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Abstract 
Objective 
The detection of communicable pathogens responsible for major outbreaks relies on health care 
professionals’ recognition of symptoms manifesting in infectious individuals. Early warning of 
such communicable diseases before the onset of symptoms could improve both patient care and 
public health responses. However, the potential impact of such a host-based early warning 
system on containing the spread of an outbreak and in steering public health response is 
unknown. 
Methods 
We extend the deterministic SEIR (Susceptible, Exposed, Infectious, Recovered) model to 
simulate disease outbreak scenarios and to quantify the potential impact of a host-based early 
warning capability to mitigate pathogen transmission during an outbreak. In particular, we 
compare and contrast the performance of five different policies: Self-monitoring and reporting 
(baseline SEIR model), Quarantining the entire population, Quarantine-on-alert (with high 
sensitivity early warning), Quarantine-on-alert (with high specificity early warning), and 
Quarantine-on-alert (ideal early warning). We further evaluate these five policy options against 
four different outbreak scenarios with high or low disease transmission and high or low initial 
population exposures. 

Results 
For all scenarios, a quarantine-on-alert policy coupled with the near-ideal early warning 
capability reduces quarantine needs with only a small increase in the number of additional 
infections. The cost of a highly specific early detection system (i.e., a reduction in false alarms 
and thus quarantine costs) is an increase in additional infections relative to the near-ideal system. 
Conversely, a highly sensitive early detection system increases the percentage of the population 
in quarantine compared to both the ideal and high-specificity early detection system while also 
reducing the number of additional infections to nearly the numbers seen by quarantining the 
entire population a priori.  

Conclusions 
Our simulations demonstrate the utility of host-based early warning systems in controlling an 
outbreak under various outbreak conditions. Our tools also provide a simulation capability for 
evaluating public health policies enabling quantitative evaluation of their impacts prior to 
implementation. 
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Introduction 

The detection of communicable pathogens responsible for major outbreaks often relies on health 
care professionals’ recognition of symptoms manifesting in infectious individuals. Early warning 
of such communicable diseases before the onset of symptoms can potentially improve both 
patient care and public health responses. An example of such an early warning system is the 
PRESAGED (Presymptomatic Agent Exposure Detection) system [1] which uses host-based 
physiological signals to detect an individual’s exposure to pathogens, such as viruses and 
bacteria, before overt symptoms emerge and infectiousness is peak. In animal models, the 
PRESAGED algorithm has been shown to provide two to three days of early warning before the 
onset of incipient symptoms (e.g., fever), independent of the particular pathogen, exposure route, 
pathogen dose, or animal species [1]. These results are consistent with findings of Speranza et al. 
that show presymptomatic upregulation in biomarkers potentially linked to pathogen exposure 
around the same time in non-human primates exposed to Ebola [2].  
Numerous efforts have evaluated epidemiological models to characterize the disease 
transmission dynamics and the effectiveness of public health interventions of past outbreaks [9–
13], including effort by Chowell et al [14] that examines the impact of a hypothetical early 
diagnostic capability (based on advancements in bioassay tests) for containing the spread of 
Ebola. We posit that a comprehensive simulation capability is essential for assessing the 
potential impact of a host-based early warning system.  

We have developed a series of epidemiological models that quantify the potential impact of a 
host-based early warning capability to mitigate pathogen transmission during an outbreak. Our 
epidemiological models reflect a variety of traditional public health policies related to 
nonpharmaceutical interventions, such as quarantine and patient isolation, and novel policies 
enabled by host-based early warning capabilities, such as the PRESAGED system [1]. For each 
policy-dependent model, we simulated outbreak scenarios and calculated the size of the outbreak 
(total number of infections) and the operational burden (total number of lost duty days resulting 
from quarantine or isolation). These metrics were used to understand the trade space for the 
different policies. Our simulations demonstrate the utility of host-based early warning systems in 
controlling an outbreak under various outbreak conditions. 
 
