
 1 

Deep-learning-based Prediction of Late Age-Related Macular Degeneration Progression 

 

Qi Yan1,*, Daniel E. Weeks2,3, Hongyi Xin1, Anand Swaroop4, Emily Y. Chew5, Heng Huang6, 

Ying Ding3,*, Wei Chen1,2,3,* 

 

1Division of Pulmonary Medicine, Department of Pediatrics, UPMC Children's Hospital of 

Pittsburgh, University of Pittsburgh, Pittsburgh, PA; 

2Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, 

PA; 

3Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, 

Pittsburgh, PA; 

4Neurobiology Neurodegeneration and Repair Laboratory, National Eye Institute, National 

Institutes of Health, Bethesda, MD; 

5Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes 

of Health, Bethesda, MD; 

6Department of Electrical and Computer Engineering, Swanson School of Engineering, 

University of Pittsburgh, Pittsburgh, PA. 

* These authors jointly supervised this work. Correspondence should be addressed to: 

Q.Y. (qiy17@pitt.edu), Y.D. (yingding@pitt.edu) or W.C. (wec47@pitt.edu)  

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted February 18, 2020. ; https://doi.org/10.1101/19006171doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/19006171


 2 

ABSTRACT 

Both genetic and environmental factors influence the etiology of age-related macular 

degeneration (AMD), a leading cause of blindness. AMD severity is primarily measured by 

fundus images and recently developed machine learning methods can successfully predict AMD 

progression using image data. However, none of these methods have utilized both genetic and 

image data for predicting AMD progression. Here we jointly used genotypes and fundus images 

to predict an eye as having progressed to late AMD with a modified deep convolutional neural 

network (CNN). In total, we used 31,262 fundus images and 52 AMD-associated genetic variants 

from 1,351 subjects from the Age-Related Eye Disease Study (AREDS) with disease severity 

phenotypes and fundus images available at baseline and follow-up visits over a period of 12 

years. Our results showed that fundus images coupled with genotypes could predict late AMD 

progression with an averaged area under the curve (AUC) value of 0.85 (95%CI: 0.83-0.86). The 

results using fundus images alone showed an averaged AUC of 0.81 (95%CI: 0.80-0.83). We 

implemented our model in a cloud-based application for individual risk assessment.    
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INTRODUCTION 

Age-related macular degeneration (AMD) is the leading cause of blindness among older adults in 

Caucasians 1-3.  It is a progressive neurodegenerative disease influenced by both environmental 

and genetic risk factors 4-6. AMD severity is mainly diagnosed by color fundus images in a 

clinical setting by ophthalmologists. Late AMD comes in two forms: (1) Geographic atrophy 

(GA) also known as dry AMD is characterized by a gradual degeneration and disappearance of 

retinal pigment epithelium, photoreceptor cells, and the choriocapillaris layer in the central retina; 

(2) choroidal neovascularization (CNV) also known as wet AMD is characterized by the growth 

of new, leaky blood vessels into the retina causing widespread photoreceptor loss and ultimately 

rapid decline in visual acuity 7. Some patients with early or intermediate stage AMD maintain 

their vision for a long time with slow disease progression over time, but others quickly progress 

to one or both forms of late AMD.  

 

Genetics plays a critical role in AMD pathogenesis. Genome-wide association studies (GWAS) 

and sequencing studies have identified many variants that are associated with AMD 8-11. For 

example, a total of 52 independent genetic markers including both common and rare variants 

from 34 loci were reported to have associations with AMD risk in a recent large-scale genome-

wide association study (GWAS) by the International AMD Genomics Consortium 9. In addition 

to the successes in identifying AMD-related genetic markers from case-control designs, a recent 

study of AMD progression risk using the Age-Related Eye Disease Study (AREDS) dataset 12 

showed that some of the known AMD risk variants could also influence progression time to late 

AMD 10. 

 

In parallel to genetic studies, machine learning methods, particularly deep convolutional neural 

networks (DCNN) have been useful in image recognition and classification in ophthalmology. 
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CNN have been used for the aforementioned automated AMD grading, identifying diabetic 

retinopathy and cardiovascular risk factors from fundus images, and interpreting and segmenting 

optical coherence tomography (OCT) images 13-20. As opposed to traditional machine learning 

approaches that rely on “feature engineering”, which involves computing features explicitly 

defined by experts 21-23 , CNN can learn features directly from the images themselves. CNN is a 

family of deep learning techniques characterized by enabling the networks to contain many 

computation layers that can automatically, deeply and comprehensively learn features from 

lower-level structures to more generalized higher-level structures. Recently several studies have 

used the color fundus images to perform automated AMD grading 17,18,20 and estimation of future 

risk of AMD 24 by applying convolutional deep learning methods. However, none of these 

methods consider genetic data in the prediction model.  

 

In addition to using fundus images for AMD grading, in conjunction with genotypes, fundus 

image data can be used to predict the probability of late AMD progression exceeding certain 

inquired durations. Since late AMD is irreversible, such prediction could urge potential patients 

to start preventative care beforehand and slow down the disease progression. The Age-Related 

Eye Disease Study (AREDS), a large-scale clinical trial from the National Eye Institute, includes 

massive genome-wide genotyping data, longitudinal color fundus photographs, and disease 

severity assessment over a period of 12 years, providing an unprecedented opportunity for us to 

investigate AMD progressing using both dynamic (fundus image) and static (genetics) 

information.  

 

In this study, we jointly used genotypes and fundus images to predict an eye as having 

progressed to late AMD (which may never occur) within certain inquired durations from the 

current visit. The inquired duration was selected in advance, and it was relative to the time when 
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the fundus image was taken, not to the time of the baseline visit. Specifically, for one eye, the 

inputs included one fundus image taken at the current visit and the genotypes of the 

corresponding subject, and the output was the probability that the time to late AMD exceeds the 

inquired duration. To our knowledge, this is the first time to jointly use genotypes and fundus 

images in a prediction model for AMD risk and progression.    

 

RESULTS 

Study Data Characteristics 

Of the AREDS participants, 1,351 Caucasians who had at least one eye free of late AMD at 

baseline and at least one follow-up visit had all information on images and genotypes (Table 1). 

