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Abstract 

The newly emergent human virus SARS-CoV-2 is resulting in high fatality rates and incapacitated 

health systems. Preventing further transmission is a priority. We analysed key parameters of epidemic 

spread to estimate the contribution of different transmission routes and determine requirements for 

case isolation and contact-tracing needed to stop the epidemic. We conclude that viral spread is too 

fast to be contained by manual contact tracing, but could be controlled if this process was faster, more 

efficient and happened at scale. A contact-tracing App which builds a memory of proximity contacts 

and immediately notifies contacts of positive cases can achieve epidemic control if used by enough 

people. By targeting recommendations to only those at risk, epidemics could be contained without 

need for mass quarantines (‘lock-downs’) that are harmful to society.  We discuss the ethical 

requirements for an intervention of this kind.  

 

 

 

Introduction 

COVID-19 is a rapidly spreading infectious disease caused by the novel coronavirus SARS-COV-2, a 

betacoronavirus, which has now established a global pandemic. Around half of infected individuals 

become reported cases, and with intensive care support, the case fatality rate is approximately 2% (1). 

More concerning is that the proportion of cases requiring intensive care support is 5%, and patient 

management is complicated by requirements to use personal protective equipment and engage in 

complex decontamination procedures (2). Fatality rates are likely to be higher in populations older 

than in Hubei province (such as in Europe), and in low-income settings where critical care facilities 

are lacking (3).  In ref. (4) the public health cost of failing to achieve sustained epidemic suppression 

was estimated as 250,000 lives lost in the next few months in Great Britain, and 1.1-1.2 million in the 

USA, even with the strongest possible mitigation action to ‘flatten the curve’. Even modest outbreaks 

will see fatality rates climb as hospital capacity is overwhelmed, and the indirect effects caused by 

compromised health care services have yet to be quantified.  
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No treatment is currently available, and a vaccine will not be available for several months (as of 

March 2020) at the earliest. The only approaches that we currently have available to stop the epidemic 

are those of classical epidemic control, such as case isolation, contact tracing and quarantine, physical 

distancing and hygiene measures.  

 

The basic reproduction number R0 is the typical number of infections caused by an individual in the 

absence of widespread immunity. Once immunity becomes widespread, the effective reproduction 

number R will become lower than R0 and once R is less than 1, the population has herd immunity and 

the epidemic declines. Immunity can only safely be obtained by vaccination. Here we use the term 

“sustained epidemic suppression” to mean a reduction of the reproduction number R to less than 1 by 

changing non-immunological conditions of the population that affect transmission, such as social 

contact patterns. 

 

The biological details of transmission of betacoronaviruses are known in general terms: these viruses 

can pass from one individual to another through exhaled droplets (5), aerosol (6), contamination of 

surfaces (7), and possibly through fecal-oral contamination (8). Here we compare different 

transmission routes that are more closely aligned to their implications for prevention. Specifically, we 

propose four categories: 

I. Symptomatic transmission: direct transmission from a symptomatic individual, through a 

contact that can be readily recalled by the recipient. 

II. Pre-symptomatic transmission: direct transmission from an individual that occurs before the 

source individual experiences noticeable symptoms. (Note that this definition may be context 

specific, for example based on whether it is the source or the recipient who is asked whether 

the symptoms were noticeable.) 

III. Asymptomatic transmission: direct transmission from individuals who never experience 

noticeable symptoms. This can only be established by follow-up, as single time-point 

observation cannot fully distinguish asymptomatic from pre-symptomatic individuals. 
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IV. Environmental transmission: transmission via contamination, and specifically in a way that 

would not typically be attributable to contact with the source in a contact survey (i.e., this 

does not include transmission pairs who were in extended close contact, but for whom in 

reality the infectious dose passed via the environment instead of more directly). These could 

be identified in an analysis of spatial movements. 

We acknowledge that boundaries between these categories may be blurred, but defined broadly  these 

categories have different implications for prevention, responding differently to classical measures of 

case isolation and quarantining contacts (9) (10) (and for a specific application to COVID-19 see 

below (11)).   

