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Artificial neural networks in neurorehabilitation: A scoping review 

 

Abstract 

BACKGROUND: Advances in medical technology produce highly complex datasets in 

neurorehabilitation clinics and research laboratories. Artificial neural networks (ANNs) have 

been utilized to analyze big and complex datasets in various fields, but the use of ANNs in 

neurorehabilitation is limited. OBJECTIVE: To explore the current use of ANNs in 

neurorehabilitation. METHODS: PubMed, CINAHL, and Web of Science were used for 

literature search. Studies in the scoping review (1) utilized ANNs, (2) examined populations with 

neurological conditions, and (3) focused rehabilitation outcomes. The initial search identified 

1,136 articles. A total of 19 articles were included. RESULTS: ANNs were used for prediction of 

functional outcomes and mortality (n = 11) and classification of motor symptoms and cognitive 

status (n = 8). Most ANN-based models outperformed regression or other machine learning 

models (n = 11) and showed accurate performance (n = 6; no comparison with other models) in 

predicting clinical outcomes and accurately classifying different neurological impairments. 

CONCLUSIONS: This scoping review provides encouraging evidence to use ANNs for clinical 

decision-making of complex datasets in neurorehabilitation. However, more research is needed 

to establish the clinical utility of ANNs in diagnosing, monitoring, and rehabilitation of 

individuals with neurological conditions. 

 

Keywords: Neural Networks; Rehabilitation; Neurological Rehabilitation; Nervous System 

Diseases.  
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1. Introduction 

Emerging new technologies are reshaping healthcare systems. Artificial intelligence (AI) 

is positioned at the front line of this transformation with the potential to provide better healthcare 

including accurate prediction of clinical outcomes and precise classification of diseases and 

symptoms (Lisboa, 2002). An artificial neural network (ANN) is a common machine learning 

method in AI technology. ANNs have rapidly adopted in various fields in healthcare and clinical 

decision-making (Shahid, Rappon, & Berta, 2019). For instance, radiologists and oncologists use 

ANNs in thoracic imaging (e.g., identification of pulmonary nodules and automatic 

categorization of benign or malignant tumor) (Hosny, Parmar, Quackenbush, Schwartz, & Aerts, 

2018), brain imaging (e.g., brain tumor diagnostic prediction, imaging segmentation, benign, 

malignant, primary, or metastatic tumor categorization) (Orringer et al., 2017), and 

mammography (e.g., breast cancer detection) (Rodriguez-Ruiz et al., 2019). Cardiologists utilize 

ANN-based models for automatic cardiac imaging classification and electrocardiogram 

classification and monitoring system (Abdolmanafi, Duong, Dahdah, & Cheriet, 2017; Kiranyaz, 

Ince, & Gabbouj, 2016). 

 

The ANN is inspired by biological neural processes in the central nervous system 

(McCulloch & Pitts, 1943; Mohri, Rostamizadeh, & Talwalkar, 2012). The primary function of 

neurons in the brain is to receive a signal and to deliver it to the next neuron. Similarly, ANNs 

also consist of simple processing elements, which are known as artificial neurons or ‘nodes’. A 

group of nodes 54that arrange in a parallel structure is called a ‘layer’. Figure 1 shows the three 

types of layers (input, hidden, output) of a simple ANN. In this ANN, the input layer receives 

information, which is propagated through one adjacent hidden layer to the output layer. In our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.20.20025858doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.20.20025858
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

brain, connections between neurons are reinforced as we repeatedly try to classify different 

objects or predict a consequence based on current information. Similarly, ANNs are designed to 

learn from data and optimize a network through reinforcing weighted connections that can 

classify objects or predict outcomes. The learning potential of an ANN is a major strength 

compared to other conventional models as the ANN can train the model to find the best subset of 

parameters. Depending on the complexity and types of the questions to be addressed, the number 

of nodes in each layer and/or the number of hidden layers can be modified. Furthermore, ANNs 

do not require assumption of normal distribution of variables in the dataset. As such, ANNs can 

compute complex and non-linear interactions between data that are often challenging to compute 

using conventional linear statistical analyses (Lancashire, Lemetre, & Ball, 2009). Further details 

about the mathematical and statistical background of ANNs can be found in the supplementary 

section (Supplementary Appendix S1). 
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Figure 1. Schematic example of an ANN structure with a single hidden layer (wij
(1) = weighted 

connection between i-th node in the input layer and j-th node in the hidden layer and wij
(2) = 

weighted connection between j-th node in the hidden layer and k-th node in the output layer; i = 

