine deciles of all three PIs (N = 6,674) and was similar to the shorter 

23 median lifespan in the top decile of   (3.9 y; N = 723). The few individuals who were 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

24 in the top decile of both the  and the  (N = 97) had an 8.1-year shorter median 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

25 lifespan. The log-rank test was highly significant (P = 2.78×10–75).

26 As could be expected, in the analogous analysis based on model (4), the capacity of the  𝑃𝐼𝑃𝐺𝑆

27 was somewhat reduced. Compared to the lower nine deciles of all three PIs (N = 6,605), the 

28 median lifespan was 2.4 years shorter in the top decile of the  (N = 694), 10.7 years shorter 𝑃𝐼𝑃𝐺𝑆

29 for the  (N = 696), and an astonishing 14.8 years shorter for respondents in the top 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

30 decile of both the  and the  (N = 110). Respondents in the top decile of all three 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

31 PIs had an 18.5-year shorter median lifespan, but we caution that this estimate is very noisy 
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1 given the low number of observations in this cell (N = 11). Again, the log-rank test was highly 

2 significant (P = 3.59×10–271). Overall, adding health variables and medical conditions 

3 drastically increased the discriminatory capacity of the , while it only slightly reduced 𝑃𝐼𝐶𝑂𝑉𝐴𝑅

4 the capacity of the , suggesting that the polygenic scores were able to add information 𝑃𝐼𝑃𝐺𝑆

5 above and beyond the inclusion of these intermediate variables.

6 3.3.1 Benchmark to conventional actuarial risk factors

7 We benchmarked how well the  could distinguish median lifespan in comparison to 𝑃𝐼𝑃𝐺𝑆

8 conventional actuarial risk factors (Supplementary Table 4 and Supplementary Figure 6). 

9 In that capacity, the  was comparable to sex (2.8 and 3.2 y in our study sample and the 𝑃𝐼𝑃𝐺𝑆

10 full sample of European HRS respondents, respectively), former smoker (2.5 and 3.4 y), and 

11 ever diagnosed with diabetes or high blood sugar (1.7 and 3.6 y). The  distinguished a 𝑃𝐼𝑃𝐺𝑆

12 greater difference than several conventional risk factors, including the top decile of years of 

13 schooling (corresponding to more than 16 years of schooling; 1.3 and 2 y), ever diagnosed with 

14 cancer (or malignant tumor except skin cancer; 1.2 and 1.7 y), and ever diagnosed with heart 

15 conditions (such as heart attack, coronary heart disease, angina, congestive heart failure, or 

16 other heart problems; 0.8 and 0.7 y). The  distinguished a smaller difference than the top 𝑃𝐼𝑃𝐺𝑆

17 decile of BMI (corresponding to BMI > 38.6; 4.4 and 5.3 y), current smoker (9.9 and 11.4 y), 

18 and ever diagnosed with chronic lung disease (except asthma, such as chronic bronchitis or 

19 emphysema; 4.3 and 4.3 y). Notably, these comparisons show that the ability of polygenic 

20 scores to classify individuals into groups of different mortality risks is similar to or better than 

21 that of several conventional actuarial risk factors when the polygenic scores are combined into 

22 our preferred genetic predictor, with the major difference that the prognostic index can be 

23 evaluated at a young age.
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Table 4. Kaplan-Meier survival estimates stratified by a prognostic index (PI)
Panel A. Top versus lower nine deciles (Cox model 3 coefficients)

Respondents in PIPGS N Events Median (years) 95% lower CL 95% upper CL Log-rank P 
(H0: no difference)

Lower nine deciles 8345 2025 88.5 88.1 88.8

Top decile 927 307 85.0 84.0 86.2
0.000

 
Panel B. Top versus bottom decile (Cox model 3 coefficients)

Respondents in PIPGS N Events Median (years) 95% lower CL 95% upper CL Log-rank P 
(H0: no difference)

Bottom decile 928 213 89.4 88.4 90.7

Top decile 927 307 85.0 84.0 86.2
0.000

 
Panel C. Top versus lower nine deciles (Cox model 4 coefficients)

