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Abstract 

Background: Fibrosis in most organs has proven to be an critical factor related to high 

risk of morbidity and mortality, but an adequate assessment of fibrosis severity is still 

challenging. This study tried to evaluate fibrosis severity through a fibrosis 

transcriptional signature. 

Methods: A fibrosis transcriptional signature was developed through an integrated 

analysis of multiple expression profiling datasets of human organs with fibrosis-related 

diseases. A fibrosis severity score for each sample was the calculated through gene set 

variation analysis (GSVA), and its role in evaluating fibrosis severity was then 

analyzed.  

Results: Ten expression profiling datasets of human tissues with organ failure were 

integrated with robust rank aggregation method, and a fibrosis severity score 

consisting of 149 genes. Most of those included genes were involved in fibrogenic 

pathways. GSEA analysis revealed that fibrosis transcriptional signature was 

significantly enriched in the fibrogenic tissues. Additionally, we found that fibrosis 

transcriptional signature could effectively differentiate fibrosis tissues and non-fibrosis 

tissues.  

Conclusion: This study developed an useful fibrosis transcriptional signature involved 

in fibrosis-related diseases. This fibrosis transcriptional signature is helpful in 

precisely evaluating the fibrosis severity in common organs at the transcriptional level. 
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Introduction 

  Fibrosis is a hallmark of pathophysiological progress and occurs in many organs 

such as lung, heart and kidney[1]. Following tissue damages, the healing and 

regenerative processes are initiated and adaptive fibrotic remodeling are involved in 

the short term [2]. However, strengthened or prolonged fibrotic remodeling are 

pathologic and can ultimately result in progressive fibrosis and irreversible scarring[1]. 

Fibrosis can affect most organs such as liver, lung and skin, and fibrosis-related 

diseases can occur in different organs such has cardiac fibrosis, pulmonary fibrosis, 

liver fibrosis and kidney fibrosis [2, 3]. Recent studies have demonstrated that fibrosis 

and scarring are central players of the functional failure of organs [1]. Fibrosis in 

organ is a common character of chronic diseases, and has proven to be an critical 

factor determining risk of morbidity and mortality [4-6]. There are currently no 

specific antifibrotic agents available for most fibrosis-related diseases. Under some 

conditions especially the persistent chronic injury, excessive fibrosis occurs and result 

in the deposition of extracellular matrix, progressive scarring and organ malfunction. 

  Fibrosis in organs should be adequately assessed, which is valuable for the 

monitoring and surveillance of patients. Fibrosis in organs such as liver and lung can 

be assessed with either invasive biopsy or non-invasive methods [7, 8]. Nevertheless, 

current methods still have many limitations, which may impede their use in monitoring 

disease severity or progression. Non-invasive methods such as serum-based tests have 

less accuracy and more unreliability than those invasive biopsy [9-12]. 

Histopathological staging of fibrosis through invasive biopsy also has some 

shortcoming such as high variance and low consistency among different operators or 

pathologists [13-16]. These facts highlight the need for developing a accurate method 

to assess fibrosis severity. Therefore, studies are needed to develop some more 

accurate methods than histopathological examination, which is able to accurately 

reflect the severity of fibrosis and also help to assess the treatment response. In recent 

decade, the growing progress in high-throughput technology such RNA-sequencing 

(RNA-seq) has largely promote the studies in human diseases including 

fibrosis-related diseases, which is also able to provide valuable assistances in clinical 
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diagnosis [17-19]. This study tried to evaluate fibrosis severity through a fibrosis 

transcriptional signature. 

Methods 

Expression profiling data 

  Expression profiling data from Gene Expression Omnibus (GEO) were used in this 

study. GEO is a public functional genomics database which provides users gene 

expression profiles data. Only expression profiling data from liver, lung, kidney and 

heart  tissues of patients with fibrosis-related diseases were analyzed in our study. 

The following searching words were used: idiopathic pulmonary fibrosis OR lung 

fibrosis OR cardiac fibrosis OR renal fibrosis OR kidney fibrosis OR liver cirrhosis 

OR pancreatic fibrosis OR heart failure OR dilated cardiomyopathy OR advanced 

diabetic nephropathy OR kidney failure OR renal failure OR end stage kidney disease. 