 

Evidence exists for each of these routes of transmission: symptomatic (12), pre-symptomatic (13); 

asymptomatic (14); and environmental (12). For prevention, the crucial information is the relative 

frequency of different routes of transmission so as to allocate finite resources between different 

intervention strategies.  

 

Li et al. (12) presented self-reported data on exposure for the first 425 cases in Wuhan; some of these 

recorded visits to the Huanan Seafood Wholesale Market. The generalizability of transmission in that 

setting to other settings is highly uncertain, as this large-scale event seeded the epidemic in the 

absence of any knowledge about the disease. After closure of the Huanan Seafood Wholesale Market 

on January 1, 2020, of 240 cases with no exposure to any wet market, 200 individuals (83%) reported 

no exposure to an individual with respiratory symptoms. Inaccurate recall may explain some 

responses, including failing to notice symptoms were exceptional at a time before awareness of the 

disease began, but it is unlikely to be as much as 83% of them, implying that many individuals were 

infected by non-symptomatic individuals.  

 

The situation in Singapore at first glance appears different, since unlike in Wuhan, many individuals 

were linked to an identified symptomatic source. However, the main difference is that the linkage was 

retrospective, such that linkage could be established even if transmission occurred before a case was 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 31, 2020. ; https://doi.org/10.1101/2020.03.08.20032946doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.08.20032946


 

symptomatic. As of March 5, 2020, there were 117 cases, of which 25 were imported. By devoting 

considerable resources, including police investigation, 75 of the 92 cases of local transmission were 

traced back to their presumed exposure, either to a known case or to a location linked to spread (15). 

Linking cases via a location generally includes the possibility of environmentally mediated 

transmission. Therefore, the large fraction of traceable transmission in Singapore does not contradict 

the large fraction without symptomatic exposure in Wuhan. However, it does suggest that 

transmission from asymptomatic, rather than pre-symptomatic, individuals is not a major driver of 

spread. Although serological surveys are currently lacking, other lines of evidence suggest that the 

scenario of many asymptomatic infections for each symptomatic one is unlikely. Testing 1,286 close 

contacts of confirmed cases found that, among 98 individuals testing positive, only 20% did not have 

symptoms at first clinical assessment (16). Among 634 individuals testing positive on board the 

Diamond Princess cruise ship, the proportion of individuals without symptoms was found to be 52%; 

the proportion who were asymptomatic (rather than pre-symptomatic) was estimated as 18% (17). 

Testing of passengers on board six repatriation flights from Wuhan suggest that 40-50% of infections 

were not identified as cases (18) (4). Mild cases have been found to have viral loads 60-fold less than 

severe cases (19) and it is likely that the viral loads of asymptomatic individuals are lower still, with 

possible implications for infectiousness and diagnosis.  

 

The most accurate and robust quantification of the relative frequency of routes of transmission would 

be a well-designed prospective cohort study with detailed journal and phylogenetic investigations. 

However, the current global emergency requires timely estimates using imperfect data sources. We 

performed a detailed analysis of the timing of events in defined transmission pairs, derived the 

generation time distribution, and attributed a probability for each pair that transmission was pre-

symptomatic. We also fit a mathematical model of infectiousness through the four routes discussed 

above, over the course of infection. This allowed us to calculate R0, estimate the proportion of 

transmission from different routes, and make predictions about whether contact tracing and isolation 

of known cases is enough to prevent spread of the epidemic. 
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Estimating SARS-CoV-2 transmission parameters 

We used the exponential growth rate of the epidemic, r, from the early stages of the epidemic in 

China, such that the effect of control measures discussed later will be relative to the early stages of an 

outbreak, exemplified by baseline contact patterns and environmental conditions in Hubei during that 

period. We note that this assumption is implicit in many estimates of R0. The epidemic doubling time 

T2 is equal to loge(2) / r. We used the value r = 0.14 per day (20), corresponding to a doubling time of 

5.0 days. 