Models for Disease Outbreak Simulation 
The SEIR Model 
One of the most common epidemiological models for simulating disease outbreak scenarios is 
the deterministic SEIR model. This approach splits a given population into separate 
compartments defined by their relationship to a disease outbreak [15]: 

1. Susceptible: healthy individuals who can be exposed to the pathogen 
2. Exposed: individuals who are in the incubation phase; they have been exposed to the 

pathogen but are not yet showing symptoms and are not infectious 
3. Infectious: individuals who are infectious to the susceptible population and will 

eventually display overt symptoms 
4. Recovered: those who have recovered from illness and acquired immunity to further 

infection 

These compartments are then linked with a system of ordinary differential equations (ODEs) to 
characterize how individuals transition into and out of each compartment over time. A variety of 
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scenarios can be simulated by changing the rate parameters of the ODEs linking the population 
compartments. Furthermore, this approach allows quantitative projections of how many people 
are exposed to a pathogen and become sick under different outbreak conditions.  
While the SEIR model is mathematically rigorous and often has good predictive utility during an 
outbreak, the SEIR model requires several assumptions. First, the model assumes there is a fixed 
population N, with no births or deaths other than those resulting from the infectious disease. 
Second, it assumes the population is homogeneously mixing, that is the transmission between 
any two individuals is equally likely. Third, the model assumes that exposed individuals become 
infectious after a fixed incubation period, thus not accounting for individual variability of disease 
progression for the young, elderly, or immunocompromised. Finally, the model assumes that all 
recovered individuals are immune to further infection and thus do not re-enter the susceptible 
class. While any of these assumptions may fail to hold in particular contexts, abiding by them 
allows for greater mathematical tractability and offers similar relative output trends.  
Baseline SEIR Model 
The SEIR model consists of a system of four ODEs that describe the rate of change of 
individuals in each compartment over time (Figure 1). The differential equations for 
Susceptible,	𝑆#, Exposed,	𝐸#, Infectious, 𝐼#, and Recovered, 𝑅# are as follows, where dependence 
on time, 𝑡, is omitted in the notation below for simplicity: 

𝑑𝑆
𝑑𝑡 = −

𝛽𝑆𝐼
𝑁  

𝑑𝐸
𝑑𝑡 =

𝛽𝑆𝐼
𝑁 − 𝜎𝐸 

𝑑𝐼
𝑑𝑡 = 𝜎𝐸 − 𝛾𝐼 
𝑑𝑅
𝑑𝑡 = 𝜌𝐼 

 
Table 1 describes all of the parameters we use for our models. At the start of the model, a subset 
of the population is exposed to a pathogen (E0), and the remainder are susceptible to infection. 
Susceptible individuals enter the exposed compartment at a rate of 𝛽𝑆𝐼 𝑁0 , which is known as the 
normalized transmission rate. The parameter 𝛽 is the contact rate, which accounts for how often 
susceptible-infectious contacts result in a susceptible individual becoming exposed to the 
pathogen. Exposed individuals become infectious at a rate of 𝜎, which is the inverse of the 
incubation period. Infectious individuals stay infectious at a rate of 𝛾 (the inverse of the 
infectious period) until they recover or die. We define the recovery rate, ρ as (1-f) γ where the 
case fatality rate f is the proportion of infected individuals who die from the disease. Note that 
we do not specify a mortality compartment in this analysis, though for some pathogens spread 
through the handling of remains (such as Ebola during the 2014 West Africa outbreak), this 
compartment would be a critical addition. 
 
TABLE 1. Parameter Definitions and Values for Baseline and Policy-Dependent Models 

Parameter Definition Parameter Values (used in analysis) 
N Total active population  

(S + E + I + R) 
1000 

E0 Initially exposed population 300 
β  Contact rate 0.75 
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FIGURE 1. In this schematic diagram of the SEIR model, each box represents a compartment of the population, and arrows 
show the progression of individuals through those compartments. Expressions above arrows are rate coefficients showing 
progression through compartments. Note that the dashed boxed portion, indicating individuals leaving the population because 
of death, will not be included in future diagrams for simplicity. 
 
Another important component of the SEIR model is the basic reproduction number ℛ2	which is 
often included as a basic property of any given pathogen [15]. ℛ2	 represents the average number 
of additional infections caused by each infectious individual, assuming there are no control 
interventions. In a fixed population represented in the SEIR model, the reproduction number can 
be calculated from parameters in the model as ℛ2 	=

𝛽
𝛾0 .  

