
Severe airport sanitarian control could slow down the
spreading of COVID-19 pandemics in Brazil
Sérvio Pontes Ribeiro Corresp., 1 , Wesley Dáttilo 2 , Alcides Castro e Silva 3 , Alexandre Barbosa Reis 4 , Aristóteles Góes-
Neto Corresp., 5 , Luiz Carlos Junior Alcantara 6 , Marta Giovanetti 6 , Wendel Coura-Vital 7 , Geraldo Wilson Fernandes 7 ,
Vasco Ariston C Azevedo 7

1 Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
2 Red de Ecoetología, Instituto de Ecología AC, Xalapa, Vera Cruz, Mexico
3 Laboratório da Ciência da Complexidade, Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
4 Laboratório de Imunopatologia, Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais,
Brazil
5 Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de
Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
6 Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
7 Departamento de Genética, Ecologia & Evolução/ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

Corresponding Authors: Sérvio Pontes Ribeiro, Aristóteles Góes-Neto
Email address: spribeiro@ufop.edu.br, arigoesneto@icb.ufmg.br

Background. We investigated a likely scenario of COVID-19 spreading in Brazil through
the complex airport network of the country, for the 90 days after the first national
occurrence of the disease. After the confirmation of the first imported cases, the lack of a
proper airport entrance control resulted in the infection spreading in a manner directly
proportional to the amount of flights reaching each city, following first occurrence of the
virus coming from abroad. Methodology. We developed a SIR (Susceptible-Infected-
Recovered) model divided in a metapopulation structure, where cities with airports were
demes connected by the number of flights. Subsequently, we further explored the role of
Manaus airport for a rapid entrance of the pandemic into indigenous territories situated in
remote places of the Amazon region. Results. The expansion of the SARS-CoV-2 virus
between cities was fast, directly proportional to the airport closeness centrality within the
Brazilian air transportation network. There was a clear pattern in the expansion of the
pandemic, with a stiff exponential expansion of cases for all cities. The more an airport
showed closeness centrality, the greater was its vulnerability to SARS-CoV-2.
Conclusions. We discussed the weak pandemic control performance of Brazil in
comparison with other tropical, developing countries, namely India and Nigeria. Finally, we
proposed measures for containing virus spreading taking into consideration the scenario of
high poverty.
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1 Abstract

2 Background. We investigated a likely scenario of COVID-19 spreading in Brazil 

3 through the complex airport network of the country, for the 90 days after the first 

4 national occurrence of the disease. After the confirmation of the first imported cases, the 

5 lack of a proper airport entrance control resulted in the infection spreading in a manner 

6 directly proportional to the amount of flights reaching each city, following first 

7 occurrence of the virus coming from abroad. 

8 Methodology. We developed a SIR (Susceptible-Infected-Recovered) model divided in 

9 a metapopulation structure, where cities with airports were demes connected by the 

10 number of flights. Subsequently, we further explored the role of Manaus airport for a 

11 rapid entrance of the pandemic into indigenous territories situated in remote places of 

12 the Amazon region. 

13 Results. The expansion of the SARS-CoV-2 virus between cities was fast, directly 

14 proportional to the airport closeness centrality within the Brazilian air transportation 

15 network. There was a clear pattern in the expansion of the pandemic, with a stiff 

16 exponential expansion of cases for all cities. The more an airport showed closeness 

17 centrality, the greater was its vulnerability to SARS-CoV-2. 

18 Conclusions. We discussed the weak pandemic control performance of Brazil in 

19 comparison with other tropical, developing countries, namely India and Nigeria. Finally, 

20 we proposed measures for containing virus spreading taking into consideration the 

21 scenario of high poverty.  

22 Key-words – SARS-Cov-2 pandemic; SIR model; metapopulation dynamics; Amazonia; 

23 Indigenous people; one-Ecohealth.

24

25 Introduction

26 In the last few weeks, the new disease COVID-19 has been spreading rapidly around 

27 the world mainly due to stealth transmission, which started in China at the end of 2019. 

