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ABSTRACT 

To reconstruct the evolutionary dynamics of the 2019 novel coronavirus, 52 2019-nCOV genomes available 

on 04 February 2020 at GISAID were analysed. 

The two models used to estimate the reproduction number (coalescent-based exponential growth and a 

birth-death skyline method) indicated an estimated mean evolutionary rate of 7.8 x 10
-4

 subs/site/year 

(range 1.1x10
-4

–15x10
-4

).  

The estimated R value was 2.6 (range 2.1-5.1), and increased from 0.8 to 2.4 in December 2019. The 

estimated mean doubling time of the epidemic was between 3.6 and 4.1 days. 

This study proves the usefulness of phylogeny in supporting the surveillance of emerging new infections 

even as the epidemic is growing. 
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INTRODUCTION 

On 30 January 2020, the World Health Organisation (WHO) declared that the outbreak of an infection due 

to a novel coronavirus (2019-nCoV) was a “Public Health Emergency of International Concern” 

(https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-

international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-

coronavirus-(2019-nCoV)). Emerging as a human pathogen in the Chinese city of Wuhan, 2019-nCoV 

(https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-

ncov.pdf?sfvrsn=20a99c10_4) has caused a widespread outbreak of febrile respiratory illness and, as of 13 

February 2020, there were 60,349 confirmed cases (including 527 outside mainland China) and a total of 

1,360 fatalities 

(https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9e

cf6). 

Belonging to the β-coronavirus genus of the Coronaviridae family, 2019-nCoV is closely related to SARS-CoV 

as there is >70% nucleotide similarity in their approximately 30 kb long genomes.
1
 A recent study has 

supported the view that, like other β-coronaviruses causing human infections such as SARS-CoV and MERS-

CoV, 2019-nCoV originated from bats, and reported 96% genomic identity with a previously detected SARS-

like bat coronavirus.
2,3

 However, it remains unclear whether the spillover also involved a different 

intermediary animal host. 

In the case of such an epidemic, it is important to make an as reliable as possible estimate of the basic 

reproductive number (R0, the number of cases generated from a single infected person) and the dynamics 

of transmission. The aim of this study was to investigate the temporal origin, rate of viral evolution and 

population dynamics of 2019-nCoV using 52 full genomes of viral strains sampled in different countries on 

known sampling dates available at the moment when study was performed. 
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MATERIALS AND METHODS 

Sequence data set 

The analysis was based on 52 2019-nCOV sequences publicly available at GISAID (Global Initiative on 

Sharing All Influenza Data) on 4 February 2020 (https://www.gisaid.org/). The accession IDs, sampling dates 

and locations are summarized in Table S1. 

The sequences were aligned using the ClustalW Multiple Alignment program included in the accessory 

application of Bioedit software, manually controlled, and cropped to a final length of 29,774 bp using 

BioEdit v. 7.2.6.1 (http://www. mbio.ncsu. edu/ bioedit/ bioedit. html). 

Phylodynamic analysis 

The simplest evolutionary model best fitting the sequence data was selected using software JmodelTest 

v.2.1.7 software,4 and proved to be the Hasegawa-Kishino-Yano (HKY) model. 

The virus' phylogeny, evolutionary rates, times of the most recent common ancestor (tMRCA) and 

demographic growth were co-estimated in a Bayesian framework using a Markov Chain Monte Carlo 

(MCMC) method implemented in v.1.84 of the BEAST package.
5
 

Different coalescent priors and molecular clock models (constant population size, exponential growth, and 

a Bayesian skyline plot, BSP) were tested using strict and relaxed molecular clock models. Given the large 

credibility interval and high level of uncertainty due to very close sampling dates, all the estimates were 

made using days as the unit of time and a normal prior with substitution rates obtained from our 

preliminary estimates (mean rate 2.2 x 10
-6

 subs/site/day, with a standard deviation of 1.1 x 10
-6

). 