The solutions of the SEIR model are functions of the number of individuals in each compartment 
with respect to time, i.e., 𝑆#, 𝐸#, 𝐼#, and 𝑅#. We solve this numerically by using an ODE solver in 
MATLAB®.  
An example output of the full SEIR model is shown in Figure 2a. Here, we begin with a 
population of N = 1000 people (roughly equivalent to a large battalion), and consider a scenario 
where 300 individuals are exposed to some pathogen at time, 𝑡 = 0 (𝑆#42 = 700, 𝐸#42 =
300, 𝐼#42 = 𝑅#42 = 0). If we assume a particular infectious pathogen has a contact rate,	𝛽 =
0.75, with an incubation period of two days, 𝜎 = 0.5, and an infectious period of five days, 𝛾 =
0.2 (similar properties to a highly contagious flu virus), the solution to the SEIR model shows 
that nearly the entire population will contract the disease over the course of a month. Figure 2b 
focuses on the number of cumulative infections, a metric for assessing the overall size of the 
outbreak over time. This baseline condition, in which no public health policy is in effect, 
represents the most severe outcome from an infectious disease outbreak.  
 

σ Incubation rate 0.5 (2-day incubation period) 
γ Infectious rate 0.2 (5-day infectious period) 
ρ Recovery rate 0.18 
f Case fatality rate 0.1 
θ Self-reporting probability 1 (all ill individuals self-report) 
α Self-reporting rate 0.5 (2-day self-report delay) 
tQ Time of quarantine 0 
ε Release rate 0.2 (5-day quarantine period) 
κ False-alarm rate 1/365 (1 false alarm per year) 
λ Early detection rate 1 (1-day early detection time) 
PD Probability of early detection 0.8 
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            (a)         (b) 
FIGURE 2. A numeric solution for the baseline SEIR model shows the population of each compartment versus time (a), which 
indicates that for an initial exposure of 300 individuals, nearly the entire population will eventually fall ill; the cumulative 
number of infections (Cumulative I) versus time is shown in (b). 
 
Policy-Dependent SEIR Models 
In the previous section, we considered the standard SEIR model, which describes disease spread 
without any public health interventions. To quantitatively evaluate an outbreak scenario with 
additional measures, the parameters and compartments of the SEIR model can be modified to 
reflect policy choices or new early warning technologies. Two policies currently considered as 
standards in handling possible outbreaks rely on self-monitoring to implement voluntary 
isolation or quarantining all individuals that may have been exposed to a pathogen. Isolation 
applies to individuals who are already ill, whereas quarantine applies to individuals who may 
have been exposed but have not yet shown symptoms. The first policy, self-monitoring and 
reporting, which assumes individuals self-report when they develop symptoms, allows for 
additional infections during the time delay between the onset of symptoms and isolation; 
however, it does not account for the logistical and financial cost of quarantine. The second 
policy, quarantining the entire population, is effective in reducing additional transmissions but 
has a prohibitively onerous costs for large populations. In an effort to explore the impact of a 
host-based early warning system, we modified the SEIR model to simulate a third policy, 
quarantine-on-alert, in which individuals are only quarantined when prompted by a host-based 
early warning system. We hypothesized that the early notification of incipient illness will allow 
for reductions in pathogen transmission while minimizing the number of quarantined individuals. 
We then assessed each of these three new policy-dependent SEIR models. 
Self-Monitoring and Reporting: Isolation after Symptoms 
In the course of an infectious disease outbreak, most individuals tend to self-monitor for 
symptoms of the pathogen. If individuals start to develop symptoms, they can self-report to a 
medical facility and may be immediately isolated until they recover. A new compartment, 
isoLated (L), was added to the SEIR model to reflect this symptomatic and infectious population, 
which has limited contact with the rest of the population and therefore reduced transmission 
potential (Figure 3). The self-reporting probability θ is defined as the proportion of symptomatic 
individuals who are compliant in reporting their symptoms and enter the L compartment. The 
self-reporting rate α is derived from the delay between developing symptoms and self-reporting 
(i.e., the inverse of the average time delay). For our model, we assumed that isolation is 100 
percent effective in preventing transmission, and individuals in the L compartment are unable to 



  6 

infect the susceptible population. While a self-monitoring policy reduces transmission rates by 
isolating the self-reported sick, both the latency α and an imperfect self-reporting probability 
(θ<1) can lead to opportunities for transmission. 

 
FIGURE 3. The model diagram for a self-monitoring and self-reporting policy includes an additional compartment (L) for 
individuals who are isolated after developing symptoms. Note that fatalities are left out for simplicity. 
 
