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Summary. As malaria incidence decreases and more countries move towards elimination,
maps of malaria risk in low prevalence areas are increasingly needed. For low burden ar-
eas, disaggregation regression models have been developed to estimate risk at high spa-
tial resolution from routine surveillance reports aggregated by administrative unit polygons.
However, in areas with both routine surveillance data and prevalence surveys, models that
make use of the spatial information from prevalence point-surveys have great potential.
Using case studies in Indonesia, Senegal and Madagascar, we compare two methods for
incorporating point-level, spatial information into disaggregation regression models. The
first simply fits a Gaussian random field to prevalence point-surveys to create a new covari-
ate. The second is a multi-likelihood model that is fitted jointly to prevalence point-surveys
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and polygon incidence data. We find that the simple model generally performs better than
a baseline disaggregation model while the joint model performance was mixed. More gen-
erally, our results demonstrate that combining these types of data improves estimates of
malaria incidence.

0.1. Keywords
Disaggregation regression, disease mapping, geostatistics, joint modelling, spatial statis-
tics.

Introduction

Global malaria incidence has decreased dramatically over the last 20 years (Bhatt et al.,
2015; Weiss et al., 2019; Battle et al., 2019). This decrease has been accompanied
by a strategic shift aiming for elimination in low incidence countries (World Health
Organization, 2016; Newby et al., 2016). Accurate, high-resolution maps of malaria risk
are vital in countries in the elimination and pre-elimination phases as they highlight the
areas with ongoing Plasmodium transmission most in need of interventions (Sturrock
et al., 2016; Cohen et al., 2017). Mapping malaria in low burden countries presents
new challenges as traditional mapping of prevalence (Gething et al., 2011; Bhatt et al.,
2017; Gething et al., 2012; Bhatt et al., 2015) using cluster-level surveys and model-
based geostatistics are not necessarily effective in these areas (Sturrock et al., 2016,
2014). In low burden areas, very large sample sizes are needed before a prevalence
survey is informative because so few individuals have detectable parasitaemia that most
sample points will have no cases. In most cases, these large sample sizes are neither
logistically nor financially feasible. However, the availability and quality of routine
surveillance data of malaria case counts, typically aggregated by administrative unit
polygons, is improving, thus providing an alternative data source for mapping malaria
burden (Sturrock et al., 2016; Ohrt et al., 2015; Cibulskis et al., 2011). Advantageously,
the routine surveillance data can be more sensitive than prevalence point-surveys in low
transmission areas because the entire public health system is being used to passively
monitor disease occurrence continually over a period of time (Cibulskis et al., 2011).

Disaggregation regression methods have been proposed as a way to model malaria
burden using polygon-level, routine surveillance records of incidence (Sturrock et al.,
2014; Wilson and Wakefield, 2018; Law et al., 2018; Taylor et al., 2017; Li et al., 2012;
Johnson et al., 2019). Disaggregation regression requires an aggregation step in which
the high-resolution estimates of disease incidence are summed to match the level of the
administitive unit at which the incidence data are observed. An important consideration
is whether the aggregation step occurs in link function space or in the response space.
In the case of the identity link function, the two cases are the same (Moraga et al., 2017;
Roksv̊ag et al., 2019; Wilson and Wakefield, 2018). However, when using a non-linear
link function, the two cases imply very different models. In the case of the Normal–
Poisson pairing with a log-link function, performing the aggregation step in the link
space before transformation back to the response space produces a ‘geometric sum’
operation. This formulation has been used for computational convenience a number
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of times in the literature (Wang et al., 2018; Liu et al., 2011) but lacks the natural
epidemiological interpretation provided by arithmetic summation in the response space.

The intent of this research is to assess the utility of extending disaggregation regres-
sion modelling approaches to map malaria incidence using both point- and polygon-level
response data. In particular it focuses on two aspects where improvements in the dis-
aggregation regression may be possible: (1) for modelling low-burden areas which have
better coverage of prevalence surveys than polygon incidence data; and (2) for building
the statistical relationships between the response (i.e. malaria incidence) and geospatial
predictor data in heterogeneous landscapes. An ancillary benefit of a hybridized ap-
proach is that it will simultaneously produce estimates of both prevalence and incidence
metrics, which may both be useful for policy makers (Cohen et al., 2017). Models are
typically fitted to observations of one metric and then a secondary model is used to con-
vert between prevalence and incidence post hoc (Battle et al., 2019; Bhatt et al., 2015),
thus missing an opportunity to learn the relationship between prevalence and incidence
at the same time as fitting the geographic model.

There are two broad ways that spatial information from prevalence surveys could be
included in a dissaggregation regression model of incidence. Firstly, the information from
prevalence surveys could be summarised using a separate model and then included as a
covariate in the disaggregation model. If the model used to summarise the prevalence
surveys was explicitly spatial, this approach would make the spatial information in the
prevalence data available to the disaggregation model, thereby enhancing the ability
to spatially disaggregate polygon-level cases within administrative units. However, this
approach does not provide additional degrees of freedom in order to more accurately
learn relationships between malaria risk and the environment, nor does it allow joint
predictions of incidence and prevalence from a single model. This broad approach of
summarising the information in a different data set using a separate model has previously
been used in a number of contexts, including information on animal hosts (Shearer et al.,
2016) or summarising temperature suitability for malaria parasites (Weiss et al., 2014b),
which were subsequently used as inputs for modeling malaria prevalence (Bhatt et al.,
2015; Weiss et al., 2019).

