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Abstract 1 

 2 

Environmental factors, including seasonal climatic variability, can strongly impact on spatio-3 

temporal patterns of infectious disease outbreaks. We assessed the effects of temperature and 4 

humidity on the global patterns of COVID-19 early outbreak dynamics during January-March 2020. 5 

Climatic variables were the best drivers of global variation of confirmed COVID-19 cases growth 6 

rates. Growth rates peaked in temperate regions of the Northern Hemisphere with mean temperature 7 

of ~5°C and humidity of ~0.6-1.0 kPa during the outbreak month, while they decreased in warmer 8 

and colder regions. The strong relationship between local climate and COVID-19 growth rates 9 

suggests the possibility of seasonal variation in the spatial pattern of outbreaks, with temperate 10 

regions of the Southern Hemisphere becoming at particular risk of severe outbreaks during the next 11 

months. 12 

 13 

 14 

  15 
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A recently discovered coronavirus, SARS-CoV-2, is the aethiological agent of a pandemic disease, 16 

Covid-19, causing severe pneumonia outbreaks at the global scale1. Covid-19 cases are now 17 

reported in more than 155 countries and regions worldwide2. Three months after the discovery of 18 

SARS-CoV-2, the global pattern and the early dynamics of Covid-19 outbreaks seem highly 19 

variable. Some countries have been experiencing limited growth and spread of Covid-19 cases, 20 

while others are suffering widespread community transmission and nearly exponential growth of 21 

infections2. Given the impact of environmental conditions on the transmission of many pathogens, 22 

we tested the hypothesis that the severity of Covid-19 outbreaks across the globe is affected by 23 

spatial variation of key environmental factors, such as temperature, air humidity and pollution3-7. 24 

We then evaluated if this could help to illustrate global variation in the risk of severe Covid-19 25 

outbreaks in the coming months. 26 

Relying on a publicly available global dataset2, we computed the daily growth rates r of 27 

confirmed Covid-19 cases (Covid-19 growth rate hereafter) for 121 countries/regions (see the 28 

Methods section and Table S6 in the Supplementary Appendix). We limited our measure of 29 

epidemics growth rate to the first 5 days after reaching a minimum threshold of confirmed cases 30 

(25, 50 or 100), as the mean incubation period of Covid-19 is ca. 5 days8 and, immediately after the 31 

first confirmed cases, many countries put in place unprecedented containment measures to mitigate 32 

pathogen spread and community transmission9. Variation at these early epidemic growth rates 33 

should best reflect the impact of local environmental conditions on disease spread. We restricted 34 

analyses to data reported before March 19, as during that week many regions of the world adopted 35 

stringent containment measures even in absence of large numbers of reported cases. For instance, 36 

on March 17, 37 US states closed schools to prevent disease spread, including several states with 37 

less than 25 confirmed Covid-19 cases10. We also considered additional factors that could affect 38 

SARS-CoV-2 transmission dynamics, such as human population density, government per-capita 39 

health expenditure, and average air pollution levels (fine particulate matter; see Methods). 40 
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Covid-19 growth rates showed high variability at the global scale (Fig. 1A-C). The observed 41 

daily growth rate after reaching 50 cases (r50) was on average 0.18 [95% CI 0.16-0.19], and ranged 42 

from 0.01 (Kuwait) to 0.44 (Denmark). The highest growth rates were observed in temperate 43 

regions of the Northern Hemisphere (Fig. 1C). Growth rates calculated using different minimum 44 

thresholds of confirmed cases (25 or 100) were strongly positively correlated (see Methods), 45 

indicating robustness of our results to the choice of thresholds. 46 

Climate variables were the most important predictors of Covid-19 growth rate (Table S1). 47 

The best-fitting linear mixed model suggested that r50 is non-linearly related to spatial variation in 48 

mean temperature of the outbreak month (Fig. 1A, Tables S2-S3). Growth rates peaked in regions 49 

with mean temperature of ~5°C during the outbreak month, and decreased both in warmer and 50 

colder climates (Fig. A, Table S3). The comparison of models with different combinations of 51 

predictors confirmed temperature as the variable with the highest relative importance in explaining 52 

variation of r50 (Table S1), and temperature was the only parameter included in the best-fitting 53 

model (Tables S2-S3). Temperature and humidity of the outbreak month showed a strong, positive 54 

relationship across regions (Fig. S1), thus they could not be included as predictors in the same 55 

model. When we repeated the analyses including humidity instead of temperature, r50 varied 56 

significantly and non-linearly with humidity, peaking at ~0.6-1.0 kPa (Fig. 1B, Tables S4-S5). The 57 

best model also showed slightly larger growth rates in countries with greater health expenditure 58 