Outputs for the SEIR model with self-reporting and isolation are shown in Figure 4. This policy 
addition leads to both fewer total individuals contracting the disease and fewer individuals 
acutely symptomatic at the height of the outbreak. The new isolated compartment L, however, 
has other costs associated with lost duty days, mandated isolation, medical facilities, and 
treatment. The choices of self-reporting probability and rate are critical in this scenario, and, in 
reality, may have such broad distributions that relying on this policy in an acute outbreak may do 
little to prevent additional infections. 

 
          (a)            (b) 

FIGURE 4. In this numeric solution for our SEIR model with a self-monitoring and isolation policy enacted, the population 
of each compartment versus time is shown in (a), and the active working (S + E + I + R) and inactive (L) populations versus 
time with the cumulative infections versus time are shown in (b). The self-monitoring policy has effectively reduced the total 
number of disease cases and blunted the outbreak’s peak severity (number of cases in I and L peak at approximately 7 days). 
 
Quarantining the Entire Population 
Another possible public health response to an outbreak is to quarantine currently healthy 
individuals with some likelihood of pathogen exposure. In outbreaks where a large population 
subset has some exposure likelihood, a quarantine-all policy would separate all individuals in the 
population from contact with one another. Our model assumes that quarantined individuals, 
represented by the Q compartment, are monitored and immediately isolated once they develop 
symptoms (Figure 5). If quarantined individuals do not become symptomatic after the maximum 
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incubation time of the suspected pathogen (often several weeks), they are released and re-enter 
the S compartment at a rate of ε (the inverse of the maximum incubation time). As shown in 
Figure 6, the quarantine-all policy eliminates opportunities for further pathogen transmission; 
however, it also results in the quarantine of healthy individuals who have not been exposed, 
contributing to immense productivity losses, extreme logistic burdens associated with providing 
accommodations for an entire population, and acute civil rights concerns. Furthermore, the 
assumption that transmission is zero within the Q compartment may not be realistic because 
transmission for some pathogen may occur before overt symptoms and isolation. This 
quarantine-all policy could result in the illness of people who, if not for the quarantine, would 
never have been exposed to the pathogen.  
 

 
FIGURE 5. The model diagram for a quarantine-all policy moves all susceptible and exposed individuals to the quarantined 
compartment (Q) at the time t0, Quarantined individuals who do not develop symptoms are returned to the susceptible 
compartment after a maximum incubation time. 
 
 

 
          (a)           (b) 

FIGURE 5. In the numeric solution for our SEIR Model with a quarantine-all policy enacted, the population of each 
compartment versus time, which notably does not include an exposed compartment, is shown in (a). In (a) are individuals 
suspected to be exposed and quarantined initially, until they either fall ill (and are isolated) or are released after the quarantine 
duration (21 days). The active working (S + R) and inactive (Q + L) populations versus time with the cumulative infections 
versus time are shown in (b). The quarantine-all policy has very effectively reduced the total number of disease cases but has 
vastly increased the burdens of quarantine and isolation. 
 
Quarantine on Alert 
The third model we explored simulates a novel policy that could potentially be enabled by future 
host-based early detection capabilities. Here, a host-based early warning system could prompt a 
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quarantine only on alert when the system detects pre-symptomatic signs of exposure. We 
integrated the early warning performance metrics from our PRESAGED algorithm—population-
wide probability of early detection, daily false-alarm rate, and early detection time—into a base 
SEIR model. As shown in Figure 7, a host-based early warning system would trigger exposed 
individuals to transition into quarantine at a rate characterized by the product of the parameters λ 
and PD. The parameter λ is an early detection rate defined as the inverse of the system’s average 
early detection time for a given pathogen. The parameter PD is the population-wide probability of 
early detection, i.e., the fraction of the exposed population that will present early detections of 
pathogen exposure prior to becoming infectious. Missed detection cases, when the system fails to 
produce an early warning, occur with a probability of 1 – PD across the exposed population. For 
this policy, false alarms of the host-based early warning system would cause healthy individuals 
to be incorrectly quarantined. Our model takes this notion into account by adding a transition rate 
from the susceptible to the quarantined compartment, characterized by a daily false-alarm rate κ, 
the probability of an individual’s early warning system presenting a false alarm on a given day.  

 

 
 
FIGURE 6. This hybrid model diagram illustrates the final quarantine-on-alert policy. The performance of the PRESAGED-
like early warning system is now explicitly added, including the probabilities of early detection and false alarm, as well as an 
expected early detection time before symptom onset and infectiousness. This hybrid between quarantine-all and self-
monitoring with isolation seeks to leverage the epidemic-limiting behavior of both policies while reducing the cost and 
burdens of each. 
 