To be included into this study, the dataset must contain samples from at least 5 cases 

and 5 controls, and the method used to perform expression profiling analysis was 

based on RNA-seq. Datasets analyzing samples from patients with acute organ failure 

were excluded. 

Data procession 

  Expression profiling data from GEO were downloaded and annotated if necessary. 

Gene expression matrix with gene symbols were then prepared for each dataset. Every 

dataset contained samples from organ tissues with fibrosis, and those control samples 

from organs without obvious fibrosis, and samples from other types of diseases were 

excluded. For RNA-seq data in the form of raw read count, DESeq2 was used to 

calculated differentially expressed genes (DEGs) [20]. For RNA-seq data in other 

forms such as fragment per kilobase exon per million read mapped (FPKM) or 

transcripts per million (TPM), limma was used for differential expression analyses 

[21]. 

Robust rank aggregation (RRA) analysis 

  RRA is a good and widely used method which can integrate expression profiling 
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data from different technological platforms in an unbiased manner [22]. To identify 

those genes aberrantly up-regulated in the organ tissues with fibrosis, the lists of DEGs 

of those included datasets were integrated with RRA method. In this study, we firstly 

developed a fibrosis transcriptional signature by integrating all included datasets, and 

those up-regulated genes with a log fold change (logFC)>1.0 and adjusted P less than 

0.05 were identified as significant genes involved in the fibrosis. We also developed a 

another fibrosis transcriptional signature by integrating datasets with large sample size 

(at least 20 samples), in which those up-regulated genes with a logFC>1 and adjusted 

P less than 0.25 were identified as significant genes involved in the fibrosis. 

Gene set variation analysis (GSVA) 

  GSVA is a widely used bioinformatics method which can condense information 

from single sample transcriptome profiling data into an enrichment score [23]. The 

score of one gene set for a functional pathway or disease gene signature enriched in 

one sample can be calculated out and then be used to evaluate whether this gene set is 

aberrantly up-regulated in the sample. To evaluate the fibrosis severity quantitatively 

through the fibrosis transcriptional signature developed above, the enrichment score of 

the fibrosis gene signature in each sample was thus calculated through GSVA method. 

GSVA was performed using 3 datasets with large sample size, which were 

GSE142025, GSE124685 and GSE116250, respectively. 

Gene set enrichment analysis (GSEA) 

  To validate whether the fibrosis gene signature was significantly enriched in 

samples with fibrosis, the well-known GSEA method was further used in this study 

[24]. Unlike GSVA, GSEA could assess the enrichment of one gene set at the group 

level but not at single sample level. In the GSEA analysis, the normalized enrichment 

score (NES) for statistical significance was defined as more than 1.0 and false 

discovery rate (FDR) was defined as less than 0.25. Three datasets including 

GSE142025, GSE124685 and GSE116250 were analyzed using GSEA. 

Statistical analysis 

 To compare the difference of GSVA enrichment score between fibrosis cases and 
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non-fibrosis controls, student's t test was used. The diagnostic role of the fibrosis gene 

signature was analyzed using receiver operating characteristic (ROC) curve, and the 

area under the curve (AUC) was also calculated out. P value less than 0.05 was 

considered statistically significant. 

Results 

Characteristics of expression profiling datasets on fibrosis 

  A total of 10 expression profiling datasets of human tissues with organ failure met 

the inclusion criteria and were included in this study. The characteristics of expression 

profiling datasets were shown in Table 1 (Table 1). Five datasets analyzed  

expression profiling in the lung tissues of idiopathic pulmonary fibrosis (IPF) and 

non-IPF controls, 4 datasets analyzed expression profiling in the heart tissues of 

patients with heart failure and controls, and one dataset used kidney tissues from 

patients with advanced diabetic nephropathy and controls (Table 1). 