1, 2, …, D; j = 1, 2, …, M; k = 1, 2, …, K) 

 

In neurorehabilitation, clinicians and researchers are particularly interested in predicting 

functional outcomes accurately and classifying subtle differences in symptoms and status 

correctly in order to provide better healthcare service to patients. Hence, technologically 

advanced measures, such as wearable gait sensors (e.g., accelerometers, gyroscopes, and 

magnetometers), physical activity monitors (e.g., Actigraph and StepWatch), cardiovascular 

health monitors (e.g., wearable electrocardiogram monitor), have seen implementation both in 
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research and in the clinic to improve the quality of patient care (Lukowicz, Kirstein, & Tröster, 

2004). These technological tools make massive volumes of quantitative data clinically available 

to determine health and function for patients in need of rehabilitation and community re-

integration. However, these datasets are often under-utilized due to the complexity of the data 

and under-estimation of the potential value of data by clinicians (Ohno-Machado & Rowland, 

1999). 

 

Therefore, the purpose of this scoping review is to map the relevant literature pertaining 

to the use of ANNs in neurorehabilitation, with a special focus on its application for prediction of 

clinical outcomes and classification of clinical symptoms and status. A scoping review aims to 

offer a broad overview of a topic of interest, identify the literature and the feasibility of a full 

systematic review, include a broad range of study designs and methodologies, and identify 

research gaps (Arksey & O'Malley, 2005; Levac, Colquhoun, & O'Brien, 2010). 

 

2. Methods 

 All methodological frameworks for this scoping review were primarily based on the 

scoping review guidelines proposed by Arksey and O'Malley (Arksey & O'Malley, 2005) 

including (1) identifying the research question, (2) identifying relevant studies, (3) selecting 

studies, (4) charting the data, and (5) collating, summarizing, and reporting the results. The 

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Extension for 

Scoping Reviews were utilized to improve the quality of the reporting process (Tricco et al., 

2018). 
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2.1 Research question 

 “What is the current use of ANNs in neurorehabilitation?” 

 

2.2 Identifying relevant studies 

 Relevant studies were identified from three databases: PubMed, CINAHL, and Web of 

Science. The literature search included articles from inception of each database up to September 

2019. For PubMed and CINAHL, we utilized Medical Subject Headings (MeSH) terms to 

facilitate the literature search, but MeSH terms were not available in Web of Science. Search 

keyword strings were created around three main concepts to answer our research question (Table 

1). The first concept was ‘ANN’. The second concept was ‘neurological conditions’, with a 

specific focus on the most prevalent neurological conditions (stroke, Alzheimer disease (AD), 

Parkinson disease (PD), spinal cord injury, and traumatic brain injury) (Feigin et al., 2017; 

Gooch, Pracht, & Borenstein, 2017; Pringsheim, Fiest, & Jette, 2014). The third concept was 

‘rehabilitation’. Rehabilitation was defined as medical practices that involve a broad area of 

medical specialties and integrate various aspects of injuries and diseases that impact human 

functioning and health (Stucki, Cieza, & Melvin, 2007). Thus, we developed a comprehensive 

set of keywords revolving around rehabilitation, functioning, activities of daily living, and 

quality of life. We also manually searched the gray literature and the reference lists of the 

included studies to find additional articles. Figure 2 shows the PRISMA flowchart of the article 

selection process. 
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Table 1. Concepts and keywords used for literature search 

Concept Keywords 
Artificial neural network Artificial neural network; Neural Networks (Computer) [Mesh] 
Neurological conditions Parkinson*; Parkinson Disease [Mesh] 

stroke; Stroke [Mesh]  
Alzheimer*; Alzheimer Disease [Mesh] 
dementia; Dementia [Mesh]  
epilepsy; Epilepsy [Mesh] 
multiple sclerosis; Multiple Sclerosis [Mesh] 
traumatic brain injury; Brain Injuries, Traumatic [Mesh] 
Huntington*; Huntington Disease [Mesh] 
amyotrophic lateral sclerosis; Amyotrophic Lateral Sclerosis [Mesh] 
spinal cord injury; Spinal Cord Injuries [Mesh] 
brain tumor; Brain Neoplasms [Mesh] 
brain cancer; Brain Neoplasms [Mesh] 