 
    (a)      (b) 

FIGURE 7. This numeric solution for our SEIR model with a quarantine-on-alert policy enacted shows the population of each 
compartment versus time (a); the plot shows how such an early warning technology could limit the outbreak size. As the 
initially exposed individuals receive alerts, they enter the quarantine-on-alert compartment and are unable to infect the 
susceptible compartment. The active working (S + E + I + R) and inactive (Q + L) populations versus time are shown with the 
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cumulative infections versus time in (b). The quarantine-on-alert policy has effectively reduced the additional disease cases 
and has largely limited those in quarantine to those individuals who were initially exposed. 
 
While the self-monitoring and quarantine-all policies present clear trade-offs between cumulative 
number of infections and number of people isolated or quarantined, this quarantine-on-alert 
policy offers a hybrid approach that could optimize for both. Quarantine-on-alert vastly reduces 
quarantine costs by selectively identifying likely exposed individuals through physiologically 
based predictions. Furthermore, once quarantined, these high-risk individuals can be 
immediately isolated, thus limiting the opportunities of additional infections and enabling more 
focused medical care.  
SEIR Model Reproduction Numbers by Policy Choice 
Modifications made to the baseline SEIR model result in changes to the reproduction number 
(R) associated with each policy-dependent SEIR model [16]. Our example scenario assumes that 
every symptomatic person will self-report and thus the self-reporting probability, θ, is 1. Table 2 
summarizes equations to calculate R values for each policy, the R values given the parameter 
values in Table 1, and the cumulative cases of infection for each policy choice after 50 days. The 
policies with the lower R values (quarantine-all and quarantine-on-alert) are associated with 
minimal pathogen spread, while the policies with higher R values (self-monitoring and baseline) 
yield a greater number of infection cases. The number of cumulative infections as the ODE 
reaches equilibrium illustrates how the reproduction number would affect the final size of the 
outbreak. Note that the number of cumulative infections for baseline saturates around the 
population size (N = 1000) when the number of individuals in the susceptible compartment is 
exhausted. 
TABLE 2. Reproduction Number (R) Equations and Nominal R Values for Our Example 
Scenario 

Policy R Equation R Value 

Cumulative 
Infections 
after 50 

days 

Baseline ℛ2 =
β
γ 3.75 986 

Self-monitoring ℛ2 =
β
α 1.5 846 

Quarantine-all ℛ = 0 0 300 

Quarantine-on-alert ℛ =
β
α

(1 − 𝑃A)σ
(1 − 𝑃A)σ + 𝑃Aλ

 0.167 347 

In a population of N = 1000, the number of initially exposed individuals is E0 = 300. The 
nominal 𝓡 Value and Cumulative Infections were calculated using parameter values from 
Table 1.	

 
 
Policy Trade-Space Analysis 
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The policy-dependent SEIR models provide a foundation for a trade-space analysis of different 
quarantine, isolation, and treatment (QIT) policies as a function of disease transmission 
characteristics, exposure scenarios, and performance of early warning systems. The analysis 
captures both the potential benefits (reduction in quarantine costs, more focused use of medical 
resources) and risks (increase in infections) for each policy.  

To demonstrate the potential utility of the early warning–enabled quarantine-on-alert model 
in a more comprehensive QIT policy analysis, we compared outcomes over a range of disease 
transmission rates, initial exposure conditions, and early warning performance parameters. We 
varied these parameters in simulations of a mass exposure to an infectious pathogen occurring in 
a population of 1,000 people. All scenarios were simulated over 50 days. Because we fixed the 
exposure time for all cases to t = 0, rather than using the quarantine release rate ε, all individuals 
in quarantine were returned to the susceptible compartment at t = 21 days (the maximum 
incubation period). 
 
 

 
   (a)      (b) 

FIGURE 9. The model outputs compare consequences of self-monitoring, quarantine-all, and quarantine-on-alert outbreak 
response policies. In (a), the plot shows the number of inactive individuals that are unable to work due to quarantine and 
isolation (Q + L for quarantine-all and quarantine-on-alert, only L for self-monitoring because it does not utilize quarantine) 
versus time. The sharp drop-off for quarantine-all represents the release of all quarantined individuals after 21 days. In (b), 
the plot shows the cumulative infections versus time. Any infections above the dotted line (number of individuals initially 
exposed at t = 0) indicate additional transmission of the pathogen. 