Respondents in PIPGS N Events Median (years) 95% lower CL 95% upper CL Log-rank P 
(H0: no difference)

Lower nine deciles 8345 2039 88.3 88.0 88.7

Top decile 927 293 85.4 84.8 86.5
0.000

 
Panel D. Top versus bottom decile (Cox model 4 coefficients)

Respondents in PIPGS N Events Median (years) 95% lower CL 95% upper CL Log-rank P 
(H0: no difference)

Bottom decile 928 202 89.5 88.5 90.8

Top decile 927 293 85.4 84.8 86.5
0.000
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Table 5. Kaplan-Meier survival estimates stratified by the prognostic indices (PIs)
Panel A. Top versus lower nine deciles of the PIs (computed with model 3 coefficients)

Respondents in 
PIPGS

Respondents in 
PIPC

Respondents in 
PICOVAR

N Events Median 
(years)

95% 
lower 
CL

95% 
upper 
CL

Log-rank P 
(H0: no 

difference)

Lower nine deciles Lower nine deciles Lower nine deciles 6764 1571 88.9 88.6 89.3

Top decile Lower nine deciles Lower nine deciles 736 236 85.8 84.6 86.7

Top decile Top decile Lower nine deciles 82 29 84.2 81.2 89.5

Top decile Top decile Top decile 10 3 80.8 59.4 --

Lower nine deciles Top decile Lower nine deciles 740 204 88.0 86.7 88.6

Lower nine deciles Top decile Top decile 94 28 79.0 77.7 85.2

Lower nine deciles Lower nine deciles Top decile 723 211 85.0 83.2 86.2

Top decile Lower nine deciles Top decile 97 39 80.8 74.0 82.4

0.000

 
Panel B. Top versus lower nine deciles of the PIs (computed with model 4 coefficients)

Respondents in 
PIPGS

Respondents in 
PIPC

Respondents in 
PICOVAR

N Events Median 
(years)

95% 
lower 
CL

95% 
upper 
CL

Log-rank P 
(H0: no 

difference)

Lower nine deciles Lower nine deciles Lower nine deciles 6605 1419 89.2 88.8 89.6

Top decile Lower nine deciles Lower nine deciles 694 195 86.8 85.4 87.8

Top decile Top decile Lower nine deciles 86 28 85.9 83.9 89.5

Top decile Top decile Top decile 11 6 70.7 63.6 --

Lower nine deciles Top decile Lower nine deciles 722 170 88.8 87.6 89.6

Lower nine deciles Top decile Top decile 83 45 76.3 75.8 78.7

Lower nine deciles Lower nine deciles Top decile 696 309 78.5 77.3 79.8

Top decile Lower nine deciles Top decile 110 51 74.4 72.7 76.4

0.000
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Figure 1. Kaplan-Meier survival curves stratified by the prognostic index of the polygenic 
scores. Using the prognostic index of the polygenic scores ( ) computed with the 𝑃𝐼𝑃𝐺𝑆
coefficient estimates of Cox models (3) and (4), we performed two comparisons of stratified 
survival functions. The first comparison (panels a and c) was stratified by the top versus lower 
nine deciles of the PI distribution, while the second comparison (panels b and d) was stratified 
by the top versus bottom decile. The dashed lines display the median survival in the two strata. 
The log-rank P value indicates whether the survival functions (not the median) of the two strata 
are different.
a

b
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c

d
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Figure 2 Kaplan-Meier survival curves stratified by the three prognostic indices. Using 
the prognostic indices of the polygenic scores ( ), the genetic PCs ( ), and the 𝑃𝐼𝑃𝐺𝑆 𝑃𝐼𝑃𝐶
covariates ( ), computed with the coefficient estimates of Cox models 3 (panel a) and 𝑃𝐼𝐶𝑂𝑉𝐴𝑅
4 (panel b), we compared the simultaneously stratified survival functions by the top versus 
lower nine deciles of the distribution of the three PIs. The dashed lines display the median 
survival in the strata. The log-rank P value indicates whether the survival functions (not the 
median) of the strata are different. Three strata are not displayed in the figure but instead in 
Table 5.
a
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1 3.3.2 Results of the cross-validation