The MCMC analysis was run until convergence with sampling every 100,000 generations. Convergence was 

assessed by estimating the effective sampling size (ESS) after 10% burn-in using Tracer v.1.7 software 

(http://tree.bio.ed.ac.uk/software/tracer/), and accepting ESS values of 300 or more. The uncertainty of 

the estimates is indicated by 95% highest marginal likelihoods estimated6 by path sampling/stepping stone 

methods.7 

The final trees were summarised by selecting the tree with the maximum product of posterior probabilities 

(pp) (maximum clade credibility or MCC) after a 10% burn-in using Tree Annotator v.1.84 (included in the 

BEAST package), and were visualised using FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). 
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The basic reproductive number (R0) was calculated on the basis of the exponential growth rate (r) using the 

equation R0=rD+1, where D is the average duration of infectiousness estimated as described below.8 The 

doubling time of the epidemic was directly estimated setting the tree prior to the coalescent exponential 

growth analysis with doubling time parameterization. 

Birth-Death Skyline estimates of the effective reproductive number (Re) 

The birth-death skyline model implemented in Beast 2.48 was used to infer changes in the effective 

reproductive number (Re), and other epidemiological parameters such as the death/recovery rate (δ), the 

transmission rate (λ), the origin of the epidemic, and the sampling proportion (ρ).9 Given that the samples 

were collected during a short period of time, a “birth-death contemporary” model was used. 

The analyses were based on the previously selected HKY substitution model and the substitution rate was 

set to the value of 8.0 x 10-4 subs/site/year, which corresponds to the mean substitution rate estimated 

using a relaxed clock under the exponential coalescent model as transformed into units per year. 

For the birth-death analysis, one and two intervals and a log-normal prior for Re, with a mean (M) of 0.0 

and a variance (S) of 1.0 were chosen, which allows the Re values to change between <1 (0.193) to >5. A 

normal prior with M=48.7 and S=15 (corresponding to a 95% interval from 24.0 to 73.4) was used for the 

rate of becoming uninfectious. These values are expressed as units per year and reflect the inverse of the 

time of infectiousness (5.3-19 days, mean 7.5) according to the serial interval estimated by Qun Li et al.
10

 

Sampling probability (ρ) was estimated assuming a prior Beta (alpha=1.0 and beta=999), corresponding to a 

minority of the sampled cases (between 10
-5

 to 10
-3

). The origin of the epidemic was estimated using a 

normal prior with M=0.1 and S=0.05 in units per year. 

The MCMC analyses were run for 30 million generations and sampled every 3,000 steps. 

Convergence was assessed on the basis of ESS values (ESS >200). Uncertainty in the estimates was indicated 

by 95% highest posterior density (95%HPD) intervals. 

The mean growth rate was calculated on the basis of the birth and recovery rates (r=λ-δ), and the doubling 

time was estimated by the equation: doubling time=ln(2)/r.11 
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RESULTS 

The sequence analyses under a relaxed (uncorrelated log-normal) or strict molecular clock showed that the 

former performed better as assessed by using BF with path sampling (PS) and stepping stone sampling (SS) 

(strict vs. relaxed molecular clock BF(PS)=-8.66 and BF(SS)=-10.7 for relaxed clock). Comparison of the 

different demographic models showed that the BSP model best fitted the data (BSP vs. exponential growth 

BF(PS)= 7.3 and BF(SS)= 8.78 for BSP; BSP vs. constant population size BF(PS)= 7.3and BF(SS)= 8.78 for BSP). 

The estimated mean evolutionary rate was 2.15 x 10-6 subs/site/day (95% HPD: 3.22 x 10-7–4.18 x 10-6), 

corresponding to 7.8 x 10-4 subs/site/year (95% HPD: 1.1 x 10-4–15 x 10-4). 