28 Large continental countries are likely to be very vulnerable to the occurrence of 

29 pandemics (Morse et al. 2012). While the dissemination dynamics have varied between 

30 regions, country sanitary policies play a key role in it. For instance, two very large 

31 developing countries, India and Brazil, have a very different epidemical pattern. On 

32 March 18th, India had 137 cases and Brazil 621, as recorded in the Brazilian Ministry of 

33 Health and John Hopkins monitoring sites dedicated to SARS-CoV-2 and COVID-19. 

34 From 17th to 18th March, Brazil had an increase of 31% in one day, with only four 

35 capitals exhibiting community transmission, which was the same to India. However, a 

36 very distinct pattern in the ascending starting point for the reported disease exponential 

37 curve was observed in each country. By enlarging the comparison to another 

38 developing tropical country in the Southern Hemisphere (thus in the same season), we 
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39 selected Nigeria, since it was the first country to detect a COVID-19 case in Africa. 

40 Nigeria displayed less than 10 confirmed cases during the same period of time. 

41 Furthermore, Nigeria has a population (206 million) similar to that of Brazil (209 million).

42 Both India and Nigeria claim they imposed severe entrance control, and close 

43 following up of each confirmed case, as well as their living and working area, and 

44 people in contact with them. In Brazil, the Ministry of Health has developed a good 

45 monitoring network and a comprehensive preparation of the health system for the worst-

46 case scenario. Nonetheless, apparently, the decisions from the Ministry of Health did 

47 not cover airport control, and only on March 19th, eventually too late, the government 

48 decided to control the airports, avoiding the entrance of people coming from Europe or 

49 Asia. Hence, the entrance of diseased people in Brazil has been occurring with no 

50 control, at least until the aforementioned date. Moreover, after confirming that a person 

51 is infected with SARS-CoV-2, his/her monitoring is initiated but there is no monitoring of 

52 his/her living network.

53 For pandemic situations, such as that with which we are living with SARS-CoV-2, 

54 the classical algebraic ecological models of species population growth from Verhulst, 

55 and species interaction models from Lotka-Volterra, are theoretical frameworks capable 

56 to describe the phenomenon and to propose actions to stop it (Pianka 2000). In many 

57 aspects social isolation is a way to severely reduce carrying capacity, i.e., the resources 

58 available for the virus dissemination. This is the best action for within-city pandemic 

59 spreading of coronavirus (Hellewell et al. 2020), since the main form of transmission is 

60 direct contact between people or by contact with fomite, mainly in closed environments, 

61 such as classrooms, offices, etc. (Rothe et al., 2019; Bedford et al., 2020). Regardless 

62 of virulence, for a highly contagious virus such as SARS-CoV-2, the occurrence of the 

63 first case in a nation will result in a strongly and nearly uncontrollable exponential 

64 growth curve, depending only on the number of encounters between infected and 

65 susceptible people, and fuelled by a high H0 (the number of people one infected person 

66 will infect). 

67 On the other hand, the dynamics of disease spreading among cities are entirely 

68 distinct. In this work, we present an epidemiological model describing the free entrance 

69 of people coming from two highly infected countries with close links to Brazil: Italy and 

70 Spain. We showed how SARS-CoV-2 spreads into the Brazilian cities by the 

71 international airports, and then to other, less internationally connected cities, through 

72 the Brazilian airport network. For exploring the dynamics of a continent size, nationwide 

73 spreading of SARS-CoV-2, as it is the case of Brazil, we assumed cities connected by 

74 airports formed a metapopulation structure. 

75 Each person in a city was taken as a component of a superorganism, i.e., an 

76 interdependent entity where living individuals are not biologically independent between 

77 them in various subtle ways. By doing so, we dealt with cities as the sampling units, not 

78 the people. Flights coming from foreign countries with COVID-19 (namely Spain and 
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79 Italy for this article) represent the probability of an external invasion of infection in each 

80 city. Additionally, we also further explored the vulnerability of the Amazon region, 

81 especially of those remote towns where indigenous and traditional communities 

82 predominate.