2 We performed a cross-validation of model (3) to examine whether evaluating the prognostic 

3 indices in the full study sample could have introduced overfitting. Across 1,000 iterations, the 

4 median Z statistic of the test of the calibration slope was only marginally significant (P = 

5 0.045). Similarly, the median  of the  was 0.023 (instead of 0.039). The difference in 𝑅2
𝐷 𝑃𝐼𝑃𝐺𝑆

6 median lifespan for comparisons (a) and (b) attenuated from 3.5 to 2.7 years and from 4.4 to 

7 3.4 years, respectively. These attenuated differences in median survival fell within the 

8 confidence intervals of the main estimates and remained strongly significant. Thus, the cross-

9 validation suggested that the ability to distinguish lifespan was somewhat overestimated when 

10 evaluated in the full sample, but reassuringly, our conclusions remain supported by the cross-

11 validation.

12 3.3.3 Results from the analysis of subjective life expectancy, self-rated health, and 
13 economic variables

14 We investigated whether the polygenic scores were associated with subjective life expectancy 

15 and self-rated health. The results are reported in Supplementary Table 5. Our genetic 

16 predictor of interest was the  based on our preferred model (3), which had been 𝑃𝐼𝑃𝐺𝑆

17 standardized. For subjective life expectancy, the OLS and Tobit estimates were virtually 

18 identical, so we discuss only the Tobit results. The coefficient of the  was estimated to be 𝑃𝐼𝑃𝐺𝑆

19 –0.052 (SE = 0.008; P = 8.03×10–11). As expected, greater genetic risk was associated with 

20 reporting an expectation of a shorter lifespan. However, the effect was small compared to, say, 

21 being female (–2.047; SE = 0.523), living in the western part of the United States (0.143; SE = 

22 0.030), or being disabled (–0.298; SE = 0.101).

23 Next, we performed an ordinal logit regression of self-rated health (a higher value represents 

24 poorer health). In alignment with subjective life expectancy, we found that greater genetic risk 

25 was associated with reporting poorer health ( = 0.195; SE = 0.019; P = 1.03×10–24). Thus, 𝛽 

26 assuming a proportional influence across the response categories, the odds ratio for being in a 

27 higher category was 1.215 per standard deviation of the . The effect was similar to that 𝑃𝐼𝑃𝐺𝑆

28 of being female (OR = 1.213) but much smaller than that of being disabled (OR = 8.315). 

29 Overall, these results indicate that genetic risks had indeed manifested and been observed via 

30 the respondent’s health.
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1 Finally, we investigated whether the polygenic scores were associated with 11 economic 

2 variables. The results are reported in Supplementary Table 6. Our genetic predictor of 

3 interest, the  based on model (3), was significantly associated in the expected direction 𝑃𝐼𝑃𝐺𝑆

4 with five of the variables (P < 0.05) and Bonferroni-significant with three of the variables (P 

5 < 0.0045). That is, a standard deviation difference in the  was associated with a higher 𝑃𝐼𝑃𝐺𝑆

6 probability of having or expecting a work-limiting health problem (OR = 1.202; P = 1.08×10–

7 13 and = 1.079; P = 8.66×10–4, respectively), less retirement satisfactiond (OR = 1.132; P = 𝛽 

8 1.08×10–6), fewer waves of long-term care insurance coverage ( = –0.007; P = 0.0068), and 𝛽 

9 a shorter financial planning horizone (OR = 0.953; P = 0.016). However, the estimated effect 

10 sizes were relatively small, which could be expected based on the currently limited signal in 

11 the polygenic scores. For example, per standard deviation, the  was associated with 𝑃𝐼𝑃𝐺𝑆

12 reporting a 1-percentage-point greater probability of having a work-limiting health problem in 

13 the next 10 years and with 2.2 months shorter long-term care insurance coverage. Nonetheless, 

14 the effects were comparable with those of, say, years of schooling, which was also associated 

15 with these five outcomes. Across the five outcomes, the difference compared to years of 

16 schooling was the greatest for long-term care insurance, where a standard deviation increase in 

17 years of schooling was associated with 10 months longer coverage.