The estimated mean tMRCA corresponding to the root of the tree dated 73 days before the end of January 

2020 (95%HPD: 32.5–142.3), corresponding to 18 November 2019 (95%HPD: 10 September 2019-28 

December 2019). 

The Bayesian tree showed three main significant clades. The largest clade (pp=0.84) encompassed 10 

sequences and consisted of two significant sub-clades (pp=0.9 and pp=1). Overall, this cluster included 

fewer recent isolates than the other two clusters, and dated back to 47.5 days ago (95% HPD: 25.5-76.6), 

corresponding to 13 December 2019. The second (pp=0.99) and third significant clusters (pp=0.95) dated 

back to 29.2 (95% HPD: 0.7-47.45) and 21.9 (95% HPD 3.6-54.7) days ago, corresponding to 01-08 January 

2020. 

The Bayesian skyline plot showed a rapid increase in the number of infections in a period between about 45 

and 30 days before the end of January 2020 (Fig.1, part A). 

The IDs and available data of the sequences involved in the clades are shown in Table S1. 

The estimated growth rate under the exponential growth model was 0.218 days
-1

, corresponding to an R0 

estimation of 2.6 (credibility interval: 2.1-5.1). The direct estimation of the doubling time of the epidemic 

gave a mean 3.6 days (varying from 1.0 to 7.7). Figure 1 (part B) shows the Bayesian birth-death skyline plot 

of the Re estimates with 95%HPD, and indicates that Re increased from <1 (mean 0.8, 95%HPD: 0.3-1.3) to a 

mean value of 2.4 (95%HPD: 1.5-3.5) in December 2019, and has since remained at this value. 

Table 1 shows the parameters estimated using the birth-death skyline plot. The epidemic originated an 

estimated mean 3.7 months (credibility interval 3-4) before the present (BP), corresponding to October-
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November 2019, before the root tree (3.6 months BP). The estimated recovery rate (the time to becoming 

non-infectious) was 7.3 days (CI 4.7-16.5 days), whereas the transmission rate (λ) increased from 40.5 to 

112.4 in units per year in December 2019. On the basis of these values, the growth rate in the second 

period is r=0.17 (0.16-0.19), corresponding to a mean doubling time of 4.1 days (range 3.9-4.3). 
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DISCUSSION 

The 2019-nCoV epidemic is unique in the history of human infectious diseases not only because it is caused 

by a novel virus, but also because of the immediate availability of epidemiological and genomic data (the 

first entire genome was published on 24 December 2019). The prompt availability of research data on 

internet platforms such as the GISAID has allowed us and other research groups to make a phylogenetic 

reconstruction of the origin of 2019-nCoV and to share these findings with other scientists. 

The temporal reconstruction of the 2019-nCoV phylogeny obtained in the present study is in line with 

previous estimates and suggests that the epidemic originated between October and November 2019, 

several weeks before the first cases were described. This was confirmed by means of coalescent analysis 

and the birth-death method of estimating the origin of the epidemic. The estimated evolutionary rate is 

also in line with that of SARS and MERS viruses,12,13 and the recent estimates concerning 2019-nCoV 

(http://virological.org/t/phylodynamic-analysis-67-genomes-08-feb-2020/356). 

One of the most important epidemiological parameters when monitoring an epidemic is R0 (i.e. the number 

of secondary cases induced by a single infected individual in a totally susceptible population) because it is 

fundamental to assess the potential spread of a micro-organism. Its value changes during an epidemic 

being called the effective reproduction number (Re). R0 is usually estimated on the basis of the growth rate 

of the number of cases. The available epidemiological estimates of 2019-nCoV R0 range from 2.2 to 2.9, 

although they changed from 1.4 to >7 during the first phases of the epidemic.
10,14

 

Recently developed evolutionary models have made it possible to estimate epidemiological parameters on 

the basis of phylogenesis,
9,15

 and a coalescent and a birth-death methods were used to estimate R0 and the 

changes in the Re of the 2019-nCoV epidemic during a short period of time. This has allowed us to make a 

preliminary estimate that mean R0 from the beginning of the epidemic to the first days of February 2020 

was 2.2 (range 3.6-5.8), and the birth-death skyline analysis showed an increase in Re from <1 to 2.4 (CI 1.5-

3.5) during December 2019. This agrees with the BSP analysis showing an increase in the number of 

infections in the same period of time. 