The baseline mean age was 68.8 (SD=5.0) years. About 56% (N=750) of participants were 

females. About 46% were never smokers (N=626), another 47% were former smokers (N=634) 

and 7% were current smokers (N=91). Smoking status was defined at the baseline visit. The 

participants had mean follow-up time of 10.3 (SD=1.6) years and they were followed up every 6 

months in the first 6 years to every 1 year after year 6. 2,678 eyes of the 1,351 participants were 

not in the late AMD stage at baseline. These eyes had a low mean severity score at baseline of 

3.9 (SD=3.2), because the majority of eyes had low baseline severity scores (54% eyes with 

baseline severity score 1-3, 23% eyes with 4-6 and 24% eyes with 7-8). Moreover, only 4% eyes 

with baseline severity 1-3 progressed to late AMD by the end of the follow-up time, 50% eyes 

with 4-6 progressed by the end of the follow-up time, and 92% eyes with 7-8 progressed by the 

end of the follow-up time. In addition, the number of useable fundus images (i.e., the fundus 

images of each eye at each visit with corresponding genotypes) for prediction decreased as the 

progression inquired year increased from 2 to 7 years due to the censored subjects (Table 1). The 

inquired years were defined as well as an illustrative example was provided in the Methods 

section. The number of useable fundus images for predicting whether the progression time to late 
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AMD exceeded the inquired years were shown in Supplementary Figure 1. Note that the useable 

fundus images included the ones at both baseline and the follow-up visits. 

 

Predicting Progression Time to Late AMD Exceeding Inquired Years Using Fundus 

Images Alone 

First, we tested the ability of our proposed network to predict the progression time to late AMD 

exceeding inquired years using the AREDS fundus images alone (Supplementary Figure 2a). The 

partitioning of training and testing datasets and the selection of late AMD progression inquired 

years were previously explained. The ROC and AUC (Figure 1) and Brier scores on the testing 

dataset are reported in Table 2. The performance of our CNN showed promising results even 

when using fundus images alone. In the testing dataset, the model achieved AUC range from 

0.79 (95% CI [confidence interval]: 0.78-0.81) to 0.84 (95% CI: 0.82-0.86) for progression 

inquired year 2 ~ 7 (Figure 1 and Table 2). Furthermore, in order to improve the interpretability 

of our model, we added a secondary output layer for current AMD severity between the final 

convolutional layer and the primary output for the progression time to late AMD (Supplementary 

Figure 2b). The model achieved similar AUC range between 0.79 (95% CI: 0.77-0.81) and 0.84 

(95% CI: 0.83-0.86) for progression inquired year 2 ~ 7 (Figure 1 and Table 2). Besides, the 

model automatically graded the AMD severity based on fundus images with an accuracy range 

of 0.56 to 0.60 for progression inquired year 2 ~ 7 (Supplementary Table 1). Note that the 

random accuracy is 0.33. The density curves of predicted probability of having late AMD 

progression time before or after each of the six inquired years were generated (Supplementary 

Figure 3 [the first and third columns]) to visually examine the accuracy of before and after 

inquired year prediction separately. The results showed that CNN could accurately predict the 

probability of having late AMD progression time exceeding the inquired year. However, 

although most of the eyes with progression time before the inquired year could be correctly 
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predicted when Youden indices 25 (Supplementary Table 2) were used as the thresholds to 

dichotomize the predictions, a sizeable number of eyes were falsely predicted as having a 

progression time exceeding the inquired year. 

 

Model Interpretation for Supporting Clinical Decision  

Next, we generated saliency maps to visualize the important regions that had the greatest impact 

on the model predictions using the fundus images only models. Generally, the CNN should be 

able to detect the macula region and make decisions based on the features (e.g., drusen) in this 

region. Three representative subjects of left eye fundus images with accompanying saliency 

maps for each inquired year prediction were shown in Figures 2-4. Subject #1 (Figure 2) had 4 

visits and progressed to late AMD at year 4.8; Subject #2 (Figure 3) had 4 visits and did not 

progress to late AMD by the end of 11.1-year follow-up; and Subject #3 (Figure 4) had 5 visits 

and was at late AMD status at baseline. Thus, Subject #1 who progressed in the middle of the 

follow-up was more challenging to predict than Subject #2 who did not progress and Subject #3 

who progressed before baseline time. Figure 2 showed that Subject #1 had early/intermediate 

AMD at the first three visits and was labeled as late AMD at the fourth visit. Most models with 

different cut-off years gave accurate predictions. However, the model with inquired year equal to 

3 tended to predict a long progression time when small drusen was observed. This was also the 

reason that the density curves with only images as predictors led to a second peak on the right 

side (blue curves in Supplementary Figure 3). In other words, the samples that were falsely 

predicted to the category exceeding the inquired years were true labeled in the category before 

the inquired years. The results showed that genotypes could help to correct this misclassification. 

Figure 3 showed that Subject #2 had healthy macula at all visits and the models correctly 

predicted that the subject had a long progression time. Please note that the true labels were 

missing at visit year 5.8 for inquired years equal to 6 and 7, because this subject was censored 
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and had 5.3 more follow-up years at visit year 5.8. Thus, at visit year 5.8, this subject could 

finally progress to late AMD before or after 6 more years, which was ambiguous to use this 

cutoff, same to the cutoff of year 7. Figure 4 showed that Subject #3 had late AMD since 

baseline, and all models could detect the drusen and correctly assign it to the right category.   

 

Predicting Progression Time to Late AMD Exceeding Inquired Years Using Fundus 

Images along with genotypes  

In addition to fundus images, we added 52 AMD associated independent genetic variants 

reported by the International AMD Genomics Consortium 9 to the model (Supplementary Figure 

2c). Similarly, we tested the scenarios with and without AMD severity as a secondary output 

(Supplementary Figure 2d). When evaluating the performance using the test dataset, the models 

with AMD severity as a secondary output achieved slightly higher AUC (range between 0.85 [95% 

CI: 0.84-0.87] and 0.86 [95% CI: 0.84-0.87] for progression inquired year 2 ~ 7) than without 

AMD severity (range between 0.83 [95% CI: 0.82-0.85] and 0.85 [95% CI: 0.83-0.86], Figure 1 

and Table 2). The accuracy for AMD severity grading was from 0.57 to 0.60 (Supplementary 

Table 1). The AMD severity as a secondary output helped to better explain the prediction model 

that the fundus images could be used for automated AMD severity grading, and then the AMD 

severity at the current visit could predict late AMD progression exceeding the inquired years. 