 
We defined policy outcomes via two metrics derived from the policy-dependent SEIR model 

outputs as shown in Figure 9. The first, lost duty days, is the percentage of total number of days 
of work productivity that are lost because of quarantine and isolation in the 50-day simulation; 
this percentage is proportional to the integral of the curves in Figure 9a. The second metric, 
cumulative infections, is the percentage of the population that has been infected by the end of the 
simulation (Figure 9b). These two metrics characterize a trade space for evaluating QIT policies 
under different circumstances, as any measure that reduces the number of people in quarantine 
and isolation may be expected to increase the likelihood of infection in the population. While 
these metrics are helpful for evaluating the impact of various policy choices, they are by no 
means comprehensive and particularly do not consider the financial or other costs associated 
with quarantine.  
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FIGURE 10. Simulations are run on each combination of QIT policy and outbreak scenario, resulting in 20 independent 
conditions for the trade space simulations.   
 

Using these metrics, we evaluated five QIT policy sets: quarantine-all, isolate upon self-
reporting, and quarantine-on-alert with three different levels of early detection performance—
high sensitivity (PD = 0.8, κ =0.10), high specificity (PD = 0.4, κ = 1/365), and a near-ideal early-
detection system (PD = 0.8, κ = 1/365). These five QIT policy options were then tested against 
four different outbreak scenarios with high or low disease transmission (where β = 0.6 or 0.3, 
respectively) and high or low initial population exposures (where E0 = 600 or 50, respectively). 
Figure 10 shows the QIT policy trade-offs for these 20 independent outbreak and policy 
combinations. 

 

QIT Policies Outbreak Scenarios 
Scenariosolicies 
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FIGURE 11. The trade space for the percentage of population infected versus percentage of lost duty days compares the 
augmented policies: self-monitoring, quarantine-all, and quarantine-on-alert with three levels of early warning performance 
(high sensitivity, high specificity, and ideal early warning). Four situations were considered: low-transmissibility pathogen 
with a low initial exposure (a), high-transmissibility pathogen with a low initial exposure (b), low-transmissibility pathogen 
with a high initial exposure (c), and high-transmissibility pathogen with a high initial exposure (d). 
 

We found that for all scenarios, a quarantine-on-alert policy coupled with the near-ideal early 
warning capability reduced quarantine needs with only a small increase in the number of 
additional infections. The cost of focusing on a high-specificity early detection system (i.e., a 
reduction in false alarms and thus quarantine costs) was an increase in additional infections 
relative to the near-ideal system. Conversely, a high-sensitivity system increased the percentage 
of the population in quarantine compared to both the ideal and high-specificity early detection 
system while reducing the number of additional infections to nearly the number seen by 
quarantining the entire population a priori.  

For scenarios with low initial exposure, the impact of early warning–enabled QIT policies 
varied dramatically with transmissibility. For low-transmissibility and small initial exposures 
(Figure 11a), an early warning capability demonstrated the least utility as the outbreak was 
effectively contained with just self-monitoring. However, for a pathogen with high 
transmissibility (Figure 11b), the cumulative infections were reduced significantly with the 
notional early warning systems. A high-specificity system offered a particularly promising result, 
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showing comparable infection reduction to the near-ideal system while also minimizing the 
number of days lost to quarantine. 

In the scenarios of high initial exposure (Figure 11c and Figure 11d), the costs of imperfect 
early detection were more pronounced compared to those for scenarios of low initial exposure. 
Because a high initial exposure greatly increased the likelihood of infectious individuals 
transmitting the pathogen to those susceptible, even a short delay in isolating infectious 
individuals lead to more infections. The reduction of cumulative infections for all notional early 
warning systems, relative to the self-monitoring policy, was less prominent than in scenarios of 
low initial exposure as the initial exposed population was close to saturation. In effect, for these 
extreme cases of mass exposures, the more aggressive policies (i.e., a high-sensitivity early 
detection system or quarantining everyone) may be more effective.  
 