On the same basis, the estimated epidemic doubling time was 3.6 days with a credibility interval between 1 

to 7 days. We also tried to calculate it on the basis of the transmission (λ) and recovery rate (δ) estimated 
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using the birth-death model, which lead to an estimated mean doubling time of 4.1 days, with the most 

probable values falling between 3.9 and 4.3 days. Previous studies have suggested that the doubling time 

during the early phases of the epidemic was about 7.4 days.10 The difference in the estimate here obtained, 

may be due to the increased epidemic growth rate observed during the last days of January, or the initial 

delay in recognising and reporting new cases. 

This preliminary study has some limitations. The R values and doubling times were estimated 

phylogentically using all of the whole genomes available in a public database at the time the study was 

carried out (https://www.gisaid.org/). Given the small number of sequences and the relatively short 

sampling period, the credibility intervals are wide and limit the precision of the estimates. Moreover, the 

analysis included isolates collected outside mainland China as it is assumed that they all belong to the same 

epidemic originating in Wuhan. 

Serial intervals were used to estimate the duration of infectiousness, although we do not yet have any 

information concerning the possible existence and duration of a latent (pre-infectious) period that would 

contribute to the serial interval. 

More detailed and accurate analyses can be made when a larger number of genomes and more precise 

data on the infectious period become available. However, although the R0 calculated on the basis of the 

direct observation of the number of infected individuals may be affected by omissions or delayed 

notifications of cases,
16

 a phylogenetic estimate of the same parameter may be more reliable. 

This became particularly evident recently (on February 12, 2020) when the change in diagnosis 

classification led to a sudden increase in the reported cases by Hubei, China 

(https://myemail.constantcontact.com/COVID-19-Updates---Feb-

12.html?soid=1107826135286&aid=Kdg8a0rBTAk). 

In conclusion, these results allowed us to make a phylogenetic estimate of the R0 of 2019-CoV infection that 

is similar to that obtained using conventional epidemiological methods17 (https://www.who.int/news-

room/detail/23-01-2020-statement-on-the-meeting-of-the-international-health-regulations-(2005)-

emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov), and a possibly shorter 

estimated doubling time of the number of subjects involved at least during the early phases of the 
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epidemic. They also support the usefulness of phylodynamic as an important complement to classic 

approaches to the surveillance and monitoring of an emerging infection, even during the course of an 

epidemic. 
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FIGURE LEGEND 

Fig. 1. Part A: Bayesian Skyline plot of the 2019-nCoV outbreak. The Y axis indicates Ne and X axis shows the 

time in year units (0=January 30; 0.05=18.2 days; 0.1=36.5 days; 0.15=54.7 days and 0.2=73 days before). 

The thick solid line represents the median value of the estimates, and the grey area the 95% HPD. Part B: 

Birth-death skyline plot of the 2019-nCoV outbreak allowing two Re intervals. The curve and the orange 

area show the mean Re values and their 95% confidence intervals. The Y and X axes respectively represent 

R values and time in years. 
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Table 1. Epidemiological parameters estimated by Birth-death skyline analysis. 

 

Re1 0.8 0.29 1.3

Re2 2.4 1.5 3.5

origin 0.304 0.24 0.36

become uninfectious 49.8 22.1 0.36

birt1 40.46 7.9 73.8

birth2 112.4 82.3 142.9

rho 0.0044 0.00087 0.0086

tree-root tMRCA 0.296 0.24 0.35

Parameter Mean Estimate 95%HPD Low 95%HPD Up
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