Rehabilitation quality of life; Quality of Life [Mesh] 
activities of daily living; Activities of Daily Living [Mesh] 
pain; Pain [Mesh] 
function 
physical therapy; Physical Therapy Modalities [Mesh] 
rehabilitation; Rehabilitation [Mesh] 
assessment; Physical Examination [Mesh] 
evaluation 
treatment 
gait; Gait [Mesh] 
balance; Postural Balance [Mesh] 
occupational therapy; Occupational Therapy [Mesh] 
speech language pathology; Speech-Language Pathology [Mesh] 
cognition; Cognition [Mesh] 
memory; Memory [Mesh] 
problem solving; Problem Solving [Mesh] 

* was used as the truncation operator in the search. 
MeSH terms (in italics) were used in addition to keywords for the PubMed and CINAHL search. 
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Figure 2. Search flow for scoping review following the PRISMA guidelines 

 

2.3 Study selection 

Studies were included if they (a) utilized artificial neural networks, (b) investigated 

populations with neurological conditions, and (c) involved any aspect of rehabilitation as 

suggested in Stucki and colleagues (Refer to Section 3.2) (Stucki et al., 2007). The types of 

studies considered for inclusion were randomized controlled trials, retrospective database 
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studies, cohort studies, cross-sectional studies, case reports and series, and case-control studies. 

Studies were excluded if they were letters, opinions, commentaries, editorials, abstracts, animal 

studies, reviews, or protocols. Literature written in non-English was excluded. Studies were also 

excluded if they did not include a functional measure or rehabilitation outcome, such as 

symptom severity scores, cognition assessment results, mortality rates, or gait and balance 

characteristics. Finally, studies that employed deep learning neural networks (e.g., convolutional 

neural networks and recurrent neural networks) for signal or imaging processing (e.g., 

electroencephalogram and functional magnetic resonance imaging) were also excluded, because 

simple ANNs are considered sufficient for classification and predictive modelling of most 

datasets (Dreiseitl & Ohno-Machado, 2002). 

 

2.4 Charting the data 

 An Excel spreadsheet and Rayyan, a free systematic review online application, were 

utilized to chart the extracted data (Ouzzani, Hammady, Fedorowicz, & Elmagarmid, 2016). 

Titles and abstracts were reviewed by one reviewer (S.M.) and selected full texts were 

independently reviewed by two reviewers (S.M. and P.A.). After the independent review, there 

were three disagreements between two reviewers (S.M. and P.A.), which were discussed until 

consensus was achieved. 

 

3.  Results 

3.1 Characteristics of included studies 

 A total of 19 studies that utilized ANNs to examine various aspects of neurological 

rehabilitation were used for the qualitative synthesis and included for the scoping review. Among 
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them, 11 studies were ‘prediction’ studies, while 8 studies were ‘classification’ studies using 

ANNs. Most studies had a retrospective design (n = 12), followed by cross-sectional design (n = 

6) and cohort design (n = 1). Descriptions of the included studies are shown in Table 2. 

 

Table 2. Purposes of ANN application, patient population, and outcomes of the included studies 

Study ANN 
application 

Patient 
population 

Outcome of interest 

Salgueiro et al. 
(2013) 

Prediction Fibromyalgia Treatment result prediction 

Segal et al. 
(2006) 

Prediction TBI Long-term outcome prediction 

Rughani et al. 
(2010) 

Prediction TBI Prediction of in-hospital mortality 

Shi et al. (2013) Prediction TBI Prediction of in-hospital mortality 

Lu et al. (2015) Prediction TBI Long-term outcome and mortality prediction 

Pourahmad et al. 
(2016) 

Prediction TBI Prognostic prediction of functional outcomes 
(disability) 

Belliveau et al. 
(2016)  

Prediction SCI Long-term functional outcome prediction 

Sonoda et al. 
(1997) 

Prediction Stroke Functional recovery prediction 

Oczkowski et al. 
(1997) 

Prediction Stroke Functional outcome prediction 

Ottenbacher et 
al. (2001) 

Prediction Stroke Rehospitalization prediction 

Cheng et al. 
(2014) 

Prediction Stroke Prognostic prediction of stroke recovery 

Keijsers et al. 
(2000) 

Classification PD Detection and assessment of the severity of 
levodopa-induced dyskinesia 

Keijsers et al. 
(2003) 

Classification PD Automatic assessment of levodopa-induced 
dyskinesia 

Muniz et al. 
(2009) 