Without AMD severity, we only knew fundus images could predict late AMD progression 

exceeding the inquired years, but missed the related features (i.e., current AMD severity) in 

between. These results also indicated that genetics could noticeably improve the AUCs for AMD 

progression time (Table 2). The density curves of predicted probability of having AMD 

progression time before or after the six inquired years (Supplementary Figure 3) showed that the 

addition of genetics in the neural network could correct the falsely predicted eyes from the group 

of after the inquired year to the correct group of before the inquired year. This is evidenced by 
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that the blue curves on the right (Supplementary Figure 3) were much lower in models with 

genetics than models without genetics. 

 

The feature importance heatmaps (Supplementary Figures 4-6) from LIME for the sub-network 

using fundus images along with genotypes (Supplementary Figure 7b inside the red rectangle) to 

predict late AMD progression time for subjects #1, #2 and #3 showed the first two variables 

contributing the most to the predictions for each visit year. Although the summarized image 

inputs (a size of 2,048) and the SNP inputs (a size of 52) were unbalanced, SNPs were always 

shown among the most important variables (e.g., the SNP from ARMS2/HTRA1 appears in 23 of 

24 models). 

 

Replication Study Using Independent UK Biobank Dataset 

In addition to the test dataset we generated from dbGaP, we extracted a set of 200 Caucasian 

subjects from the UK Biobank26 as an independent test dataset, and used 3 years as the inquired 

year. The model (4) showed an AUC of 0.9 (95%CI: 0.85-0.94) for predicting whether the eye 

progresses to late AMD exceeding the 3 years (Supplementary Figure 8). Again, please note that 

we treated the AMD patients from UK Biobank as late AMD patients, although some of them 

could be at early/intermediate stages.  

 

DISCUSSION 

Our results show that the application of CNN to retinal fundus images coupled with genotypes 

can be used to predict the probability of late AMD progression exceeding the inquired years and 

diagnose the current AMD severity. The results indicate that the fundus images alone can predict 

late AMD progression exceeding certain inquired years with reasonable accuracy. The addition 

of secondary inputs of genotypes can noticeably improve accuracy (Table 2). The addition of a 
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secondary output of AMD severity further improve the model interpretability. We also 

conducted an additional model using current age and baseline smoking status as predictors in 

addition to fundus images and genetics (Supplementary Figure 9), but they did not improve the 

prediction performance, probably because the age and smoking effects were already reflected in 

fundus images or the dynamic age range for those who progressed to late-AMD in our training 

cohort is limited across the range of AMD pathology. Although the training of a deep learning 

model is computationally intensive, once the model is trained and weights are saved, the 

prediction of a new subject takes only a few seconds. 

 

The goal of our study is different from previous ones, which mainly used fundus images for 

automated grading of AMD severity scores. Since the severity score is graded by 

ophthalmologists merely based on the fundus images, those studies did not engage other 

phenotypes or genotypes, although it is known that AMD is associated with age, smoking status 

and a number of genetic variants. We believe that the prediction of late AMD progression time is 

more useful as compared to the current severity score for patients to start preventative care early. 

Furthermore, the automated classification using directly measured variables would also help 

reduce the discrepancy among human graders and reduce costs of large-scale image assessment 

projects. 

 

We used the pre-designed CNN architecture and pre-trained weights as our initial values, which 

are used for general image classification of thousands of objects based on millions of images. For 

our specific fundus image task, this helps the model learn more accurately with less data, 

because the existing CNN architecture and trained weights can identify simple features (e.g., 

edges and orientation) and further combine them to more complex objects, which mimics the 

way our visual system works. Analogously, our proposed model could mimic the way that 
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ophthalmologists interpret the fundus images by identifying macula, drusen, pigmentary changes, 

etc. The saliency maps indicate that our model pays attention to assess features in the macula 

region in the retina to predict late AMD progression exceeding certain inquired years, which is as 

expected. Furthermore, the model might capture some unknown features that are important for 

AMD progression, but neglected by ophthalmologists.  

 

In addition to AUC values and Brier scores, we were able to calculate the prediction accuracy 

after dichotomizing the prediction risk by using the Youden indices 25 (Supplementary Table 2) 

as the cutoff, which is based on the AUC curve. Our results showed that the fundus images 

coupled with genotypes could predict late AMD progression with an averaged accuracy (SD) of 

78.4% (1.6%). The results using fundus images alone showed a similar averaged accuracy (SD) 

of 80.0% (2.7%). The AREDS fundus images have been used in several prediction studies. 

Although their outcomes were different from ours, it is worth checking their accuracies. One 

study 17 classifying 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) 

had an overall accuracy of 63.3%. The second study 18 performing two-class classification to 

distinguish the disease-free/early stages from the referable intermediate/late stages yielded 

accuracy that ranged between 88.4% and 91.6%. The third study 20 classifying the AREDS 

Simplified Severity Scale (score 0-5) had an accuracy of 67.1%. In addition to classifying the 

current AMD status, one study 24 estimating 5-year risk of AMD achieved accuracy of 75.7% for 

the 4-step and 59.1% for the 9-step AMD severity scales. Moreover, another study 27 using 

optical coherence tomography (OCT) images to predict eyes with intermediate AMD progressing 

to CNV or GA yield AUC of 0.68 and 0.80 for CNV and GA respectively. 