18 We could not detect that greater genetic risk was associated with life insurance ( = 0.003; SE 𝛽 

19 = 0.004; P = 0.373). The estimated association corresponds to approximately 1 month longer 

20 life insurance coverage. In our study sample, we had only 14.5% statistical power to detect an 

21 effect of that size, which suggests that the association should be considered small. In contrast, 

22 we had 77.2% power to detect the aforementioned association with long-term care insurance, 

23 even though the difference in magnitude was minor. Nevertheless, our results show that 

24 polygenic scores for common diseases and mortality risks can already capture differences in 

25 economic outcomes, including insurance coverage.

26 4 Discussion

27 We investigated how well a broad set of polygenic scores for common diseases and mortality 

28 risks could distinguish differences in lifespan, and we benchmarked their performance in this 

29 regard to conventional actuarial risk factors. Our main finding is that polygenic scores have a 

d Retirement satisfaction was coded as "1. very; 2. moderately; or 3. not at all".
e Financial planning horizon was coded as "1. next few months; 2. next year; 3. next few years; 4. next 5-10 
years; or 5. longer than 10 years".

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 2, 2020. ; https://doi.org/10.1101/2020.03.30.20047290doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.30.20047290


34

1 joint capacity to classify people into groups of different mortality risk that is non-negligible, 

2 and this capacity is comparable to that of some conventional risk factors, including sex, former 

3 smoking, and years of schooling. Moreover, we found that the classification was even stronger 

4 than that of some of the diagnosed medical conditions that have been ascertained in the HRS, 

5 including ever diagnosed with cancer. Because we performed this comparison and adjusted 

6 more extensively for observable confounders, our results extend the literature on this topic. 

7 Importantly, the polygenic scores could explain a nontrivial part of the variation even in our 

8 most extensively adjusted model. We emphasize that our results represent only a lower bound 

9 of the predictive accuracy that polygenic scores will reach once larger GWAS become available 

10 (Daetwyler, Villanueva, and Woolliams 2008; de Vlaming et al. 2017).

11 Given these results, it is reasonable to expect that commercial interest in offering genetic tests 

12 for disease, mortality risks, and longevity to consumers is bound to increase further. Similarly, 

13 our results imply that polygenic scores already contain information that could be valuable to 

14 the insurance industry (e.g., in underwriting) if insurers were able to obtain genetic data from 

15 applicants and customers. Depending on whether genetic health information will remain legally 

16 or voluntarily exempt from underwriting, adverse selection will be more or less likely to occur 

17 as more people acquire knowledge of their genetic risks.

18 We found a significant but small negative association between genetic liability and long-term 

19 care insurance. This association may become stronger as the signal in polygenic scores 

20 increases. A conceivable mechanism for the association could be that elderly individuals who 

21 have observed a decline in their health (partly due to their unobserved genetic variants) have 

22 chosen not to purchase this insurance or have chosen to let it lapse, as they may expect not to 

23 reach an age that will require long-term care. The probability of requiring assistance with 

24 activities of daily living becomes more substantial after age 85 (Dionne 2013), and we found 

25 that individuals in the top decile of genetic risk reached just about that age, at the median. The 

26 associations of our preferred genetic predictor with subjective life expectancy and self-rated 

27 health support the idea that the respondents had indeed partly observed unobserved genetic 

28 risks. Thus, our results may imply that long-term care insurance is subject to weak adverse 

29 selection. However, an alternative explanation could be the high premium markups reported 

30 for this particular insurance type (Dionne 2013; Glenzer and Achou 2019), which could have 

31 rendered the product unattractive for people who consider themselves to be at risk of dying 

32 early or too expensive for people with work-limiting health problems.
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1 On the contrary, we did not find that our preferred genetic predictor was associated with life 

2 insurance coverage, though this association may also become stronger in the near future. 