83

84 Materials & Methods

85 In order to describe the pattern of air transportation and its role in the spreading of the 

86 disease, we built a SIR (Susceptible-Infected-Recovered) model (Hethcote 1989; 

87 Anderson 1991) split amongst the cities that are interconnected by flights. In this model, 

88 the population size inside each city is irrelevant, as well as when the collective infection 

89 stage was reached. Thus, we assumed that the city was fully infected and became 

90 infectious to the whole system, and, therefore, became a source and not a sink of 

91 infection events. Hence, the SIR model started having cities with only susceptible 

92 events. Infected events only appeared by migration, i.e. travelers only from Italy and 

93 Spain, for sake of simplicity and proximity to the facts. 

94 After the first occurrence is registered in the country, infected events started to 

95 spread through the national airlines. 

96 We used a modified version of the SIR model, which took into account the 
97 topology of how the cities-demes were linked by domestic flights. In the SIR original 
98 model, the infection of susceptible cities occurs by probability β of a healthy being (S) 
99 encounters an infected one (I). Conversely, the model has a probability of an infected 

100 one get recovered (R) given by a parameter γ. Analytically:
101

102 𝑆𝑡+ 1= 𝑆𝑡 ‒ 𝛽𝑁𝑆𝑡𝐼𝑡
103

104 𝐼𝑡+ 1= 𝐼𝑡+ 𝛽𝑁𝑆𝑡𝐼𝑡 ‒ 𝛾𝐼𝑡
105
106 𝑅𝑡+ 1= 𝑅𝑡+ 𝛾𝐼𝑡
107

108 where the indexes t and t+1 represent the present time and the next time, respectively, 

109 and N=S+I+R is the total constant population. In this work, we proposed two 

110 modifications of the SIR model. The first one is related to the fact that we considered all 

111 Brazilian cities that have an airport. Thus, we had Si, Ii, and Ri where i was a given city. 

112 In our case study, 1≤i≤154. Another important modification was that related to the 

113 connections among airports or cities. Using ANAC data, it was possible to track all the 

114 domestic flights in Brazil (Figure 1): https://www.anac.gov.br/assuntos/dados-e-

115 estatisticas/historico-de-voos

116
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118 The modified version of SIR model is then described as follows:

119

120 𝑆 𝑖𝑡+ 1= 𝑆𝑖𝑡 ‒ 𝛽𝑁𝑆𝑖𝑡(𝐼𝑖𝑡+ 𝐼𝑖𝑡)
121

122 𝐼 𝑖𝑡+ 1= 𝐼𝑖𝑡+ 𝛽𝑁𝑆𝑖𝑡(𝐼𝑖𝑡+ 𝐼𝑖𝑡) ‒ 𝛾(𝐼𝑖𝑡+ 𝐼𝑖𝑡)
123

124 ,𝑅 𝑖𝑡+ 1= 𝑅𝑖𝑡+ 𝛾(𝐼𝑖𝑡+ 𝐼𝑖𝑡)
125

126 where the upper index i indicates the city, and t the time. The term  represents the 𝐼𝑖𝑡
127 infection added to the ith city due to traveling diseases, and it is calculated as follow:

128

129 𝐼𝑖𝑡= 𝛼 154∑𝑗= 0𝑘𝑖,𝑗𝐼𝑗
130

131 where ki,j is the number of flights departing at city i and arriving at city j, and α is a newly 

132 introduced parameter, which represents the fraction of traveling infected population. For 

133 the time, we estimated 90 days for the disease expansion and assumed γ as 0, in other 

134 words, no recovery. Despite the artificiality of this assumption, we considered that the 

135 amount of people still to be infected is larger than those recovered and, thus, becoming 

136 resistant, which makes the resistance irrelevant to our output. The model was 