 

Here we included only 52 AMD risk-associated SNPs in our prediction models. To evaluate the 

effect of including a larger number of SNPs, we conducted another set of analyses by using the 
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SNPs with P-value < 1×10-5 from a GWAS of AMD progression 10 (n = 2,721 subjects). In total, 

1,057 SNPs were included and we used the cutoff of year 3 for illustration. Please note that the 

previous 52 SNPs were identified from a large GWAS of AMD case-control study 9 (43,566 

subjects). Although AMD progression is a better phenotype than AMD case-control status, the 

sample size of the AMD progression GWAS is much smaller. Finally, 7 out of the previous 52 

SNPs were also on the new list of 1,057 SNPs. The results (Supplementary Figure 10) showed 

that AUC = 0.84 for Img+Geno−>Risk and 0.84 for Img−>AMDstate+Geno−>Risk. On the 

other hand, the 52 SNP results showed that AUC = 0.85 for Img+Geno−>Risk and 0.86 for 

Img−>AMDstate+Geno−>Risk. Thus, the 52 SNPs identified from a much larger study of AMD 

risk with P-value < 5×10-8, although the phenotype is not AMD progression, were slightly better 

than 1,057 SNPs identified from a relatively small AMD progression study with P-value < 1×10-

5. Even 1,057 is not a very large number and can be handled by a fully connected neural network 

(NN), however, if the genome-wide SNPs (e.g., several millions) are used as the input, the fully 

connected NN is not expected to work in terms of computational intensity. In this case, some 

other alternative solutions might be considered: 1. using a CNN for SNPs too; or 2. using a 

network reflecting the SNP-gene-pathway hierarchical structure that is similar to the idea of Hao 

et al 28. In other words, after the input layer of SNPs, only the SNPs in the same gene region are 

connected to a neuron in the first hidden layer, then only the genes in the same pathway are 

connected to a neuron in the second hidden layer that is further connected to an output layer. In 

this way, the number of weights needed to be estimated is much smaller than the number in a 

fully connected NN. 

 

Our study has some limitations. First, this study mainly relies on the AREDS dataset. Although 

an independent dataset from UK Biobank is used, the available outcome is any AMD rather than 

late AMD. Even though there are no other large longitudinal AMD studies with both fundus 
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images and genotypes available, it would be beneficial to evaluate our models on a separately 

collected dataset. Second, AREDS contains a large number of normal to early AMD eyes at the 

beginning of the study and many of them did not progress to the late AMD by the end of the 

follow-up. Although we used stepwise binary predictions instead of predicting a continuous time 

to try to fully use the censored eyes, we still lose some of them. Third, we used stepwise binary 

predictions to approximate the progression process. However, since each model was trained 

separately, this could lead to inconsistent results from the separate models, especially for the 

eyes that are hard to predict. It would be ideal to directly model the survival outcome in a single 

model. One possible way is to replace the final loss function with a survival type likelihood, such 

as the Cox partial likelihood. We plan to explore this direction in a future work. Another 

potential limitation is that only fundus images were used in this study. It would be desirable to 

have a coherent prediction by using multiple types of images (e.g., optical coherence tomography 

and fundus autofluorescence images). In addition, the fundus images in AREDS were collected 

on both eyes over several years from the same participants. In the current study, the covariance 

between two eyes or between different visits was not considered. Although it is hard to consider 

the information of correlated images using deep learning approaches, incorporating such 

covariance in the model could increase the prediction accuracy, which might be implemented by 

modifying the loss function at the output layer from the neural network. In this study, the 

complex neural network might implicitly capture this information that different eyes and visits 

from subjects having the identical genotypes could be from the same subject. To evaluate the 

impact of adding the status of the other fellow eye, we conducted an additional analysis. Instead 

of directly modeling the correlation between two eyes, we added the other eye’s current AMD 

severity scale as an additional input for the study eye’s prediction, although the other eye’s 

current AMD severity should be unknown, because our models were designed for only fundus 

images and genotypes available and predicting current AMD severity and progression time 
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without the need of image specialists. Here, we just used this analysis to evaluate the impact of 

adding the status of the other eye. The results showed that adding the status of the other eye 

could improve the prediction accuracy of the study eye to an AUC of 0.91 (Supplementary 

Figure 11). In the future direction, a bivariate approach that simultaneously models the 

dependency between the two eyes, as well as to provide each eye-level and joint subject-level 

progression probabilities is worthwhile to pursue. 

 

In summary, this study showed that deep learning approaches could be used to automatically 

predict late AMD progression exceeding certain inquired years and classify the current AMD 

severity stages. The joint use of fundus images and genotypes can achieve good prediction 

accuracy. The deep learning methods could serve an important role in decision support systems 

for eye services by reducing assessment time, workload and financial burden by automated 

analysis. Such automated analysis identifying individuals who should be referred to a specialist 

could become increasingly acceptable to both patients and ophthalmologists. We also developed 

a web-based application at http://www.pitt.edu/~qiy17/amdprediction.html. To our knowledge, 

this is the first cloud-based prediction website for AMD with deep learning techniques. In 

addition to distinguishing retinal pathologies using the fundus images, such as AMD, this study 

can be extended to be applicable to other diseases associated with images, genotypes and 

phenotypes (e.g., Alzheimer’s disease).  

 

METHODS 

Study Population and Phenotype Definition 

The study subjects were from the AREDS study sponsored by the National Eye Institute 12, 

which was a long-term, multicenter, prospective study of AMD and age-related cataracts with a 

12-year follow-up period to assess the risk factors and impact of daily supplements. Eligible 
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subjects were between 55 and 80 years old at baseline and free of sight-threatening conditions 

other than cataract or AMD. In this study, we confined our analyses to the AMD data and only 

used Caucasian participants with genotype data and at least one follow-up visit. 

 

In the analyses, we used 31,262 color fundus images centered above the macula from 1,351 

subjects with corresponding genotypes and phenotypes available at baseline and follow-up visits. 

The detailed image taking procedure was described elsewhere 29. The AREDS AMD scale 30, 

based upon severity score from 1 to 12, was adopted to determine whether the eye was in the late 

AMD stage or not, which was measured based on centralized grading of these fundus images 

obtained at each semi-annual/annual follow-up visit 30. The progression of early/intermediate to 

late AMD is often distinguished by the growth of drusen size and/or pigmentary abnormalities at 

the macula region 31,32. For each non-late AMD eye at each visit, we calculated its time period 

between the current visit and the time to late AMD, defined as the time to the first visit when the 

severity score reached 9 (noncentral GA) or higher (10: central GA, 11: CNV, and 12: CNV and 

central GA). If the eye’s severity score was less than 9 by the end of follow-up, the time to late 

AMD was treated as censored at the last visit.  