 

The incubation period is defined as the time between infection and onset of symptoms. It is estimated 

as the time between exposure and report of noticeable symptoms. We used the incubation period 

distribution calculated by (21). The distribution is lognormal with mean 5.5 days, median 5.2 days and 

standard deviation 2.1 days, and is included with our results in Fig. 1.   

 

The generation time is defined for source-recipient transmission pairs as the time between the 

infection of the source and the infection of the recipient. Because time of infection is generally not 

known, the generation time is often approximated by the serial interval, which is defined as the time 

between the onset of symptoms of the source and the onset of symptoms of the recipient. We did not 

take that approach here; instead, we directly estimated the generation time distribution from 40 

source-recipient pairs. These pairs were manually selected according to high confidence of direct 

transmission inferred from publicly available sources at the time of writing (March, 2020), and with 

known time of onset of symptoms for both source and recipient. We combined dates of symptom 

onset with intervals of exposure for both source and recipient (when available) and the above 

distribution of incubation times and from these inferred the distribution of generation times. The 

distribution is best described by a Weibull distribution (AIC=148.4, versus 149.9 for gamma and 

152.3 for lognormal distribution) with mean and median equal to 5.0 days and standard deviation of 

1.9 days, shown in the left panel of Fig. 1. We also show the results of sensitivity analysis to different 
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functional forms, and compare to two previously published serial interval distributions in refs (22) and 

(12). Uncertainty in the fit of the distribution is shown in Fig. S1. Our distribution is robust with 

respect to the choice of transmission events (Fig. S2). Correlation in the uncertainty between the 

inferred mean and standard deviation is shown in Fig. S3.  The distribution of serial intervals for these 

pairs is shown in Fig. S4. The countries from which the transmission pair data was obtained are shown 

in Fig. S5. 

 

For each of the 40 transmission pairs we estimated the posterior probability that transmission was pre-

symptomatic, i.e., occurred before the onset of symptoms in the infector. We used a Bayesian 

approach with an uninformative prior (transmission before or after symptoms equally likely). The 40 

probabilities inferred are shown in the right panel of Fig. 1; the mean probability is 37% (95% CI: 

27.5% - 45%), which can be interpreted as the fraction of pre-symptomatic transmission events out of 

pre-symptomatic plus symptomatic transmission events. This mean probability over all pairs 

approximates our prior, but the bimodal distribution of individual probabilities in Fig. 1 shows that 

these are typically far from the prior, i.e., the data are strongly informative. Uncertainty in the value of 

this fraction is shown in Fig. S6. The value does not depend significantly on the choice of prior (Figs 

S7 and S8), functional form of the distribution of generation times (Figs S9 and S10), or on the choice 

of transmission events (Fig. S11). 

 

 

A general mathematical model of SARS-CoV-2 infectiousness 

We use a mathematical formalism (23) that describes how infectiousness varies as a function of time 

since infection, 𝜏, for a representative cohort of infected individuals. This includes heterogeneity 

between individuals, and averages over those individuals who infect few others and those who infect 

many. This average defines the function 𝛽(𝜏). Infectiousness may change with 𝜏 due to both changing 

disease biology (notably viral shedding) and changing contact with others. The area under the 𝛽 curve 

is the reproduction number R0.    
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We decompose 𝛽(𝜏) into four contributions that reflect our categorization above, namely 

asymptomatic transmission, pre-symptomatic transmission, symptomatic transmission, and 

environmental transmission. The area under the curve of one of these contributions gives the mean 

total number of transmissions over one full infection, via that route - asymptomatic, pre-symptomatic, 

symptomatic or environmental - which we define to be RA, RP, RS and RE respectively. The sum of 

these is R0.  

 

The mathematical form for 𝛽(𝜏) is:  

 

 

𝛽s(𝜏) is the infectiousness of an individual currently either symptomatic or pre-symptomatic, at age-

of-infection 𝜏. Other parameters in this expression, and those feeding into it indirectly, are listed in 

Table 1. A detailed discussion of this expression including its assumptions is found in the 

supplementary materials. The priors chosen for parameters not directly calculated from data are 

shown in Supplementary Fig. S12. The infectiousness model result using central values of all 

parameters is shown in Fig. 2.  