137 developed in C and is available as Supplementary Material 1 (and the database as 

138 Supplementary Material 2). In addition, we also used a linear model to test whether 

139 those cities with higher airport closeness centrality (i.e., important cities for connecting 

140 different cities within the Brazilian air transportation network) were more vulnerable to 

141 SARS-CoV-2 dissemination.

142

143 Results

144 The expansion of the SARS-CoV-2 virus between cities was fast, directly proportional to 

145 the airport closeness centrality within the Brazilian air transportation network. The 

146 disease spread from São Paulo and Rio de Janeiro to the next node-city by the flight 

147 network, and in 90 days virtually all the cities with airport(s) were reached, although it 

148 occurred with a distinct intensity (Figure 2, Supplementary Material 3). There was a 

149 clear pattern in the expansion of the pandemic, with a stiff exponential expansion of 

150 cases (measured as the cumulative percentage of infected people per city) for all the 

151 cities. On average, the model showed an ascendant curve starting at day 50 (around 15 

152 April), with the most connected cities starting their ascendant curve just after 25 days, 

153 and the most isolated ones from day 75 (10th May; Figure 3A). Looking at the daily 
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154 increment rates, it is clear a first and high peak of infections in the hub cities, happening 

155 around 50 days and, starting from 75 days, a new peripheric peak (Figure 3B).

156 The first ten cities to ascend infection rates (São Paulo, Rio de Janeiro, Salvador, 

157 Recife, Brasília, Fortaleza, Belo Horizonte, Porto Alegre, Curitiba, and Florianópolis) will 

158 actually reach this point about the same time, which is a concerning pattern for the 

159 saturation of the public health services. Also, this peak in those cities will saturate all the 

160 best hospitals in the country simultaneously. 

161 Therefore, we defined the average proportion of infected people for the 90 days 

162 as a measure of vulnerability to COVID-19 dissemination. Henceforth, we found that 

163 more an airport shows closeness centrality within the air transportation network, the 

164 greater was its vulnerability to disease transmission (Figure 4). This scenario confirmed 

165 the importance of a city connecting different cities within the Brazilian air transportation 

166 network and, thus, acting as the main driver for the pandemic spreading across the 

167 country. 

168  

169 Consequences for the Amazonian cities and indigenous people

170 Herein we showed that an uncontrolled complex airport system made a whole 

171 country vulnerable in few weeks, allowing the virus to reach the most distant and remote 

172 places, in the most pessimistic scenario. According to our model, any connected city will 

173 be infected after three months. As the number of flights arriving in a city is the driver for 

174 the proportion of infected people, Manaus, which is a relevant regional clustering, was 

175 infected sooner. Indeed, on the 17th of March, Manaus was the first Amazonian city with 

176 confirmed cases (without community transmission yet), and it is a node that is one or 

177 two steps to all the Amazonian cities. Thus, according to our model, Manaus may reach 

178 1% of the infected population by the 44th day, while, for instance, the far west 

179 Amazonian Tabatinga will take 61 days to reach the same 1% of the population 

180 infected. By day 60, Manaus may have an average of 50% of its population infected if 

181 nothing is be done to prevent it. Tabatinga may also reach the aforementioned value by 

182 day 78, if nothing is be done to avoid it. To sum up, within 46 days all the Amazonian 

183 cities will have 1% of their population infected and a mean of 50% by day 70. 

184

185 Discussion

186 Brazil has failed to contain COVID-19 in airports and failed to closely monitor those 

187 infected people coming from abroad, as well as their living network. One main reason 

188 for this is the difficult logistics required to produce such control in a continental country, 

189 such as Brazil, which has a complex national flight network. According to the Brazilian 

190 Airport Authority, Brazil has the second-largest flight network in the world (just after the 

191 USA), with a total of 154 airports registered to commercial flights of which 31 are 

192 considered international. In comparison, airport control may be much easier to set up in 

193 Nigeria (31 airports of which only five are international). However, with a population 6.4 
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194 times higher than Brazil, India, in turn, has a similar sized airport network to Brazil, 

195 harboring a total of 123 airports of which 34 are considered international. 