Classification PD 
(DBS) 

Assessment of the effects of DBS via gait analysis 

Manap et al. 
(2011) 

Classification PD Identification of gait parameters for gait 
abnormality 

Kaczmarczyk et 
al. (2009) 

Classification Stroke Gait pattern classification via gait analysis 

Scheffer et al. 
(2012) 

Classification Stroke Gait pattern classification using inertial motion 
capture 

Lins et al. (2017) Classification MCI, dementia Identification of prognostic parameters for cognitive 
impairment 

Quintana et al. 
(2012) 

Classification MCI, AD Assessment of cognitive impairment using clinical 
neuropsychology 

AD = Alzheimer disease, DBS = deep brain stimulation, MCI = mild cognitive impairment, PD = Parkinson 
disease, SCI = spinal cord injury, TBI = traumatic brain injury 
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3.2 Artificial neural networks in neurorehabilitation research 

 In neurorehabilitation, precise prognosis and prediction of recovery and an accurate 

classification of the severity of diseases and injuries can enhance the quality of patient care. The 

studies included in this scoping review focused on prediction of long-term outcomes (Belliveau 

et al., 2016; Lu et al., 2015; Salgueiro et al., 2013; Segal et al., 2006), functional recovery 

(Cheng, Lin, & Chiu, 2014; Oczkowski & Barreca, 1997; Pourahmad, Hafizi-Rastani, Khalili, & 

Paydar, 2016; Sonoda, Chino, Domen, & Saitoh, 1997), mortality (Lu et al., 2015; Rughani et 

al., 2010; Shi, Hwang, Lee, & Lin, 2013), rehospitalization (Ottenbacher et al., 2001), and 

classification of functional outcomes such as movement and gait characteristics (Kaczmarczyk, 

Wit, Krawczyk, & Zaborski, 2009; Keijsers, Horstink, & Gielen, 2003; Keijsers, Horstink, van 

Hilten, Hoff, & Gielen, 2000; Manap, Tahir, & Yassin, 2011; Muniz et al., 2009; Scheffer & 

Cloete, 2012) and cognitive impairments (Lins et al., 2017; Quintana et al., 2012). 

 

3.2.1 Artificial neural networks to predict outcomes in neurorehabilitation 

 Among the 11 studies that used ANNs to predict neurorehabilitation outcomes, five 

studies investigated prognosis and mortality after traumatic brain injury (TBI) (Lu et al., 2015; 

Pourahmad et al., 2016; Rughani et al., 2010; Segal et al., 2006; Shi et al., 2013) and one study 

investigated prognosis and mortality after traumatic spinal cord injury (SCI) (Belliveau et al., 

2016). Four studies examined functional recovery and rehospitalization after stroke (Cheng et al., 

2014; Oczkowski & Barreca, 1997; Ottenbacher et al., 2001; Sonoda et al., 1997). One study 

used ANN to predict treatment response in people with fibromyalgia (Salgueiro et al., 2013). 

 

Rughani and colleagues (Rughani et al., 2010) compared the accuracy of an ANN model 

with logistic regression in 100 patients with TBI. The ANN model predicted mortality based on 
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clinical outcomes. The performance of the ANN model showed significantly greater accuracy 

(88%) in predicting survival following TBI than the logistic regression model (79%, p < 0.001) 

and a clinician’s judgment of survival (72%, p < 0.0001). A similar study reported that the ANN 

model outperformed a logistic regression model in predicting mortality with more than 95% 

accuracy compared to 82% in the logistic regression model (p < 0.001) (Shi et al., 2013). Lu and 

colleagues (Lu et al., 2015) compared the ability of multiple models including ANN, decision 

tree, naïve Bayes, and logistic regression to predict 6-month functional outcome and mortality in 

115 people after TBI from clinical data. The ANN was the best model to predict the 6-month 

functional outcomes between favorable (Glasgow Outcome Scale (GOS) 1 to 3) and unfavorable 

(GOS 4 to 5) outcomes (area under the receiver operating characteristic curve (AUC) 96% for 

ANN, 94% for naïve Bayes, 92% for decision tree, and 90% for logistic regression), but it was 

not the best model to predict 6-month mortality. A naïve Bayes model (AUC 91%) outperformed 

other models (AUC 81% for ANN, 78% for decision tree, and 87% for logistic regression) in 

predicting 6-month mortality after TBI. 