 

Prediction of the Probability that the Time to Late AMD Progression Exceeds an Inquired 

Year 

Since the exact times to late AMD of censored eyes were unknown and we only knew the eyes 

were not progressed at certain time points, in order to make the full use of the available 

information, we performed a set of binary predictions instead of predicting a continuous 

progression time. Specifically, we predicted the probability that the time to late AMD 

progression exceeds the inquired durations, 2, 3, 4, 5, 6 and 7 years from the current visit. This 

implies some eyes cannot be used for certain of these prediction models.  For example, if one 
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subject was censored at year 5.5 without having progressed to late AMD, this subject’s eyes 

were used for inquired years 2, 3, 4 and 5, because it was known that the eyes had not progressed 

by those inquired years. However, these eyes could have progressed on either side of the 

inquired years of 6 and 7, which made this eye unusable for these two inquired years. In addition 

to the late AMD scores (i.e., 9-12), a severity score of 1 indicates little or no AMD-related 

changes, whereas scores 2 through 8 indicate early or intermediate AMD 30. Other variables we 

considered were current visit age and baseline smoking status (never, former, current). 

 

Replication dataset  

In addition to AREDS, we extracted 100 Caucasian subjects labeled with AMD at baseline visit 

and 100 Caucasian subjects without AMD reported by the end of at least 3 years of follow-up 

from UK Biobank26 as an independent test dataset. For samples labeled with AMD, we only kept 

the ones with clear drusen with the help from experienced image specialist. In other words, we 

had 100 subjects who progressed to AMD within 3 years and 100 subjects who progressed to 

AMD after 3 years (it is possible that they never progressed to AMD). All the subjects needed to 

have genotypes and high-quality fundus images at baseline. Please note that not all of the AMD 

subjects had late AMD and some had early/intermediate stages of AMD. The outcome was not 

exactly the same as we used in the training process, although we could assume that the 

early/intermediate AMD subjects might progress to late AMD in a short time (e.g., within 3 

years).  

 

Genotype Data 

DNA samples from consenting subjects in AREDS were collected and genotyped centrally by 

the International AMD Genomics Consortium, as described previously 9. In brief, a custom-

modified HumanCoreExome array by Illumina was used to obtain the genotypes followed by 
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imputation with the 1000 Genomes Project reference panel (Phase I). In this study, we used 52 

independent genetic variants from 34 loci that were either confirmed or newly discovered to have 

associations with AMD risk in a GWAS by the International AMD Genomics Consortium 9. We 

used additive genotypes (i.e., 0: no minor allele; 1: one copy of the minor allele; 2: two copies of 

the minor allele). 

 

Data Partitioning 

The total of 31,262 original images were first randomly divided into a training set (90% of the 

subjects) and testing set (10% of the subjects). Then, the training set was further divided into 10 

folds so that 10-fold cross-validation was performed with 9 folds for training and 1 fold for 

validation and this process was repeated 10 times. Because each subject includes multiple images 

over 12-year visits on both eyes, we performed this separation at the subject level, which means 

that images from the same subject were included in the same fold.   

 

Data Augmentation 

A data augmentation procedure was applied to increase the diversity of the training dataset, and 

thus to reduce the risk of overfitting the CNN. We applied several augmentations to each image 

before rescaling to a square. First, images were horizontally mirrored to mimic the left and right 

eye orientations of each image. Second, images were randomly cropped less than 10% on both 

height and width to mimic images with not well-centered macula. The augmented images were 

assigned the same labels as the corresponding original images. The purpose of image 

augmentation is to control for the overfitting problem by artificially creating training images, and 

these augmented images still preserve the key information of the image but are different from 

their original images. The proposed augmentation techniques were similar to the previous CNN 
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study of fundus images 17. After augmentation, all fundus images were resized to squares 

encompassing the macula and rescaled to 224×224 pixels. 

 

Deep Learning Approach Combining Images and Genotypes 

The first part of the model architecture is CNN used to extract features from fundus images 

(Figure 5). CNN is a special type of deep neural network that consists of many repeated 

processing layers that match the input image with successive convolutional filters to extract 

image features from low to high levels. A CNN is a member of deep neural networks that 

optimizes the weights of each layer using stochastic gradient descent via a backpropagation 

process. There can be millions of weights 33. There are a number of existing CNN architectures 

designed for image processing 34. In general, these architectures are similar. They are all 

comprised of sequentially convolutional and pooling layers. Each of the different architectures is 

best suited for specific problems. In this study, we used the Inception-v3 CNN architecture 35 to 

extract image features, which has been used for fundus images in several studies 17,19,20,36. 

Additionally, we used pre-trained weights as the initial values to train our network, which were 

trained for general image classification using the ImageNet database 37 that contains thousands of 

different objects and millions of images. This scale of data is usually unavailable in medical 

image classification studies.  

 

It was reported that the current AMD severity was the strongest predictor for the progression 

time to late AMD 38 and fundus images could be used to automatically grade AMD severity 

17,18,20 with similar CNN architectures as presented here. Thus, after obtaining the output vector 

of the final convolutional layer, which contains all the information needed to understand the 

image, we fed these extracted image features to a fully connected layer to classify AMD severity 

(Figure 5). Furthermore, this severity viewed as the current AMD severity along with 52 
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independent genetic variants were fed to another fully connected layer to predict the time to late 

AMD development exceeding certain inquired years (Figure 5). During training, we used 3-level 

severity labels (e.g., no AMD when severity score is equal to 1; early or intermediate AMD 

when severity score is between 2 and 8; and late AMD when severity score is greater than or 

equal to 9). The network was built for any inquired year k, where k = 2, 3, 4, 5, 6, and 7.  The 

detailed Inception-v3 CNN is shown in Supplementary Figure 7. 

 

The aforementioned model could be simplified to sub-models. In total, we considered four 

models: (1) using fundus images taken at the current visit to predict whether the eye's 

progression time to late AMD exceeds the inquired year; (2) using both fundus images and 

feature SNPs to predict whether the eye's progression time to late AMD exceeds the inquired 

year; (3) using fundus images to predict whether the eye's progression time to late AMD exceeds 

the inquired year as well as to classify the AMD severity at the current visit; (4) using both 

fundus images and feature SNPs to predict whether the eye's progression time to late AMD 

exceeds the inquired year as well as to classify the AMD severity at the current visit. 