 

By drawing input parameter sets from the uncertainties shown in Table 1, we quantified our 

uncertainty in R0 and its four contributions. The resulting values are shown in Table 2 and their 

underlying distributions are shown in Fig. S13. Two-dimensional distributions showing correlations in 

uncertainty are shown in Fig. S14. 

 

The estimate of RP/(RP+RS) obtained by this method is 0.55 (0.37 - 0.72), which is larger than the 

estimate of 0.37 (0.28 - 0.45) from our analysis of the 40 transmission pairs but with overlapping 

uncertainty. 
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We define 𝜃 as the fraction of all transmissions that do not come from direct contact with a 

symptomatic individual: 1− 𝑅&	/𝑅0. This corresponds to the 𝜃 of (9) in the case where there is only 

pre-symptomatic and symptomatic transmission. From Table 2 this is 0.62 (0.50 - 0.92). The value of 

𝜃 observed during an exponentially growing epidemic will be distorted when the timing of the 

different contributions to transmission occur at different stages of the infection, due to over-

representation of recently infected individuals. This effect can be calculated through use of the 

renewal equation, as was recently done to calculate the distribution of time from onset of COVID-19 

symptoms to recovery or death (20) (see supplementary material). We calculated the 𝜃 that would be 

observed with the early exponential growth seen in China as 0.68 (0.56 - 0.92). The correction due to 

the epidemic dynamics is small compared to parameter uncertainties. 

 

We developed our mathematical model of infectiousness into a web application where users can test 

the effect of alternative parameter combinations (25). 

 

Modelling case isolation and contract tracing with quarantine 

We modelled the combined impact of two interventions: (i) isolation of symptomatic individuals, and 

(ii) tracing the contacts of symptomatic cases and quarantining them. These interventions aim to stop 

the spread of the virus by reducing the number of transmissions from both symptomatic individuals 

and from their contacts (who may not be symptomatic), while minimizing the impact on the larger 

population. In practice, neither intervention will be successful or possible for 100% of individuals. 

The success rate of these interventions determines the long-term evolution of the epidemic. If the 

success rates are high enough, the combination of isolation and contact tracing/quarantining could 

bring R below 1 and therefore effectively control the epidemic.  

 

An analytical mathematical framework for the combined impact of these two interventions on an 

epidemic was previously derived in (9). In the supplementary material, we solve these equations using 
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our infectiousness model above, i.e., quantifying how the SARS-CoV-2 epidemic is expected to be 

controlled or not by case isolation and the quarantining of traced contacts. Our results are shown in 

Fig. 3. The black line shows the threshold for epidemic control: combined success rates in the region 

to the upper right of the black line are sufficient to reduce R to less than one. The x axis is the success 

rate of case isolation, which can be thought of either as the fraction of symptomatic individuals 

isolated, assuming perfect prevention of transmission on isolation, or the degree to which 

infectiousness of symptomatic individuals is reduced assuming all of them are isolated. The y axis is 

the success rate of contact tracing; similarly, this can be thought of as the fraction of all contacts 

traced, assuming perfectly successful quarantine upon tracing, or the degree to which infectiousness 

of contacts is reduced assuming all of them are traced. These results for intervention effectiveness, 

and their dependence on all parameters in our combined analysis, can be explored through the same 

web interface as for our model of infectiousness (25).  

 

Delays in these interventions make them ineffective at controlling the epidemic (Fig. 3): traditional 

manual contact tracing procedures are not fast enough for SARS-CoV-2. A delay from confirming a 

case to finding their contacts is not, however, inevitable. Specifically, this delay can be avoided by 

using a mobile phone App. 

 

 

Epidemic control with instant digital contact tracing 

A mobile phone App can make contact tracing and notification instantaneous upon case confirmation. 

By keeping a temporary record of proximity events between individuals, it can immediately alert 

recent close contacts of diagnosed cases and prompt them to self-isolate.  