Table 1 Summary of transcriptome datasets used in this study 

GEO ID Tissues Samples Types Platform 

GSE135055 Heart tissue 
21 patients with heart failure and 9 

healthy donors 
RNA-seq GPL16791 

GSE142025 Kidney tissue 
21 patients with advanced diabetic 

nephropathy and 9 controls 
RNA-seq GPL20301 

GSE124685 Lung tissue 49 IPF patients and 35 healthy controls RNA-seq GPL17303 

GSE134692 Lung tissue 46 IPF patients and 26 healthy controls RNA-seq GPL16791 

GSE116250 Heart tissue 
37 dilated cardiomyopathy and 14 

non-failing donors 
RNA-seq GPL16791 

GSE92592 Lung tissue IPF (n=20) and control (n=19) samples RNA-seq GPL11154 

GSE126569 Heart tissue 
10 dilated cardiomyopathy and 9 

non-failing donors 
RNA-seq GPL16791 

GSE120852 Heart tissue 
10 patients with heart failure and 5 

controls 
RNA-seq GPL16791 

GSE99621 Lung tissue IPF (n=8) and control (n=8) samples RNA-seq GPL16791 

GSE52463 Lung tissue 8 IPF and 7 control lung tissue samples RNA-seq GPL11154 

 

Development of fibrosis transcriptional signature 

  We firstly developed a fibrosis transcriptional signature by integrating all 10 

included datasets, and those up-regulated genes with a logFC>1.0 and adjusted P less 

than 0.05 were identified as significant genes involved in the fibrosis. A total of 149 

genes were identified as fibrosis-related genes and were defined as a fibrosis-specific 
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gene set named as "Fibrosis transcriptional signature" (Table 2). Those top significant 

genes were also shown in the Figure 1 (Figure 1). Another fibrosis transcriptional 

signature with less number of genes were developed by integrating datasets with 6 

large sample size, which consisted of 75 genes was named as "Minor fibrosis 

signature" (Table 2).  
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Figure 1 Top up-regulated genes in the fibrogenic tissues identified in RRA analysis 

 