(Table S5), possibly because of more efficient early reporting and/or faster diagnosis of Covid-19 59 

cases. 60 

Results were highly consistent if we calculated growth rates after minimum thresholds of 25 61 

or 100 cases (r25 and r100, respectively) instead of 50 (Tables S3 and S5). Human population density 62 

and air pollution showed very limited relative importance values (always < 0.50; Table S1). 63 
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We then displayed potential seasonal changes in Covid-19 growth rates by projecting our 64 

best model of r50 in relation to temperature under the average temperature conditions of the current 65 

(March) and next (June and September) months (Fig. 1C-E). The predicted global distribution of 66 

Covid-19 growth rates based on March temperatures showed favorable conditions for disease 67 

spread in most temperate regions of the Northern Hemisphere, and matched well with the observed 68 

spatial distribution of Covid-19 growth rates during the January-March global outbreak (Fig. 1C). 69 

The expected seasonal rise in temperatures during the next months could results in less suitable 70 

conditions for Covid-19 spread in these areas. Conversely, seasonally decreasing temperatures 71 

could accelerate disease spread in large areas of the Southern Hemisphere, including south 72 

America, south Africa, eastern Australasia and New Zealand (Fig. 1D-E). 73 

The management of Covid-19 outbreaks is undoubtedly one of the biggest challenges 74 

governments will face in the coming months. Our spatially-explicit analysis suggests that, at least in 75 

some parts of the world, ongoing containment efforts could benefit from the interplay between 76 

pathogen spread and local climate. We do not claim that climate is the single major driver of Covid-77 

19 spread. The huge variation of Covid-19 growth rates among regions with similar climate indeed 78 

suggests that diverse and complex social and demographic factors, as well as stochasticity, may 79 

strongly contribute to determine the severity of Covid-19 outbreaks. Yet, climate can contribute to 80 

explain the variability in global patterns of Covid-19 growth rates. In the coming months, we may 81 

thus expect that large areas of the Southern Hemisphere will show environmental conditions 82 

promoting severe Covid-19 outbreaks. 83 

  84 
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Materials and methods 85 

 86 

Covid-19 dataset  87 

We downloaded the time series of confirmed Covid-19 cases from the Johns Hopkins University 88 

Center For Systems Science and Engineering (JHU-CSSE) GitHub repository 89 

(https://github.com/CSSEGISandData/Covid-19/; file ‘time_series_19-covid-Confirmed.csv’) 11. 90 

This datafile is updated once a day (at 23:59 UTC) and reports, for each day since January 22, 2020, 91 

all confirmed Covid-19 cases at the country level or at the level of significant geographical units 92 

belonging to the same country, which we defined here as ‘regions’ (e.g. US states or China 93 

provinces), whenever separate Covid-19 cases data for these regions are available. Initially, US data 94 

were reported by county but, as of March 9, they were reported at the state level. We therefore 95 

merged all US county data before March 9 to state level, and used state-level time series for 96 

subsequent calculations. With the exception of US data, in all other cases we maintained the 97 

original country/region information adopted by the JHU-CSSE. The datafile considered for the 98 

analyses was downloaded on March 19, 2020, and included confirmed Covid-19 cases until March 99 

18, 2020. From this dataset, we selected data for all countries / regions for which local outbreaks 100 

were detected. We define a local outbreak event when at least 50 positive cases were detected in a 101 

given country / region, and calculated the growth rate of confirmed Covid-19 cases between day 1 102 

and day 5, when day 1 was the day at which the 50 cases threshold was reached. We calculate the 103 

daily growth rate r of confirmed Covid-19 cases for each country/region, assuming an exponential 104 

growth as: r = [ln(n casesday 5) - ln(n casesday 1)] / 5. We checked the robustness of our estimates of 105 

growth rate by calculating daily growth rate after the first 25, 50 or 100 cases (r25, r50 and r100, 106 

respectively). Growth rates estimated at different thresholds were strongly positively correlated 107 