 

Apps with similar aims have been deployed in China. Public health policy was implemented using an 

App which was not compulsory but was required to move between quarters and into public spaces and 

public transport. The App allows a central database to collect data on user movement and coronavirus 
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diagnosis and displays a green, amber or red code to relax or enforce restrictions on movement. The 

database is reported to be analyzed by an artificial intelligence algorithm that issues the colour codes 

(26). The App is a plug-in for the WeChat and Alipay Apps and has been generally adopted.  

 

Mainland China outside of Hubei province received significantly more introductions from Wuhan 

than did anywhere else, following mass movements of people around Chinese New Year and the start 

of the Wuhan lockdown (27). Despite this, sustained epidemic suppression has been achieved in 

China: fewer than 150 new cases have been reported each day from March 2 to March 23, down from 

thousands each day at the height of the epidemic. South Korea has also achieved sustained epidemic 

suppression: 76 new cases on March 24, down from a peak of 909 on February 29, and is also using a 

mobile phone App for recommending quarantine. Both the Chinese and South Korean Apps have 

come under public scrutiny over issues of data protection and privacy.  

 

With our result in Fig. 3 implying the need for extremely rapid contact tracing, we set out to design a 

simple and widely acceptable algorithm from epidemiological first principles, using common 

smartphone functionality. The method is shown in Fig. 4. The core functionality is to replace a week’s 

work of manual contact tracing with instantaneous signals transmitted to and from a central server. 

Coronavirus diagnoses are communicated to the server, enabling recommendation of risk-stratified 

quarantine and physical distancing measures in those now known to be possible contacts, while 

preserving the anonymity of the infected individual. Tests can be requested by symptomatic 

individuals through the App. 

 

The simple algorithm can easily be refined to be more informative, for example quarantining areas if 

local epidemics become uncontrolled, quarantining whole households, or performing second- or third-

degree contact tracing if case numbers are rising, which would result in more people being 

preemptively quarantined. Algorithmic recommendations can also be manually overridden, where 

public health officials gather more specific evidence. The App can serve as the central hub of access 
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to all COVID-19 health services, information and instructions, and as a mechanism to request food or 

medicine deliveries during self-isolation. 

 

In the context of a mobile phone App, Fig. 3 paints an optimistic picture. There is no delay between 

case confirmation and notification of contacts, leaving the total delay for the contact quarantine 

process as that from an individual initiating symptoms to their confirmation as a case, plus the delay 

for notified contacts to enter quarantine. The delay between symptom development and case 

confirmation will decrease with faster testing protocols, and indeed could become instant if 

presumptive diagnosis of COVID-19 based on symptoms were accepted in high-prevalence areas. The 

delay between contacts being notified and entering quarantine should be minimal with high levels of 

public understanding, as should the delay for case isolation. The efficacy of contact tracing (the y axis 

of Fig.3) can be identified with the square of the proportion of the population using the App, 

multiplied by the probability of the App detecting infectious contacts, multiplied by the fractional 

reduction in infectiousness resulting from being notified as a contact.  

 

Ethical considerations 

Successful and appropriate use of the App relies on it commanding well-founded public trust and 

confidence. This applies to the use of the App itself and of the data gathered. There are strong, well-

established ethical arguments recognizing the importance of achieving health benefits and avoiding 

harm. These arguments are particularly strong in the context of an epidemic with the potential for loss 

of life on the scale possible with COVID-19. Requirements for the intervention to be ethical and 

capable of commanding the trust of the public are likely to comprise the following. i. Oversight by an 

inclusive and transparent advisory board, which includes members of the public. ii. The agreement 

and publication of ethical principles by which the intervention will be guided. iii. Guarantees of equity 

of access and treatment. iv. The use of a transparent and auditable algorithm. v. Integrating evaluation 

and research in the intervention to inform the effective management of future major outbreaks. vi. 