3 However, a null finding aligns with previous studies that have found little evidence of adverse 

4 selection in that market (Sijbrands, Tornij, and Homsma 2009; Harris and Yelowitz 2014; 

5 McCarthy and Mitchell 2010). Additionally, life insurance is typically purchased at middle 

6 age, before many heritable medical conditions have had time to manifest (Nabholz and 

7 Rechfeld 2017). Thus, the difference between life insurance and long-term care insurance could 

8 be explained by the latter more often being purchased at an older age (Cornell et al. 2016). 

9 Nonetheless, the genetic data we studied here were most likely unobserved by the HRS 

10 participants since most waves of data were collected prior to the advent of consumer genetic 

11 testing for disease. In addition, most of the polygenic scores we generated are not yet part of 

12 genetic health reports offered to consumers. Thus, we should perhaps not expect that extensive 

13 self-selection has already occurred.

14 Next, our results imply that consumers will at some point have knowledge of genetic risks that 

15 they may be incentivized to disclose when purchasing insurance products tied to their survival. 

16 This would apply, e.g., in the market for “enhanced annuities” (that is, life annuities 

17 underwritten not only with demographic information but also with medical information). 

18 Applicants at greater risk could potentially benefit from lower premiums (or higher benefits) if 

19 their genetics risks were underwritten (Veyssiere et al. 2017; Steinorth 2012). It has been 

20 reported that standard-rate life annuities may be actuarially unfair in the United States because 

21 premiums are determined using low-mortality assumptions to counter potential adverse 

22 selection (as it is assumed that this product is bought primarily by the healthiest and wealthiest) 

23 (Brown and Scahill 2010). In such a market, the possibility of revealing individual risks could 

24 benefit people with a reduced life expectancy who consider the standard rate expensive. At the 

25 same time, some experts argue that enhanced annuities could crowd out the standard rate 

26 product, and genetic testing may potentially exacerbate that development (Steinorth 2012). 

27 Overall, we consider further investigation of consumer behavior under conditions of private 

28 knowledge of genetic risks an interesting avenue of future research.

29 We think that as the accuracy of genetic predictors matures and more consumers acquire private 

30 knowledge of their genetic risks, genetic health information may eventually have to be treated 

31 just like any other kind of medical information that can currently be requested by insurance 

32 providers (Strohmenger and Wambach 2000). There are many scholars who argue that 

33 providers are already entrusted with handling very private and sensitive information, such as 
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1 medical journals and tests, and that there should be no reason to expect them to handle genetic 

2 information with any less prudence (Rothstein 2004). However, some of them consider it 

3 unethical to charge more for genetic factors that are outside of the control of the carrier, though 

4 a counterargument is that many conventional risks are also outside the control of the affected. 

5 Additionally, there is a real risk that insurance coverage may be denied to those who receive a 

6 burdening outcome in the “genetic lottery”, which results in greater need for solidarity (Prince 

7 2019). Importantly, it could be detrimental to public health if people avoid genetic testing for 

8 medical or research purposes out of fear of discrimination (Keogh et al. 2017).

9 Thus, strong arguments can be made that actuarial discrimination of any kind based on genetic 

10 factors should be restricted (Rothstein 2018; Newson et al. 2018). Additionally, we emphasize 

11 that genetic risk factors influencing common diseases are not deterministic, and some act via 

12 non-biological pathways, such as lifestyle choices, that are yet undetermined or that may be 

13 modifiable (Khera et al. 2019). These complications question the ethicality of classifying 

14 mortality risks based on genetic test results. Overall, we encourage policymakers, the insurance 

15 industry, and other stakeholders to monitor this development closely and to have a scientifically 

16 informed discussion about the potential consequences of determining premiums or rejections 

17 based on genetic information on the one hand and adverse selection on the other.