(Pearson’s correlation coefficients, r25 vs. r50: r = 0.74; r50 vs. r100: r = 0.81). 108 

The dataset does not report information on containment measures, and these may be highly 109 

heterogeneous among countries/regions. We decided to calculate growth rate on the basis of the 110 
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first five days, in order to obtain an estimate of the non-intervened spread of the disease (i.e. before 111 

stringent containment measures are undertaken). Five days provides a reasonable trade-off between 112 

having to unreliable estimates of growth rates (if calculated on the basis of a smaller number of 113 

days, e.g. 3), and obtaining growth rates influenced by the enforcement of heavy containment 114 

measures (such as immediate isolation of confirmed cases). Five days is the median estimated time 115 

spanning before the onset of symptoms 8, implying that infected patients might spread the virus for 116 

5 days undetected in absence of preventive control measures. The mean estimated growth rate of 117 

confirmed Covid-19 cases showed a tendency to decrease from r25 to r100 (mean and 95% c.i.: r25 = 118 

0.21 [0.19-0.22, n = 121], r50 = 0.18 [0.16-0.19, n = 90], r100 = 0.16 [0.14-0.18, n = 69]), possibly 119 

because of the progressive effect of containment measures that were adopted in different countries 120 

at different times and different minimum thresholds after the onset of the local outbreak. We 121 

excluded from analyses countries/regions with less than 100000 inhabitants (in our dataset, San 122 

Marino only). As of March 19, 2020, the JHU-CSSE dataset provided information for a total of 121 123 

countries/regions for the calculation of r25, 90 for r50, and 69 for r100. The final list of 124 

countries/regions included in the analyses, together with estimated confirmed Covid-19 growth 125 

rates at different thresholds, is reported in Table S6. 126 

 127 

Environmental and socio-economic variables 128 

We considered two climatic variables that are known to affect the spread of viruses: mean air 129 

temperature and vapor pressure, which is a measure of absolute humidity. Previous studies showed 130 

that, for coronaviruses and influenza viruses, survival is generally higher at low temperature and 131 

low values of absolute humidity 5,6,12-14. For each country/region, we thus calculated the mean 132 

monthly values for temperature (°C) and vapor pressure (kPa) for January, February and March on 133 

the basis of the WorldClim 2.1 raster layers at 10 arc-minutes resolution 15. We relied on 134 

WorldClim climatic data because homogeneous data on conditions for the period January-March 135 

2020 are not yet available at a global scale (see e.g. 136 
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https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5), and spatial variation among 137 

areas of the world is generally much stronger than inter-annual variation for the same region 16. As 138 

additional predictors, we considered mean human population density 17 (population density 139 

hereafter, expressed in inhabitants/km2) and per-capita government health expenditure (health 140 

expenditure hereafter) (indicator ‘Domestic General Government Health Expenditure (GGHE-D) 141 

per Capita in US$; average of 2015-2017 values downloaded from the World Health Organization 142 

database at https://apps.who.int/nha/database). Health expenditure was available at country-level 143 

only: hence, regions within countries were assigned the same health expenditure value. Finally, it 144 

has been proposed that air pollution, and especially fine atmospheric particulate, could enhance the 145 

persistence and transmission of coronaviruses 3,18. We therefore extracted values of annual 146 

concentration (µg/m3) of ground-level fine particulate matter (PM2.5) for 2016 from the NASA 147 

Socioeconomic Data and Applications Center 19, and calculated the mean abundance of PM2.5 for 148 

each country/region. We performed all spatial analyses using the raster package in R 20. 149 

 150 

Statistical analyses 151 

We used linear mixed models (LMMs) to relate the global variation of r50, r25 and r100 to the five 152 

environmental predictors (temperature and humidity of outbreak month; population density; health 153 

expenditure and PM2.5). To associate climate variables to the estimated r-values for each 154 

country/region, we first extracted the mean month of the 5 days over which we computed the r-155 

values (rounded to the nearest integer) (outbreak month). We then assigned to the r-values of each 156 

country/region the mean temperature and humidity of the month during which the outbreak 157 

occurred. Country was included as a random factor to take into account potential non-independence 158 

of growth rates from regions belonging to the same country. Non-linear relationships between 159 

climatic factors and ecological variables are frequent 21, and in exploratory plots we detected a clear 160 

non-linear relationship between r-values and climate. Therefore, for climatic variables, we included 161 
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in models both linear and quadratic terms. Humidity, population density, health expenditure and 162 