Careful oversight of and effective protections around the uses of data. vii. The sharing of knowledge 

with other countries, especially low- and middle-income countries. viii. Ensuring that the intervention 
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involves the minimum imposition possible and that decisions in policy and practice are guided by 

three moral values: equal moral respect, fairness, and the importance of reducing suffering (28). It is 

noteworthy that the algorithmic approach we propose avoids the need for coercive surveillance, since 

the system can have very large impacts and achieve sustained epidemic suppression, even with partial 

uptake. People should be democratically entitled to decide whether to adopt this platform.  The 

intention is not to impose the technology as a permanent change to society, but we believe it is under 

these pandemic circumstances it is necessary and justified to protect public health.  

 

Discussion 

In this study, we estimated key parameters of the SARS-CoV-2 epidemic, using an analytically 

solvable model of the exponential phase of spread and of the impact of interventions. Our estimate of 

R0 is lower than many previous published estimates, for example (12), (29), (30). These studies 

assumed SARS-like generation times; however, the emerging evidence for shorter generation times 

for COVID-19 implies a smaller R0. This means a smaller fraction of transmissions need to be 

blocked for sustained epidemic suppression (R < 1). However, it does not mean sustained epidemic 

suppression will be easier to achieve because each individual’s transmissions occur in a shorter 

window of time after their infection, and a greater fraction of them occurs before the warning sign of 

symptoms. Specifically, our approaches suggest that between a third and a half of transmissions occur 

from pre-symptomatic individuals. This is in line with estimates of 48% of transmission being pre-

symptomatic in Singapore and 62% in Tianjin, China (31), and 44% in transmission pairs from 

various countries (32). Our infectiousness model suggests that the total contribution to R0 from pre-

symptomatics is 0.9 (0.2 - 1.1), almost enough to sustain an epidemic on its own. For SARS, the 

corresponding estimate was almost zero (9), immediately telling us that different containment 

strategies will be needed for COVID-19. 

  

Transmission occurring rapidly and before symptoms, as we have found, implies that the epidemic is 

highly unlikely to be contained by solely isolating symptomatic individuals. Published models (9-11) 
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(33) suggest that in practice manual contact tracing can only improve on this to a limited extent: it is 

too slow, and cannot be scaled up once the epidemic grows beyond the early phase, due to limited 

personnel. Using mobile phones to measure infectious disease contact networks has been proposed 

previously (34-36). Considering our quantification of SARS-CoV-2 transmission, we suggest that this 

approach, with a mobile phone App implementing instantaneous contact tracing, could reduce 

transmission enough to achieve R < 1 and sustained epidemic suppression, stopping the virus from 

spreading further. We have developed a web interface to explore the uncertainty in our modelling 

assumptions (25). This will also serve as an ongoing resource as new data becomes available and as 

the epidemic evolves. 

 

We included environmentally mediated transmission and transmission from asymptomatic individuals 

in our general mathematical framework. However, the relative importance of these transmission 

routes remain speculative based on current data. Cleaning and decontamination are being deployed to 

varying levels in different settings, and improved estimates of their relative importance would help 

inform this as a priority. Asymptomatic infection has been widely reported for COVID-19, e.g., (14), 

unlike for SARS where this was very rare (37). We argue that the reports from Singapore imply that 

even if asymptomatic infections are common, onward transmission from this state is probably 

uncommon, since forensic reconstruction of the transmission networks has closed down most missing 

links. There is an important caveat to this: the Singapore outbreak to date is small and has not 

implicated children. There has been widespread speculation that children could be frequent 

asymptomatic carriers and potential sources of SARS-CoV-2 (38,39).  

 

We calibrated our estimate of the overall amount of transmission based on the epidemic growth rate 

observed in China not long after the epidemic started. Growth in Western European countries so far 

appears to be faster, implying either shorter intervals between individuals becoming infected and 

transmitting onwards, or a higher R0. We illustrate the latter effect in Figs S18 and S19. If this is an 

accurate picture of viral spread in Europe and not an artefact of early growth, epidemic control with 

only case isolation and quarantining of traced contacts appears implausible in this case, requiring 
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near-universal App usage and near-perfect compliance. The App should be one tool among many 

general preventative population measures such as physical distancing, enhanced hand and respiratory 

hygiene, and regular decontamination. 