 

 To predict functional outcomes after TBI, two studies utilized ANN models. An ANN-

hybrid model with a decision tree predicted 6-month post functional outcomes (extended 

Glasgow Outcome Scale) in 410 people after TBI with an 86% accuracy, whereas the decision 

tree model yielded 82% (Pourahmad et al., 2016). Contrarily, Segal and colleagues (Segal et al., 

2006) reported the ANN model not to show greater accuracy (r2 = 0.40 between predicted and 

observed outcomes) in predicting 1-year post-TBI outcomes such as Functional Independence 

Measure (FIM; total score of motor and cognitive subscales), Disability Rating Scale, and 
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Community Integration Questionnaire, compared with multiple regression models (r2 = 0.44) and 

classification and regression trees (r2 = 0.29). 

 

One study utilized ANNs to predict outcomes in the SCI population. Belliveau and 

colleagues (Belliveau et al., 2016) analyzed the data of 3,142 people with traumatic SCI who 

were registered in the national spinal cord injury model systems database. An ANN model was 

used to predict the level of independence one year after discharge from hospital. The ANN 

model predicted the ambulation status (e.g., 150ft walk, 1 street block walk, and 1 flight of 

stairs) with a high accuracy (85.5 to 87.7%) and the non-ambulation outcomes (e.g., bed-chair 

transfers, bowel and bladder management, eating, and toileting) with a high accuracy (75.9% to 

83.4%). However, their ANN model performed similarly compared to the logistic regression 

model (86.0 to 87.9% for ambulation status and 75.6 to 85.9% for non-ambulation status). 

 

 Another study investigated 72 people with fibromyalgia to evaluate the accuracy of 

ANNs to predict treatment response (responder vs. non-responder) after a 4-week 

interdisciplinary pain program at discharge and 6-month follow-up (Salgueiro et al., 2013). 

Functional outcomes such as the Stanford Health Assessment Questionnaire and the McGill Pain 

Questionnaire were used as input data. Compared to logistic regression models, ANN models 

showed superior prognostic accuracy in predicting treatment response at discharge (91.7% for 

ANN and 86.1% for logistic regression) and at 6-month follow-up (91.7% for ANN and 61.1% 

for logistic regression). 
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Three studies used ANN models to predict functional outcomes and one study to predict 

rehospitalization after stroke. Oczkowski and Barreca (Oczkowski & Barreca, 1997) tested an 

ANN model to predict functional recovery in 147 stroke survivors. The ANN model predicted 

discharge FIM score (total score of motor and cognitive subscales) with 88% accuracy, but this 

study did not have any comparison model. Sonoda and colleagues (Sonoda et al., 1997) used an 

ANN model to predict functional outcomes in 70 people after stroke using the severity of 

impairment. In this study, the predicted FIM scores by the ANN model and observed FIM scores 

were significantly correlated (r = 0.74; p < 0.001), but no comparison model was reported. 

Cheng and colleagues (Cheng et al., 2014) developed an ANN model to predict prognosis 3 

months after ischemic stroke based on the data of 82 ischemic stroke survivors. Their model 

showed greater accuracy (95%) in predicting prognostic outcomes compared to the logistic 

regression model (68%). Lastly, a large medical record database was studied by Ottenbacher and 

colleagues (Ottenbacher et al., 2001), which contained nearly 10,000 patient records collected 

from 167 hospitals across 40 states in the United States. The study compared ANN with a 

logistic regression model in predicting hospital readmission after stroke. This study reported no 

statistically significant difference or practical advantage in performance characteristics of the 

two models, though the ANN model (AUC 74%) showed slightly accurate performance in 

rehospitalization prediction than the logistic regression model (AUC 68%). 

 

3.2.2 Artificial neural networks to classify outcomes in neurorehabilitation 

 Eight studies utilizing ANNs primarily for classification were included in this scoping 

review. Among these, six studies used ANNs for classification of gait pattern or movement 

abnormality (Kaczmarczyk et al., 2009; Keijsers et al., 2003; Keijsers et al., 2000; Manap et al., 
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2011; Muniz et al., 2009; Scheffer & Cloete, 2012), while two studies used ANNs for 

classification of cognitive status (Lins et al., 2017; Quintana et al., 2012). 