196 Nevertheless, the situation of COVID-19 in India is currently much milder than in 

197 Brazil, and it is hard to blame the complexity of the airport networks for the contrasting 

198 exponential curve of these two countries. In 20 days from the first infection in Brazil 

199 (February 26th) against 47 days after the first Indian case (January 30th), Brazil already 

200 had 5.4 more confirmed cases than India. Clearly one country is doing much better in 

201 preventing the entrance of cases and the spreading of the disease by controlling 

202 infected citizens. Considering the high probability of a synchronizing SARS-Cov-2 high 

203 spreading in various capitals, the country may face a quick health service collapse.

204 Besides the within-city pattern of virus spreading, one must take into account the 

205 pattern of dispersion between cities after the virus has invaded. Additionally, for the 

206 Brazilian case, one cannot ignore that, eventually, the occurrence of the first case may 

207 have occurred nearly one month before official records, during the carnival period. This 

208 is the largest popular street party on the planet, with 6.4 million people in Rio de 

209 Janeiro, and 16.3 million in Salvador where the Brazilian Ministry of Tourism revealed 

210 that 86,000 foreigners from France, Germany, Spain, Italy, UK, and the US had visited. 

211 Considering a disease with so many asymptomatic cases, it could have invaded before 

212 but, with the lack of an early warning and airport control, one will never know exactly if 

213 this happened. As airport control might have been even more lax in small airports, it 

214 might unavoidably result in strengthening of the capability of an infected city to infect the 

215 next new one, if no public policy is adopted.

216 Without a social isolation policy, virus propagation may result in chaotic 

217 dynamics, sensu May (1976). The lack of control for these situations may result in a 

218 dramatic rate of host infection, and an eventual collapse of the host-parasite interaction 

219 in a given population, depending on the amount of susceptible, infected and recovered 

220 events. Nonetheless, if the population is split into deme-cities, in a metapopulation 

221 structure, the collapse takes longer, and a much greater amount of people in different 

222 locations may eventually be infected, as found in our model. It is worthwhile to mention 

223 that this model, already pessimistic, did not consider the road network, one of the 

224 largest on the planet. Most importantly, the best road-connected cities are exactly those 

225 mostly connected by airport, and that will be vulnerable earlier, thus, probably spreading 

226 the disease faster than our model can predict, unless roads are soon blocked for 

227 people. Another weakness of the model is that it cannot quantify a great number of 

228 small airports not registered for commercial flights, very common in the Amazonian and 

229 Western regions. Taking this into a global scale, for a highly interconnected human 

230 population, the consequences may be catastrophic, as it was for the influenza pandemic 

231 (Spanish flu) in 1918 (Ferguson et al. 2003). Furthermore, one aspect that must not be 

232 neglected is the way as an increasing number of infected people in a city drive the 

233 pandemic towards the next city or country. In this context, the complex and large flight 
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234 network of Brazil, which is also key for the whole Latin America, if not properly 

235 monitored and controlled, may cause a window of opportunity for the virus to spread 

236 over the entire continent.

237 The consequences of this uncontrolled SARS-Cov-2 spreading is particularly 

238 serious if one takes into consideration the chances of a mutant virulent strain appearing 

239 and spreading into poorer and little monitored places of the world. Specifically, for the 

240 Amazon region, the lack of any control will make the city of Manaus a very sensitive 

241 cluster for public health, due to predominantly poor and indigenous-dominated cities in 

242 the region, which are connected to Manaus and will be rapidly infected. Reaching 

243 isolated regions means reaching indigenous or traditional communities, whose 

244 individuals are classically more susceptible to new pathogens than western-influenced 

245 or mixed urban populations. Therefore, a way to prevent such spreading, if still there is 

246 time, would be to deal with airports as entrances that need severe infection barriers.  