 

An App-based intervention could be more powerful than our analysis here suggests, however. The 

renewal equation mathematical framework we use, while well adapted to account for realistic 

infectiousness dynamics, is not well adapted to account for benefits of recursion over the transmission 

network. Once they have been confirmed as cases, individuals identified by tracing can trigger further 

tracing, as can their contacts and so on. This effect was not modelled in our analysis here. If testing 

capacity is limited, individuals who are identified by tracing may be presumed confirmed upon onset 

of symptoms, since the prior probability of them being positive is higher than for the index case, 

accelerating the algorithm further without compromising specificity. With fast enough testing, even 

index cases diagnosed late in infection could be traced recursively, to identify recently infected 

individuals before they develop symptoms, and before they transmit. Improved sensitivity of testing in 

early infection could also speed up the algorithm and achieve rapid epidemic control.  

 

The economic and social impact caused by widespread lockdowns is severe. Individuals on low 

incomes may have limited capacity to remain at home, and support for people in quarantine requires 

resources. Businesses will lose confidence, causing negative feedback cycles in the economy. 

Psychological impacts may be lasting. Digital contact tracing could play a critical role in avoiding or 

leaving lockdown. We have quantified its expected success and laid out a series of requirements for 

its ethical implementation. The App we propose offers benefits for both society and individuals, 

reducing the number of cases and also enabling people to continue their lives in an informed, safe, and 

socially responsible way. It offers the potential to achieve important public benefits while maximising 

autonomy. Specific issues exist for groups within the population that may not be amenable to such an 

approach, and these could be rapidly refined in policy. Essential workers, such as health care workers, 

may need separate arrangements.  
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Further modelling is needed to compare the number of people disrupted under different scenarios 

consistent with sustained epidemic suppression. But a sustained pandemic is not inevitable, nor is 

sustained national lockdown. We recommend urgent exploration of means for intelligent physical 

distancing via digital contact tracing.  
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Table 1: Parameters of the infectiousness model 

Name Symbol Description Central 

value 

Uncertainty Source 

Parameters directly calculated from data 

Doubling time T2 The time taken for the 

epidemic to double in 

size during the early 

uncontrolled phase of 

expansion 

5.0 days 95% CI 4.2 - 6.4  (20) 

Incubation period 

(2 parameters) 

s(𝜏) lognormal meanlog 

lognormal sdlog 

1.644 

0.363 

95% CI 1.495 - 1.798 

95% CI 0.201 - 0.521 

(21) 

Generation time 

(2 parameters) 

w(𝜏) Weibull shape 

Weibull scale 

2.826 

5.665 

95% CI 1.75 - 4.7 

95% CI 4.7 - 6.9 

This paper 

Parameters with Bayesian priors informed by anecdotal reports or indirect evidence 

Proportion 

asymptomatic 

Pa The proportion of 

infected individuals 

who are 

asymptomatic 

0.4 Prior = beta(𝛼=1.5, 𝛽 

= 1.75) 

Mode = 0.4 

Mean = 0.46 

Media reports 

(Diamond 

Princess)  

Relative 

infectiousness of 

asymptomatics 

xa The ratio of 

infectiousness of 

asymptomatic 

individuals to 

infectiousness of 

symptomatic 

individuals  

0.1 Prior = beta(𝛼=1.5, 

𝛽=5.5) 

Mode = 0.1 

Mean = 0.21 

 

Observation of 

few missing 

links in 

Singapore 

outbreak to date. 

Suggestion from 

(19) 
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Fraction of all 

transmission that 

is 

environmentally 

mediated 

RE/R0 Self-explanatory 0.1 Prior = beta(𝛼=1.5, 

𝛽=5.5) 

Mode = 0.1 

Mean = 0.21 

Anecdotal 

observation that 

many infections 

can be traced to 

close contacts 

once detailed 

tracing is 

completed. 