 

Four studies utilized ANNs for classification of motor symptoms such as dyskinesia or 

abnormal gait among people with PD (Keijsers et al., 2003; Keijsers et al., 2000; Manap et al., 

2011; Muniz et al., 2009). Keijsers and colleagues (Keijsers et al., 2000) collected wearable 

accelerometer data from 16 people with PD. The ANN models differentiated voluntary 

movement from levodopa-induced dyskinesia, and correctly classified the severity of dyskinesia 

that corresponded to the modified Abnormal Involuntary Movement Scale (mAIMS; 0-4 scale; 0 

= no dyskinesia and 4 = extreme dyskinesia). In this study, their ANN models showed 

correlations (r) ranging from 0.66 to 0.84 between predicted and observed mAIMS scores. The 

magnitude of correlations derived from the ANN was higher compared to logistic regression (r 

between -0.01 and 0.77). A follow-up study by the same group developed an automatic 

assessment system for levodopa-induced dyskinesia, in which the ANN correctly classified the 

severity of levodopa-induced dyskinesia (93.7% for arms, 99.7% for trunk, and 97.0% for legs) 

and distinguished dyskinesia from voluntary movements in a home-like setting (80% accuracy 

on average). In this follow-up study, no comparison model was reported (Keijsers et al., 2003). 

 

Finally, ANN classifiers were used to classify gait patterns among people with PD. Their 

ANN model identified abnormal gait in people with PD from healthy controls with an accuracy 

of up to 96%, but no comparison model was utilized (Manap et al., 2011). Furthermore, another 

study examined the effects of deep brain stimulation on gait mechanics and reported that the 
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ANN-based model classified people with PD and healthy controls based on their ground reaction 

force patterns (AUC 99.5%). No comparison model was used (Muniz et al., 2009). 

 

 Two studies using ANNs investigated gait performance in stroke survivors (Kaczmarczyk 

et al., 2009; Scheffer & Cloete, 2012). Scheffer and Cloete (Scheffer & Cloete, 2012) used an 

inertial motion capture system to measure gait mechanics during a 10-m walk at normal walking 

pace and reported that the ANN model accurately differentiated between stroke survivors and 

healthy controls based on hip, knee, and ankle gait parameters with an accuracy of 99.4%. 

Kaczmarczyk and colleagues (Kaczmarczyk et al., 2009) reported that the ANN model classified 

three types of gait patterns, based on position of the foot (forefoot, flatfoot, and heel) during first 

contact on the ground, among people after stroke. Their ANN model used knee and hip joint 

angle changes during gait cycle as inputs and classified three gait patterns with high accuracies 

(94% to 100%), compared with traditional analytic models such as cluster analysis and 

discriminant function analysis (39% to 67%). 

 

ANNs were also used for classification of cognitive impairment such as mild cognitive 

impairment (MCI) and dementia. Quintana et al (Quintana et al., 2012) developed an ANN 

model that classifies MCI and AD based on neuropsychological profiles. In their study, the ANN 

model (98 to 100%) outperformed a linear discriminant analysis (80 to 96%) in classification of 

cognitive status. On the other hand, Lins and colleagues (Lins et al., 2017) developed regression 

models using different machine learning methods such as ANNs and random forest in order to 

classify cognitive status among normal, MCI, and dementia patients using clinical and 
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neuropsychological outcomes. The study reported that random forest-based model showed more 

accurate classification (96.3 to 99.5%) compared with the ANN-based model (56.2 to 79.4%).  

 

4. Discussion 

 In neurorehabilitation, accurate prediction of clinical outcomes and classification of 

different symptoms and diagnoses can inform the clinical decision-making process to provide 

effective and adequate treatment to patients. This scoping review evaluated the current literature 

on the use of ANN in neurorehabilitation. Although this review focused on various neurological 

conditions, study designs, study outcomes, and statistical models, our findings demonstrated that 

ANNs typically outperform traditional statistical methods to predict or classify clinical outcomes 

in neurological conditions. 

 

 One possible reason for the superior accuracy of ANNs compared to traditional 

regression models is the highly complex and linear datasets used in neurorehabilitation research. 

Accuracy of multiple linear regression and linear classification often decreases when analyzing 

non-linear data (Landi, Piaggi, Laurino, & Menicucci, 2010; Tu, 1996). In addition, data 

collected from rehabilitation clinics often have missing or corrupted variables due to human 

errors or unknown technical glitches. Unlike traditional methods, ANNs are robust and remain 

functional despite missing, incomplete, or noisy data using minimal modifications of ANNs 

(Sharpe & Solly, 1995; Smieja, Struski, Tabor, Zieliński, & Spurek, 2018). 