247

248 Conclusions

249 The eventual lesson to take is that inflexible, severe, and easy to repeat 

250 controlling protocols must be applied to all the cities with airports. Likewise, the follow-

251 up monitoring of suspicious individuals and their living network should be reinforced as 

252 a national strategy to prevent a large territory to be taken over by a pandemic in a short 

253 period of time. In other words, internationally accepted procedures must be taken and 

254 even be reviewed to adjust to complex national flight networks of any country. Such 

255 procedures must be considered as a priority for national remote airports too, in order to 

256 keep poorer and worse equipped cities away from a rapid spread of a pandemic 

257 disease. 

258 It is clear at this point that a fast spread of the SARS-CoV-2 is a reality in Brazil, 

259 and across most of the country. We proposed this model in order to emphasize the 

260 fragility of Brazilian surveillance in the airport network, in an attempt to cause some 

261 policy change in time to preserve at least the most remote regions, which are also the 

262 most vulnerable, with a weaker health service. Moreover, most of the Eastern part of the 

263 country must stay in social isolation in order to prevent a health public collapse by mid-

264 April, as the Ministry of Health predicted. In addition, we also could consider the 

265 generalized poverty of Brazil as a further problem our model did not deal with. The 

266 chances to produce home-to-home isolation, even legally imposed, is impossible for 

267 these poor communities. Nonetheless, considering the few main entrances of most of 

268 the Brazilian shanty towns and communities, a similar to airport entrance severe control 

269 must be considered to protect a larger but closely connected set of people, eventually 

270 following the protocols used for control of Ebola during the last epidemic in Africa (Lau 

271 et al. 2017).

272
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314 Figure 1 – Brazilian flight network, taken from ANAC database. 

315

316 Figure 2 – Proportion of infected population of each Brazilian city in 40, 50, 70, and 90 

317 days. Circle colour temperature represents a gradient in percentage of the infected 

318 population. Circle size also reflects the size of the pandemics locally in the logarithm 

319 scale.

320

321 Figure 3 – Proportion of infected people per cities until 90 days. A) Cumulative increment 

322 rate. The blue line is the national average, and the shadow area is the summing up of 

323 minimum and maximum values of all the cities per time interval; B) Daily increment rate. 

324 The blue line is the average, showing the overall high rate of infection occurring from 50 

325 to 80 days. Shadow shows the first and the highest peak in the hub cities, around 50 

326 days, and, subsequently, a peripheric peak after 75 days.

327

328 Figure 4 – Airport closeness centrality within the Brazilian air transportation network, 

329 and its effect on the vulnerability of each city (represented by the average of the 

330 percentage of cases per city for the whole 90 days running: r2 = 0.71 p < 0.00001).

331

332 Supplementary Material 1 – Code description - SIR model under network topology.

333 The code was developed in C, and it works as a modification of SIR model running along with 

334 the topology of the domestic flight network. After initiating all variables to an initial condition, that 

335 is, S (health), I (infected) and R (recovered) of each city, the code starts loading the network 

336 and calculates the total number of flights among all the cities. This information is used to feed 

337 the classical SIR model introducing in the variable I, the information regarding infected travelers 

338 and non-travelers, and the model calculates the next S, I and R of all the cities. This calculation 

339 is done in a loop time representing days, the time step that the model was calibrated.

340

341 Supplementary Material 2 – ANAC database of aerial transportation network.

342 The spreadsheet presents all the 120 cities with airport(s), their state, latitude and 

343 longitude, followed by the closeness centrality in the network. The columns t0 to t90 are 

344 the times from 0 to 90 days. Lines for the time columns are the percentage of infected 

345 people per city per time.

346

347 Supplementary Material 3 – Movie of the spreading of SARS-CoV-2.

348 This file has a short movie describing the dynamics of SARS-Cov-2 dissemination 

349 across Brazil, in two versions.

350
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