Discussion and Future Work 
Our results on the early warning–enabled and policy-dependent SEIR models allows for a 
quantitative analysis of the QIT trade space and provides potential guidance on priorities for the 
future development of early warning technology. However, this illustration of QIT risk analysis 
captures only a subset of the factors that must be considered in the formulation of a rational, 
effective QIT policy. The context of the scenario will ultimately inform where the ideal 
operating point would be. For example, the number of total infections may be interpreted 
differently depending upon the virulence of the disease. The tolerance for new infections may be 
low if the consequences are high, such as if the infection is almost always fatal or is associated 
with severe symptoms and long-term complications. Additionally, the availability of diagnostic 
tests may further refine the use of early warning capabilities; a more sensitive early detection 
capability could be combined with a cued use of diagnostic testing to form a much more targeted 
approach, reducing costs and the likelihood of a false detection. While the results we presented 
are a first attempt at understanding the potential utility of a host-based early warning system 
during an outbreak, a comprehensive risk assessment of a QIT policy must consider a range of 
factors: 
• Disease characteristics: prevalence, transmissibility, incubation period, and severity  
• Response options: reliable diagnostic tests, vaccines, or treatments 
• Resources: cost and availability of QIT measures 
• Early warning capability: performance characteristics of early warning systems 
• Public health infrastructure: ability to implement an effective public health campaign 

An element that we do not include in our model is patient care measures, which are nearly 
always more effective when deployed earlier than overt indications of infection (e.g., fever). For 
instance, antiviral drugs (such as zanamivir and oseltamivir/Tamiflu) are most effective in the 
first ~48 hours of symptoms [8, 17, 18]; PRESAGED-enabled early warning would allow much 
faster prescription, use, and potentially more profound therapeutic impact for current dosage 
recommendations. Triggering the use of diagnostics early would allow clinicians to target drug-
based interventions, such as using the precise antibiotic for bacterial infections rather than 
relying on broad-spectrum versions that contribute to the evolution of drug-resistant bacteria 
(“superbugs”). Finally, simple supportive care for mild infections, e.g., having rehydrating 
solutions or over-the-counter symptom-relieving medications available, could ease the burden on 
health care workers in hospitals, nursing homes, or college campuses. All of these exciting 
possibilities could be enabled or improved with earlier detection. 
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Future modeling efforts need to focus on improvements to this model, especially as more is 
known about the mechanistic basis for host-based early warning of pathogen exposure. Several 
enhancements of QIT policy include: 
1. Consequences of infection, or a cost function of being in the infectious compartment. 

Adding a more explicit fatality compartment is straightforward. However, more complex 
models incorporating significantly time-delayed or nonlinear costs are much more accurate 
for measuring the effectiveness of QIT policies. 

2. Early quarantine release. When the maximum incubation period may result in long 
quarantine periods that lead to unacceptably high quarantine costs, the absence of an 
exposure detection in individuals who have not been exposed to the pathogen may trigger 
an early release from quarantine. This early quarantine release approach could significantly 
reduce costs and civil rights issues associated with quarantine. 

3. Modeling of additional QIT responses. Incorporating diagnostic tests into the models could 
refine the quarantine trigger and release policies. Additionally, future models could include 
specific treatments upon early warning to modulate infection outcomes. Such options may 
be particularly important in circumstances when quarantine and isolation resources are 
limited. 

4. Movement among populations. The policy-dependent SEIR model addresses a single, 
isolated population being homogenously mixed. However, in many circumstances, QIT 
policy is driven by a concern for the spread of the pathogen into connected populations. To 
address these circumstances, the policy-dependent SEIR model may be further extended to 
incorporate changes in each population compartment that result from the movement of 
people into (or out of) individual population compartments from (or to) other populations. 
In this formulation, individual populations are modeled with the extended SEIR mode as 
nodes in a migration network. Network edges are characterized by migration rates between 
the connected subpopulations. 

5. Stochastic modeling. In a more realistic model, each of the SEIR parameters may be modeled 
in greater detail as a probability distribution rather than a fixed value. Stochastic modeling 
would support a more comprehensive risk analysis that includes insights about the likely 
range of potential outcomes, as well as rare but high consequence “edge” cases.  

In conclusion, we have shown the epidemiological value of host-based early warning systems in 
a variety of pathogen outbreaks. By adjusting the underlying assumption, both of the outbreak 
and the system performance metrics of a notional early detection system, we show in which 
scenarios early detection is most impactful. The results of this work emphasize the value of early 
detection in modulating public health responses, though future efforts will also include the value 
to individual patients.  
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