PM2.5 were log10-transformed to reduce skewness and improve normality of model residuals. 163 

We adopted a model selection approach to identify the variables most likely to affect the 164 

global variation of Covid-19 growth rate 22. We built models representing the different 165 

combinations of independent variables, and ranked them on the basis of Akaike’s Information 166 

Criterion (AIC). AIC trades-off explanatory power vs. number of predictors; parsimonious models 167 

explaining more variation have the lowest AIC values and are considered to be the “best models” 22. 168 

For each candidate model, we calculated the Akaike weight ωi, representing the probability of the model given the data 169 

23. We then calculated the relative variable importance of each variable (RVI) as the sum of ωi of the models where 170 

each variable is included. RVI can be interpreted the probability that a variable should be included in the best model 171 

22,24. Model selection analyses and the calculation of RVI can be heavily affected by collinearity among variables. In our 172 

dataset, temperature and humidity showed a very strong positive correlation (Fig. S1 and Table S7); furthermore, 173 

population density was strongly positively associated with PM2.5 (Figure S1 and Table S7). Therefore, temperature and 174 

humidity, or population density and PM2.5, could not be considered together in the same models 24,25. All other 175 

predictors showed weak correlations and should not cause collinearity issues 25 (Table S7). We therefore repeated the 176 

model selection for different combinations of uncorrelated variables. First, we considered temperature, health 177 

expenditure and population density as independent variables. Then we repeated the analysis using humidity instead of 178 

temperature, and we calculated the RVI of variables separately for these two model selection analyses. Finally, to assess 179 

the role of PM2.5, we repeated these two model selections analyses using PM2.5 instead of health expenditure. The 180 

RVI values for all tested models are reported in Table S1. Due to low RVI of PM2.5 in all models (Table S1), we 181 

subsequently report detailed results of models including population density instead of PM2.5 (Tables S2-S5). To test the 182 

robustness of our conclusion to subjective thresholds for the minimum number of cases, all analyses were repeated 183 

considering the three estimates of Covid-19 growth rate as dependent variables (r25, r50 and r100).  184 

LMMs were fitted using the lmer function of the lme4 R package 26, while tests statistics were calculated using 185 

the lmerTest package 27. To confirm that spatial autocorrelation did not bias the outcome of our 186 

analyses, we calculated the spatial autocorrelation (Moran’s I) of the residuals of best-fitting models 187 

using the EcoGenetics package in R 28 at lags of 1000 km up to a maximum distance of 5000 km. 188 

Model residuals did not show significant spatial autocorrelation at any lag (in all cases, |Moran’s I| 189 
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< 0.10 and P > 0.11), suggesting that spatial autocorrelation was not a major issue in our analyses 190 

29. 191 

 192 
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Figure 1. Variation of Covid-19 growth rates in relation to climate, and spatial predictions for 268 

different months.  269 

 270 

Variation of confirmed Covid-19 cases growth rates for the first 5 days after reaching a minimum 271 

threshold of 50 cases (r50) during the January-March 2020 pandemic outbreak (n = 90 272 

countries/regions, see list in Table S6) in relation to the mean temperature (Panel A) and to the 273 

mean absolute humidity of the outbreak month (Panel B). The lines are obtained from the best-274 

fitting linear mixed models (LMMs) of r50 in relation to temperature or humidity, respectively (see 275 

Tables S3 and S5). The quadratic terms of both temperature and humidity were highly significant 276 

(temperature: F1,87 = 14.4, P < 0.001; humidity: F1,84 = 7.82, P = 0.006; full details in Tables S3 and 277 

S5). Shaded areas are 95% confidence band. Panel C shows the global patterns of r50, with the size 278 

of dots is proportional to the observed r50 value. The background shows the spatial prediction of 279 

growth rates according to mean March temperatures15. Predictions are based on the best-fitting 280 

LMM of r50 in relation to mean temperature of the outbreak month (Table S3). Panels D and E 281 

show the spatial prediction of growth rates according to mean June and September temperatures15, 282 

highlighting that optimal conditions for disease spread appear in temperate regions of the Southern 283 

Hemisphere. 284 

 285 
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C)    Observed growth rate, and spatial prediction for March

D)      Spatial prediction for June

E)      Spatial prediction for September
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