Environmental 

infectiousness 

E(l) Rate at which a 

contaminated 

environment infects 

new people after a 

time lag l 

3 Box function (0,n) 

days, Prior for n = 

Gamma(shape = 4, 

rate =1) 

Mode = 3  

Mean = 4 

(24) - variety of 

values for many 

different 

surfaces. 

 

 

Table 2: R0 and its components.  

 Pre-symptomatic Symptomatic Environmental Asymptomatic Total R0 

Absolute Point estimate: 0.9 

Uncertainty median: 0.7 

CI: 0.2 - 1.1 

Point estimate: 0.8 

Uncertainty 

median: 0.6 

CI: 0.2 - 1.1 

Point estimate: 0.2 

Uncertainty 

median: 0.4 

CI: 0.0 - 1.3 

Point estimate: 0.1 

Uncertainty 

median: 0.2 

CI: 0.0 - 1.2 

Point estimate: 2.0 

Uncertainty 

median: 2.1 

CI: 1.7 - 2.5 

Fraction of R0 Point estimate: 0.47 

Uncertainty median: 0.35 

CI: 0.11 - 0.58 

Point estimate: 

0.38 

Uncertainty 

median: 0.28 

CI: 0.09 - 0.49 

Point estimate: 0.1 

by assumption 

Uncertainty 

median: 0.19 

CI: 0.02 - 0.56 

Point estimate: 

0.06  

Uncertainty 

median: 0.09 

CI: 0.00 - 0.57 

1 by definition 
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Fig. 1. Quantifying transmission timing in 40 transmission pairs. Left panel: our inferred 

generation time distributions, in black; thicker lines denote higher support for the corresponding 

functional form, with the Weibull distribution being the best fit. For comparison we also include the 

serial interval distributions previously reported by (12) (in light blue) and (22) (in grey), and the 

incubation period distribution we used here from (21) (dashed red line). Right panel: the distribution 

of the posterior probability of pre-symptomatic transmission for each of the 40 transmission pairs. The 

red vertical line shows the mean probability. 
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Fig. 2. Our model of infectiousness. The average infectiousness (rate of infecting others), 𝛽, as a 

function of the amount of time since infection, 𝜏. The total coloured area found between two values of 

𝜏 is the number of transmissions expected in that time window. The total coloured area over all values 

of 𝜏 is the number of transmissions expected over the full course of one infection, i.e. the basic 

reproduction number R0. The different colours indicate the contributions of the four routes of 

transmission (stacked on top of one another), so that the total area of one colour over all values of 𝜏 is 

the average number of transmissions via that route over the whole course of infection: RP, RS, RE, and 

RA for pre-symptomatic, symptomatic, environmentally mediated, and asymptomatic transmission 

respectively. Values are rounded to one decimal place. Stopping disease spread requires reduction of 

R to less than 1: blocking transmission, from whatever combination of colours and values of 𝜏 we can 

achieve, such that the total area is halved. 
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Fig. 3. Quantifying intervention success. Heat map plot showing the exponential growth rate of the 

epidemic r as a function of the success rate of instant isolation of symptomatic cases (x axis) and the 

success rate of instant contact tracing (y axis). Positive values of r (red) imply a growing epidemic; 

negative values of r (green) imply a declining epidemic, with greater negative values implying faster 

decline. The solid black line shows r=0, i.e. the threshold for epidemic control. The dashed lines show 

uncertainty in the threshold due to uncertainty in R0 (see Supplementary Figures 15-17). The different 

panels show variation in the delay associated with the intervention - from initiating symptoms to case 

isolation and quarantine of contacts. 
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Fig. 4. A schematic of app-based COVID-19 contact tracing. Contacts of individual A (and all 

individuals using the app) are traced using GPS co-localisations with other App users, supplemented 

by scanning QR-codes displayed on high-traffic public amenities where GPS is too coarse. Individual 

A requests a SARS-COV-2 test (using the app) and their positive test result triggers an instant 

notification to individuals who have been in close contact. The App advises isolation for the case 

(individual A) and quarantine of their contacts. 
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