 

Our deep learning network was implemented by using Keras with TensorFlow 39. During the 

training process, we first fixed the pre-trained weights in the CNN and updated the rest of the 

weights using an Adam optimizer with a learning rate of 0.001. The aforementioned 10-fold 

cross-validation was performed. Based on the average performance of the validation set, the best 

epoch was selected for testing set evaluation. For each fold, we trained the network for 20 epochs 

(loops of the entire training set) and selected the most suitable epoch for testing after 10-fold 

cross-validation. Furthermore, we set all weights as trainable and fine-tuned the network with a 

learning rate of 0.0001 and selected the best epoch out of 10 epochs also after 10-fold cross-

validation. In this fine-tuning step, we selected a small total number of epochs to avoid updating 
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the pre-trained CNN weights too much. All the training was conducted on a machine equipped 

with an EVGA GeForce RTX 2080 Ti 11Gb GPU and 128Gb available RAM. 

 

Performance Metrics 

For the stepwise binary predictions, we calculated the AUC (area under the curve) of Receiver 

Operator Characteristic (ROC) curves as the primary performance metric. Besides, Brier score 40 

that is the squared error of a probabilistic prediction was used as another metric, and the lower 

the Brier score the better the model predicts. The useful benchmark values for the Brier score are 

33%, which corresponds to predicting the risk by a random number drawn from a Uniform 

distribution between 0 and 1. For the 3-level AMD severity classification, no AMD, early or 

intermediate AMD and late AMD were treated as levels 0, 1 and 2 (see supplementary text for 

details).   

 

Visualizing Model Attention 

To help understand what image features were learned and make the “black box” deep learning 

model more transparent, we generated saliency maps 41 to highlight the regions that most 

contribute to the predicted values from the output layer for all trained models. The saliency is 

computed by the gradient of output value with respect to the input image. In other words, it could 

detect how a small change in the input image changes the output value. If these gradients have 

the same shape as the region of interest, it indicates that the attention of learning is on the right 

region. Thus, these gradients could be used to highlight input regions that result in the most 

change in the output prediction. The saliency map method only works when images are the only 

input. When both images and SNPs were inputs, we used LIME (Local Interpretable Model-

Agnostic Explanations) 42 instead, which attempts to understand the model by perturbing the 

input data and understanding how the predictions change. Specifically, we extracted the network 
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inside the red rectangle in Supplementary Figure 7b. After processing images through Inception-

v3, an average pooling was used to generate a vector of length 2,048 (i.e., V1, V2 … V2048), 

which summarized the image information. Then, this vector was concatenated with the SNP 

vector of 52 SNPs. Therefore, the input for this sub-network is a vector of 2,100 elements, which 

is what we perturbed in our LIME analyses. 

 

Data availability 

All the phenotype data and fundus images of AREDS participants required are available from 

dbGap (accession: phs000001.v3.p1). The genotype data on AREDS subjects has been reported 

earlier 9 and is available from dbGap (accession phs001039.v1.p1). The UK Biobank test dataset 

was obtained from UK Biobank (application number 43252). 

 

Code availability  

The prediction models with Python implementation and a detailed tutorial are available at 

https://github.com/QiYanPitt/AMDprogressCNN and a web-based graphical user interface is 

also available at http://www.pitt.edu/~qiy17/amdprediction.html. 
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Figures 

 

Figure 1. ROC curves of the prediction of late AMD progression time exceeding the 

inquired years for four models. The four models are (1) fundus images predicting late-AMD 

progression exceeding the inquired years; (2) fundus images + genotypes predicting late-AMD 

progression exceeding the inquired years; (3) fundus images both classifying current AMD 

severity and predicting late-AMD progression exceeding the inquired years; and (4) fundus 

images + genotypes both classifying current AMD severity and predicting late-AMD progression 

exceeding the inquired years. (a-f) inquired years from 2 to 7. 
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Figure 2. Saliency maps for left eye of Subject #1 over 5.9 years. This subject progressed to 

late AMD after 4.8 years of follow-up. The highlighted dots indicate the area that the CNN 

learned to make the decision. The first number in the parenthesis is the true label (1=not 

progressed, 0=progressed) and the second number is the estimated probability of late AMD 

progression time exceeding the inquired year relative to the current visit. The green numbers 

indicate accurate predictions and red numbers indicate inaccurate predictions using Youden 

indices (Supplementary Table 2, Img -> Risk) as the thresholds to dichotomize the predictions.  
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Figure 3. Saliency maps for left eye of Subject #2 over the first 5.8 years. This subject was 

censored after 11.1 years of follow-up. The highlighted dots indicate the area that the CNN 

learned to make the decision. The first number in the parenthesis is the true label (1=not 

progressed, 0=progressed, NA=progression status unknown) and the second number is the 

estimated probability of late AMD progression time exceeding the inquired year relative to the 

current visit. The green numbers indicate accurate predictions and red numbers indicate 

inaccurate predictions using Youden indices (Supplementary Table 2, Img -> Risk) as the 

thresholds to dichotomize the predictions.  
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Figure 4. Saliency maps for left eye of Subject #3 over 12 years. This subject developed late 

AMD before enrollment. The highlighted dots indicate the area that the CNN learned to make the 

decision. The first number in the parenthesis is the true label (1=not progressed, 0=progressed) 

and the second number is the estimated probability of late AMD progression time exceeding the 

inquired year relative to the current visit. The green numbers indicate accurate predictions and 

red numbers indicate inaccurate predictions using Youden indices (Supplementary Table 2, Img -> 

Risk) as the thresholds to dichotomize the predictions.  
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Figure 5. Convolutional neural network (CNN) of retinal fundus images along with feature 

SNPs and AMD severity for the prediction of late-AMD progression exceeding certain 

inquired years. 