18 Our results should be considered in light of a few limitations. First, it is likely that mortality 

19 selection has led to an underestimation of the current performance of polygenic scores. This 

20 would have foremost affected the scores for conditions that manifest at younger age. For 

21 example, in contrast to our expectations, we did not find an association with the score for 

22 coronary artery disease, which is a major cause of NCDs (Lloyd-Jones et al. 2006). Another 

23 important limitation, which is endemic to the GWAS literature (Clyde 2019; Mills and Rahal 

24 2019), is that we did not study individuals of non-European ancestry. Thus, we do not know 

25 whether our findings generalize to other ancestries (Martin et al. 2019, 2017). Unfortunately, 

26 it will take many years before we can thoroughly answer that question. Lastly, we acknowledge 

27 that the medical conditions ascertained in the HRS are based on self-reports and lack 

28 specificity, and it could be that their true impact on survival is understated in our analyses. 

29 Future studies with access to richer medical data will have to determine more precisely how 

30 much information polygenic scores can add above and beyond various biomarkers for disease 

31 and already acquired medical conditions.

32 Our results bear on the ongoing debate on whether and how to regulate the commercialization 

33 of genetic health information (Allyse et al. 2018; Van Hellemondt, Hendriks, and Breuning 
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1 2011; Howard and Borry 2012; Kricka et al. 2011; Moscarello et al. 2019; Badalato, 

2 Kalokairinou, and Borry 2017). Many companies sell genetic tests with limited guidance and 

3 lengthy disclaimers, leaving their customers puzzled or confused (Nelson, Bowen, and 

4 Fullerton 2019; Wang et al. 2018). For example, it could be financially detrimental for the 

5 dependents of a life insurance policy if the policy holder voluntarily terminates their policy out 

6 of a false belief of low genetic risk. Therefore, we agree with others who call for more extensive 

7 consumer protection in this market (Schleit, Naylor, and Hisama 2019). Overall, more research 

8 is needed to determine how vulnerable types of consumers, for example, those with particularly 

9 high genetic risk or those with weak genetic literacy, react after exploring their DNA for health 

10 information. In particular, genetic tests with low accuracy are easy to misinterpret (Schleit, 

11 Naylor, and Hisama 2019). Thus, for now, we think that advertisement of disease and longevity 

12 predictions is ethically questionable at many levels and should be done only with great care, 

13 though the appropriateness of such services of course depends on how they are marketed and 

14 how the results are presented. However, at this moment, many genetic testing services hide 

15 behind extensive disclaimers to void them of responsibility, which could be considered a 

16 questionable practice (Schleit, Naylor, and Hisama 2019).

17 Therefore, as a policy recommendation, we encourage regulatory authorities to consider 

18 prognostic genetic testing for disease and longevity to be a form of genetic counseling. As such, 

19 we would consider it reasonable to limit the practice to licensed or accredited institutions, be 

20 they public or private. However, standards for genetic counseling are still maturing globally 

21 (Ormond et al. 2018; Abacan et al. 2019), and until regulatory measures are taken and an 

22 industry standard has been established, it is likely that appropriate consumer protection will lag 

23 behind technological developments. At the same time, since many people appear eager to 

24 purchase genetic health information, we consider it undesirable to completely restrict an 

25 individual persons’ right to explore their DNA, with or without the assistance of a certified 

26 counselor. Additionally, the borderless nature of genetic testing, where consumers can send 

27 their genetic data to services located in different jurisdictions, makes it practically impossible 

28 to effectively regulate this market at only the national level. Thus, appropriate regulation of 

29 consumer genetics will require international agreements to be effective.

30 In conclusion, the estimates presented here clearly show the relevance of polygenic scores in 

31 the context of insurance. However, much research is required before it can be determined which 

32 polygenic scores may potentially meet the criteria for evidence-based underwriting and before 

33 accurate and fair premiums could be developed. Ultimately, policymakers and regulatory 
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1 agencies will have to strike a difficult balance between keeping private insurance fair and viable 

2 on the one hand while ensuring satisfactory consumer protection against genetic discrimination 

3 and privacy violations on the other. In the meantime, depending on the jurisdiction, we see a 

4 tangible risk of both genetic discrimination and informational advantage on the consumer side, 

5 which could lead to adverse selection.
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