 

The results of our scoping review suggest that the use of ANN should be considered more 

in neurorehabilitation research. Incorporating ANNs into clinical environments may increase the 
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efficiency of rehabilitation practices and allow clinicians to predict disease progression and 

functional recovery more quickly and accurately. A non-exhaustive list of future implications 

includes: (1) classification of gait patterns that allow to differentiate between several 

neurological conditions. Individuals with neurological conditions often have impaired gait and 

balance, which increases the risk of falls (Homann et al., 2013). Classification of the type of gait 

abnormalities may assist in developing a tailor-made fall prevention and treatment program. 

ANNs can be used to analyze data gathered from wearable devices (e.g., wearable inertial 

motion sensors) for gait assessment, often highly complex and inter-related; (2) classification of 

neurodegenerative changes before the onset of dementia, allowing the development of early 

treatment plans to slow down the disease progression. Timely diagnosis and early intervention is 

crucial for dementia (Robinson, Tang, & Taylor, 2015). ANN-based models may help accurately 

predict patients’ disease progression and classify patients at different stages. (3) Prediction of the 

likelihood of favorable functional outcome after brain injuries. ANNs can be utilized as an 

additional tool to assist prognostic decision-making process. Proper estimation of functional or 

recovery outcome helps to offer the most appropriate rehabilitation by clinicians. ANNs can also 

provide accurate estimation regarding medical cost based on the estimation of functional 

outcomes. 

 

However, despite many potential benefits, ANNs still have several limitations. The most 

criticized limitation of ANNs is the black box problem. In ANNs, all computational processes in 

the hidden layer are difficult to interpret by the human users. However, several methods 

including neural interpretation diagram, Garson’s algorithm, and sensitivity analysis help to 

understand the black box problem (Olden & Jackson, 2002). A recent study developed an ANN 
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that can show its reasoning process to the users (Mascharka, Tran, Soklaski, & Majumdar, 2018). 

These advancements may eventually help overcome the black box problem in the near future. In 

addition, small datasets can be overfitted by any statistical method including ANNs. Overfitting 

means that the model is optimized to the respective training dataset at the expense of the 

generalizability of the model. This can negatively impact the performance of the model on a new 

dataset. By training the ANN model with more data or by setting up early stopping and 

validation checks, the overfitting problem can be reduced. Lastly, the architecture of ANNs often 

requires subjective decisions by developers, since there is no specific guideline to construct a 

structure of ANN (Tu, 1996). However, this problem can be remediated by several approaches 

such as finding improved structures in an unbiased fashion (hyperparameter optimization) (Diaz, 

Fokoue-Nkoutche, Nannicini, & Samulowitz, 2017) and systematically achieving convergence 

with different error goals, learning rates, and number of hidden layers or number of neurons in 

the hidden layer (da Silva, Spatti, Flauzino, Liboni, & dos Reis Alves, 2017). 

 

 Finally, this review has limitations. In this scoping review, it was inherently difficult to 

conduct a comprehensive synthesis and make strong recommendations on the use of ANN in 

neurorehabilitation due to the heterogeneity of selected articles. However, the purpose of a 

scoping review is to emphasize comprehensive coverage, rather than on a particular standard of 

evidence (McColl et al., 2009). Second, we possibly omitted other relevant studies due to the 

selection of search database and the exclusion of non-English articles. However, as other scoping 

reviews noted (Cameron, Tsoi, & Marsella, 2008; Gentles, Lokker, & McKibbon, 2010; Levac, 

Wishart, Missiuna, & Wright, 2009), it may be impossible to deal with all relevant studies as 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2020. ; https://doi.org/10.1101/2020.02.20.20025858doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.20.20025858
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

scoping reviews cover a broader focus and are not designed to be as exhaustive or 

comprehensive. 

 

5. Conclusion 

This scoping review discussed the basics of ANNs including the mathematical 

representation of ANN structure, learning algorithm, and general data processes (Supplementary 

Appendix S1), and discussed current and future uses of ANNs in neurorehabilitation. Although 

ANNs typically showed better performance compared to traditional analytic methods in 

analyzing complex data, they have not been used much in neurorehabilitation research. ANNs 

have distinct advantages, are useful in neurorehabilitation, and have great potential to aid 

clinicians’ decision-making, predict accurate clinical outcomes, and classify subtle symptoms 

and diagnoses in neurorehabilitation clinics. 
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