  

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted February 18, 2020. ; https://doi.org/10.1101/19006171doi: medRxiv preprint 

https://doi.org/10.1101/19006171


 31 

Tables 

 

Table 1. Characteristics of the participants  

 AREDS Training Test 

Subject-level variables 1,351 subjects 1,223 subjects 128 subjects 

Baseline age, year (mean ± SD) 68.8 ± 5.0 68.8 ± 5.0 68.5 ± 4.8 

Female (N, %) 750 (55.5) 682 (55.8) 68 (53.1) 

Follow-up time, (mean ± SD) 10.3 ± 1.6 10.2 ± 1.7 10.9 ± 1.0 

Baseline smoking status (N, %)    

    Never smoked 626 (46.3) 566 (46.3) 60 (46.9) 

    Former smoker 634 (46.9) 576 (47.1) 58 (45.3) 

    Current smoker 91 (6.7) 81 (6.6) 10 (7.8) 

Eye-level variables 2,678 eyes 2,422 eyes 256 eyes 

Baseline AMD severity score at eye-level    

    Mean ± SD 3.9 ± 3.2 4.0 ± 3.2 3.9 ± 3.2 

    1-3 (n, %) 1,442 (53.8) 1,310 (54.1) 132 (51.6) 

    4-6 (n, %) 600 (22.5) 528 (21.8) 72 (28.1) 

    7-8 (n, %) 636 (23.7) 584 (24.1) 52 (20.3) 

Progressed eyes with baseline severity    

    1-3 (n, %) 50 (3.5) 48 (3.7) 2 (1.5) 

    4-6 (n, %) 300 (50.0) 260 (49.2) 40 (55.6) 

    7-8 (n, %) 585 (92.0) 537 (92.0) 48 (92.3) 

Observation-level variables    

Fundus images used for prediction with 

progression cutoff  

   

2 years (n) 27,499 24,654 2,845 

3 years (n) 25,862 23,170 2,692 

4 years (n) 24,287 21,709 2,578 

5 years (n) 22,435 20,041 2,394 

6 years (n) 20,240 18,118 2,122 

7 years (n) 18,066 16,172 1,894 
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Table 2. AUC values (95% CI) and Brier scores (95% CI) of the prediction of probability of late-AMD 

progression exceeding the inquired years for four models 

  2 years 3 years 4 years 5 years 6 years 7 years 

AUC 

values 

Image -> Risk* 
0.81 

(0.79-0.83) 

0.81 

(0.79-0.83) 

0.81 

(0.79-0.83) 

0.79 

(0.78-0.81) 

0.83 

(0.81-0.85) 

0.84 

(0.82-0.86) 

Image + Geno -> Risk 
0.84 

(0.83-0.86) 

0.85 

(0.83-0.86) 

0.83 

(0.82-0.85) 

0.84 

(0.82-0.85) 

0.85 

(0.83-0.86) 

0.85 

(0.83-0.87) 

Image -> AMDstate# -> Risk 
0.81 

(0.79-0.83) 

0.80 

(0.78-0.82) 

0.79 

(0.77-0.81) 

0.82 

(0.80-0.84) 

0.82 

(0.80-0.84) 

0.84 

(0.83-0.86) 

(Image -> AMDstate) + Geno -> 

Risk 

0.85 

(0.84-0.87) 

0.86 

(0.84-0.87) 

0.86 

(0.84-0.87) 

0.85 

(0.84-0.87) 

0.85 

(0.84-0.87) 

0.85 

(0.84-0.87) 

Brier 

scores 

Image -> Risk 
0.13 

(0.12-0.14) 

0.14 

(0.13-0.15) 

0.15 

(0.14-0.16) 

0.16 

(0.15-0.17) 

0.15 

(0.15-0.16) 

0.16 

(0.15-0.17) 

Image + Geno -> Risk 
0.13 

(0.12-0.15) 

0.15 

(0.14-0.16) 

0.16 

(0.15-0.17) 

0.17 

(0.16-0.18) 

0.17 

(0.16-0.18) 

0.17 

(0.16-0.18) 

Image -> AMDstate -> Risk 
0.13 

(0.12-0.14) 

0.15 

(0.14-0.16) 

0.16 

(0.15-0.17) 

0.15 

(0.14-0.16) 

0.16 

(0.16-0.17) 

0.16 

(0.15-0.17) 

(Image -> AMDstate) + Geno -> 

Risk 

0.13 

(0.12-0.14) 

0.14 

(0.13-0.15) 

0.14 

(0.14-0.16) 

0.15 

(0.14-0.16) 

0.16 

(0.15-0.17) 

0.16 

(0.15-0.17) 

AUC 95% CI uses the DeLong method 43; Brier score 95% CI uses bootstrap method. 

* The probability of late-AMD progression exceeding the inquired years. 

# No, early or intermediate, or late AMD (3 levels).  
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Supplementary Table 1. The 3-level AMD severity classification accuracy (no AMD, early 

or intermediate AMD and late AMD) 

Fundus images used 

for classification with 

progression cutoff 

Img -> AMDstate -> Risk Img -> AMDstate + Geno -> Risk* 

2 years 0.57 0.58 

3 years 0.56 0.57 

4 years 0.59 0.58 

5 years 0.60 0.60 

6 years 0.60 0.60 

7 years 0.59 0.60 

* Img = fundus images; AMDstate = the AMD severity at the current visit; Risk = the probability of late-AMD 

progression exceeding the cutoff durations; and Geno = 52 reported SNPs.  
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Supplementary Table 2. Youden indices for dichotomizing the prediction of probability of late-AMD 

progression exceeding the cutoff durations for four models with cutoff years 

  2 years 3 years 4 years 5 years 6 years 7 years 

Youden 

indices 

Img -> Risk* 0.69 0.61 0.67 0.50 0.52 0.42 

Img + Geno -> Risk 0.72 0.59 0.66 0.54 0.50 0.36 

Img -> AMDstate -> Risk 0.78 0.29 0.43 0.46 0.50 0.34 

Img -> AMDstate + Geno -> Risk 0.66 0.66 0.47 0.52 0.49 0.33 

* The probability of late-AMD progression exceeding the cutoff durations.  
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The 3-level AMD severity classification  

No AMD (level 0) was coded as 00, early or intermediate AMD (level 1) was coded as 10 and 

late AMD (level 2) was coded as 11 (Supplementary Table 3) so that the order of classes could 

be learned. The performance metric used was accuracy of predicted labels. The predicted labels 

were determined based on the highest predicted label probability. For the predicted probability of 

each label: 

𝑃𝑙𝑎𝑏𝑒𝑙 =  {

𝑃(dummy1 = 0) ∗ 𝑃(dummy2 = 0),   𝑖𝑓 00

𝑃(dummy1 = 1) ∗ 𝑃(dummy2 = 0),   𝑖𝑓 10

𝑃(dummy1 = 1) ∗ 𝑃(dummy2 = 1),   𝑖𝑓 11

 

where 𝑃(dummy1 = 0) is the predicted probability of 0 for dummy1 and 𝑃(dummy1 = 1) is 

the predicted probability of 1 for dummy1. It is analogous to dummy2. The label was assigned by 

the highest probability. For example, if 𝑃(dummy1 = 1) ∗ 𝑃(dummy2 = 1) had the highest 

probability, the predicted label would be late AMD. Then, the accuracy was the number of 

correct predicted labels divided by the sample size. Note that the random accuracy is one out of 

three, 0.33. 