Table 2 Fibrosis transcriptional signatures developed in this study 

Gene set Number Genes 

Fibrosis 

transcriptional 

signature 

149 

COL14A1, CCDC80, ASPN, COMP, CXCL14, CPXM2, DIO2, SMOC2, MMP7, MDK, 

COL1A1, CFH, SSC5D, COL15A1, CTSK, THBS2, COL1A2, CTHRC1, SFRP4, 

GREM1, SLN, THY1, FNDC1, SULF1, KRT14, CERCAM, LUM, SFRP2, DOK5, 

MMP2, CPXM1, OGN, LRRC17, CPA3, FBLN2, EPHA3, CILP, CRABP2, MMP13, 

CCL5, FAP, FRZB, PTGFRN, COL5A1, SPP1, PROM1, SERPINF1, IGLL5, EFNB3, 

HDC, THBS4, BOC, LTBP2, MMP11, SLAMF7, MEOX1, PRRX2, ITGBL1, IGFL2, 

HBA2, LOXL1, SCARA3, CD27, IGF1, ECT2L, LY6D, HBA1, RGS4, PODN, 

PAMR1, ISLR, ADAMTS16, FDCSP, CLEC11A, SERPINE2, MXRA5, FCRL5, 

ANKRD36BP2, GPR87, IGDCC4, APLNR, ACTG2, MOXD1, CYP24A1, TSHZ2, 

MMP1, CP, POU2AF1, MZB1, COL3A1, DNAJC22, TUBB3, MMP10, CXCL12, 

VCAN, EYA2, SAMD11, BAAT, WNT10A, CD79A, TDO2, LAMP5, ALDH1A3, 

TNS4, DHRS9, CHST6, TFAP2A, SERPINB5, POSTN, COL16A1, BHLHE22, 

ADRA2A, CMA1, AEBP1, KIAA1755, CST1, MS4A1, UPK1B, IGFL1, CTSG, 

FMOD, UCHL1, MB, COL10A1, S100A2, CLCA2, BPIFB1, COL17A1, CD1C, 

UGT1A6, MFAP2, HBB, CD209, CCL22, GZMK, ADAMTS14, FCER1A, CXCL13, 

VTCN1, GABRP, DERL3, PDLIM4, NGFR, KRT5, CRISPLD1, TMEM59L, CST2, 

CCL13, FAM83A 

Minor fibrosis 

signature 
75 

COMP, COL14A1, CCDC80, KRT14, COL1A1, MMP7, LY6D, COL15A1, COL5A1, 

PTGFRN, DOK5, SMOC2, COL1A2, CST1, LOXL1, ASPN, SFRP4, MMP13, CFH, 

SFRP2, THBS2, COL3A1, PROM1, IGFL2, GPR87, CTSK, DIO2, FDCSP, MMP2, 

MDK, TUBB3, CERCAM, GREM1, CPXM2, SERPINB4, MXRA5, SERPINF1, 

SPRR1B, COL17A1, CXCL6, SPP1, SLN, AEBP1, CYP24A1, ISLR, CST2, CILP, MB, 

CLCA2, POSTN, CCDC3, CLEC11A, LUM, MAP1A, FLNC, SERPINB3, PLA2G2A, 

FCRL5, SERPINB5, ANKRD36BP2, CTHRC1, LRRC17, PRRX1, CPXM1, MMP1, 

GABRP, FCRLA, CP, SPRR1A, CXCL14, TMEM59L, UCHL1, S100A2, ALDH1A3, 

NNMT 

 

Validation of fibrosis transcriptional signature 

  The role of fibrosis transcriptional signature in evaluating organ fibrosis was 

validated through GSEA and GSVA. GSEA analysis revealed that fibrosis 

transcriptional signature was significantly enriched in the fibrogenic tissues from heart, 

kidney and lung, and it was the same with minor fibrosis signature (Figure 2 and 

Figure 3). Additionally, through GSVA, we found that both fibrosis transcriptional 

signature and the minor fibrosis signature could effectively differentiate fibrosis 

tissues and non-fibrosis tissues from heart, kidney and lung in the ROC analysis 

(Figure 4). Therefore, the outcomes above suggested this fibrosis transcriptional 

signature could adequately assess the severity of fibrosis in common organs at the 

transcriptional level. 
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Figure 2 GSEA analysis revealed that fibrosis transcriptional signature was significantly enriched in the fibrogenic 

tissues 

 

 

Figure 3 GSEA analysis revealed that minor fibrosis signature was significantly enriched in the fibrogenic tissues 
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Figure 4 ROC analysis suggested that both fibrosis transcriptional signature and the minor fibrosis signature could 

effectively differentiate fibrosis tissues and non-fibrosis tissues 

 

Discussion 

  This study developed an useful fibrosis transcriptional signature involved in 

fibrosis-related diseases. To our knowledge, this is the first study aiming to develop a 

gene signature for the assessment of fibrosis in organs. This fibrosis transcriptional 

signature developed in our study is helpful in precisely evaluating the fibrosis severity 

in common organs such as lung, heart and kidney at the transcriptional level. 

  The fibrosis gene signature is a promising assessment tool which is helpful for the 

evaluation of disease severity at transcriptional level. Combining transcriptional gene 

signature and pathological examination may increases the diagnostic accuracy. 

Moreover, the role of fibrosis gene signature in assessing response to treatment is also 

important and interesting, which need to be elucidated in future studies. Further studies 
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are needed assess whether this method can be routinely incorporated into the 

assessment of fibrosis in clinical practice. Apart from its role in assessing fibrosis 

severity in organs, another significance of the transcriptional signature is the precise 

estimation of fibrosis in the biomedical researches on the fibrosis-related diseases, 

which may become an useful biomedical tool in experimental studies. 

  The heterogeneity of fibrogenic diseases in different organs should not be ignored 

and different biological processes are involved in different fiobrosis-related diseases. 

Therefore, further studies aiming to develop disease or organ-specific gene signature 

are warranted. 

  In conclusion, this study developed an useful fibrosis transcriptional signature 

involved in fibrosis-related diseases. This fibrosis transcriptional signature is helpful in 

precisely evaluating the fibrosis severity in common organs at the transcriptional level. 
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