 

Supplementary Table 3. Dummy variables for eye AMD severity at the current visit 

 dummy1 dummy2 

no AMD 0 0 

intermediate AMD 1 0 

late AMD 1 1 
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Supplementary Figure 1. The number of useable fundus images for prediction before and 

after the cutoff years (2, 3, 4, 5, 6 and 7 years) 
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Supplementary Figure 2. Four models of convolutional neural network (CNN) for AMD 

progression time prediction. (a) fundus images predicting late-AMD progression exceeding the 

cutoff durations; (b) fundus images + genotypes predicting late-AMD progression exceeding the 

cutoff durations; (c) fundus images both classifying current AMD severity and predicting late-

AMD progression exceeding the cutoff durations; and (d) fundus images + genotypes both 

classifying current AMD severity and predicting late-AMD progression exceeding the cutoff 

durations. 
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Supplementary Figure 3. Density curves of the predicted probability of having late AMD 

progression time before or after each of the six cutoff years for four models. Each column is 

one model and each row is one cutoff year. 
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Supplementary Figure 4. Feature importance heatmaps from LIME for the sub-network 

using fundus images along with genotypes (Supplementary Figure 7b inside the red 

rectangle) to predict late AMD progression time for the same left eye of Subject #1 in 

Figure 2. This subject progressed to late AMD after 4.8 years of follow-up. The first two 

variables contributing the most to the predictions for each visit year are shown. Note that with 

each visit year, we selected the two variables with the most extreme feature weights for display 

here. The V#s indicates the summarized image information (i.e., V1, V2 … V2048). 
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Supplementary Figure 5. Feature importance heatmaps from LIME for the sub-network 

using fundus images along with genotypes (Supplementary Figure 7b inside the red 

rectangle) to predict late AMD progression time for the same left eye of Subject #2 in 

Figure 3. This subject was censored after 11.1 years of follow-up. The first two variables 

contributing the most to the predictions for each visit year are shown. Note that with each visit 

year, we selected the two variables with the most extreme feature weights for display here. The 

V#s indicates the summarized image information (i.e., V1, V2 … V2048). 
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Supplementary Figure 6. Feature importance heatmaps from LIME for the sub-network 

using fundus images along with genotypes (Supplementary Figure 7b inside the red 

rectangle) to predict late AMD progression time for the same left eye of Subject #3 in 

Figure 4. This subject developed late AMD before enrollment. The first two variables 

contributing the most to the predictions for each visit year are shown. Note that with each visit 

year, we selected the two variables with the most extreme feature weights for display here. The 

V#s indicates the summarized image information (i.e., V1, V2 … V2048). 
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Supplementary Figure 7. Detailed Inception-v3 convolutional neural network (CNN) for 

AMD progression time prediction. (a) fundus images predicting late-AMD progression 

exceeding the cutoff durations; (b) fundus images + genotypes predicting late-AMD progression 

exceeding the cutoff durations; (c) fundus images both classifying current AMD severity and 

predicting late-AMD progression exceeding the cutoff durations; and (d) fundus images + 

genotypes both classifying current AMD severity and predicting late-AMD progression 

exceeding the cutoff durations. Note that the auxiliary layer was not included in this Keras 

version Inception-v3 network. 
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Supplementary Figure 8. ROC curves of the classification of late AMD progression 

exceeding the cutoff duration of 3 years for four models using 200 Caucasians from UK 

Biobank. The four models are (1) fundus images predicting late-AMD progression exceeding 3 

years; (2) fundus images + genotypes predicting late-AMD progression exceeding 3 years; (3) 

fundus images both classifying current AMD severity and predicting late-AMD progression 

exceeding 3 years; and (4) fundus images + genotypes both classifying current AMD severity 

and predicting late-AMD progression exceeding 3 years. 
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Supplementary Figure 9. ROC curves of the prediction of late AMD progression time 

exceeding the inquired years for four models. The two models are (1) fundus images + 

genotypes + age + smoking status predicting late-AMD progression exceeding the inquired years; 

and (2) fundus images + genotypes + age + smoking status both classifying current AMD 

severity and predicting late-AMD progression exceeding the inquired years. (a-f) inquired years 

from 2 to 7. 
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Supplementary Figure 10. ROC curves of the classification of late AMD progression 

exceeding the cutoff duration of 3 years using fundus images + 1,057 SNPs. The two models 

are (1) fundus images + genotypes predicting late-AMD progression exceeding 3 years; and (2) 

fundus images + genotypes both classifying current AMD severity and predicting late-AMD 

progression exceeding 3 years. 

  

False positive rate

T
ru

e
 p

o
s
it
iv

e
 r

a
te

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

ROC curve

time <3 years vs. time >=3 years

Img+Geno−>Risk: AUC=0.84 (0.82−0.85)

Img−>AMDstate+Geno−>Risk: AUC=0.84 (0.82−0.86)

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted February 18, 2020. ; https://doi.org/10.1101/19006171doi: medRxiv preprint 

https://doi.org/10.1101/19006171


 46 

Supplementary Figure 11. ROC curves of the classification of late AMD progression 

exceeding the cutoff duration of 3 years using fundus images + 52 SNPs + the other eye’s 

current severity. The two models are (1) fundus images + genotypes + the other eye’s current 

severity predicting late-AMD progression exceeding 3 years; and (2) fundus images + genotypes 

+ the other eye’s current severity both classifying current AMD severity and predicting late-

AMD progression exceeding 3 years. 
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