Fully combining observations of incidence and prevalence in a joint model, with mul-
tiple likelihoods, addresses the limitations of a simple model using a prevelance map
as a covariate. Advantageously, as the additional malariometric data are being used as
response data, they provide more degrees of freedom with which to learn relationships
between malaria risk and the environment. Such a model can also learn the relationship
between different types of malaria response metrics at the same time as making spatial
estimates, thereby producing statistically and epidemiologically consistent outputs for
both incidence and prevalence. While a joint model provides the opportunity to learn
the relationship between prevalence and incidence, this is technically challenging as these
two data types measure disease intensity on different scales. Point-surveys are a mea-
surement of prevalence in the range [0, 1] that quantify parasite rate at a specific point
in time. In contrast, routine surveillance measures incidence in the range [0,∞] over a
longer period of time (e.g., a year) during which individuals can have multiple malaria
infections. The case of using areal and point data together with different likelihoods
and different link functions has been examined previously (Wang et al., 2018) but has
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required that the aggregation step be performed in the link function space. Disaggrega-
tion regression models in which the aggregation step is performed in the natural response
space have been examined (Wilson and Wakefield, 2018; Taylor et al., 2017), but without
combining point data with areal data or using dual likelihoods for multi-metric data.

Here we compare two methods for using spatial information from prevalence sur-
veys to inform a disaggregation model fitted to polygon incidence data of Plasmodium
falciparum malaria. The first, simpler, model summarises the spatial information in
the prevalence point-surveys by fitting a spatial Gaussian process model to the sur-
veys. Predictions from this model are then used as a covariate in the disaggregation
model. Secondly, we formulate a joint model that combines polygon incidence data and
prevalence point-surveys using separate likelihoods for both data types. We relate the
differing malariometric measures by using a previously estimated relationship within the
model (Cameron et al., 2015) which is then adjusted as part of the model fitting process.
Unlike previous studies, this model combines areal and point level data, with different
likelihoods, without performing the aggregation step in the link function space. We then
compare results from the two models with those made using a polygon-only, disaggre-
gation model similar to previous models (Sturrock et al., 2014; Wilson and Wakefield,
2018). All models are fitted to data from Indonesia, Senegal and Madagascar to pro-
vide a set of case studies from disparate geographic settings and with differing levels of
malaria endemicity.

Materials and methods

Malaria data
We used two data sources that quantify malaria burden: prevalence point-surveys and
polygon incidence data. Prevalence point-surveys consist of geo-located survey clusters
wherein all sampled individuals are tested for malaria and the positive cases as well as
the total number of children tested is recorded. Polygon incidence data is aggregated
to administrative units (e.g. districts or provinces) summarizing data reported from
hospitals and health facilities. Unlike the point data, polygon-level reports only include
numbers of cases and not the numbers of individuals in each administrative unit. As
such, to determine an incidence rate we rely on gridded population surfaces, summarised
to administrative unit boundaries, to provide the denominator. The prevalence point-
survey data were extracted from the Malaria Atlas Project database (Bhatt et al., 2015;
Guerra et al., 2007; Pfeffer et al., 2018). As the prevalence point-surveys cover different
age ranges they were standardised to the 2–10 year-range using a previously published
model (Smith et al., 2007). As described, the age standardisation model gives the surveys
with zero positive cases a small positive prevalence. The polygon incidence data were
collated from various government reports and adjusted for incompleteness using methods
defined by Cibulskis and colleagues (Cibulskis et al., 2011; Weiss et al., 2019). These
adjustments account for underreporting of clinical cases due to lack of treatment seeking,
missing case reports (from a health facility that reported for 11 months in a year for
example), and cases that sought medical attention outside the public health systems
(Battle et al., 2016). Where species specific reports were given, these were used, and in
reports that did not distinguish between species of Plasmodium the national estimate
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of the ratio between P. falciparum and Plasmodium vivax cases was used to estimate
numbers of P. falciparum cases specifically. These adjustments were uniform across each
country. The polygon incidence data can be seen in Panel A of Figures 1–3.

We selected Indonesia, Senegal and Madagascar as case examples as they all have
abundant subnational surveillance data and country-wide surveys from approximately
the same periods. To minimise temporal effects we selected one year of polygon incidence
data and the surrounding five years of prevalence point-survey data for each country.
Within this five year period, we considered malaria unchanging and did not model time
explicitely. For Indonesia we selected polygon incidence data from 2012 that covers
379 administrative units, and prevalence data from 2010 to 2014 that consists of 1,233
survey clusters (i.e. unique locations), representing 230,747 individuals. For Senegal we
selected 2015 for polygon incidence data (41 administrative units) and 2013 to 2017 for
prevalence data (804 clusters, 17,037 individuals). Finally, for Madagascar we selected
2013 for polygon incidence (110 administrative units) and 2011 to 2015 for prevalence
data (1,049 clusters, 36,411 individuals).

Population data
Raster surfaces of population for the years 2005, 2010 and 2015, were created using a
hybrid mosaic of data from the Gridded Population of the World v4 (NASA, 2018) and
WorldPop (Tatem, 2017), with the latter taking priority for those pixels where both
sources had population data. For each year, the interpolated population surfaces were
adjusted to match national population estimates from the UN. Finally, the population
surfaces were masked by environmental suitability so that only populations at risk were
included (Weiss et al., 2019).

Covariate data
We considered a suite of environmental and anthropological covariates, at a resolution
of approximately 5×5 kilometres at the equator that included land surface temperature
annual mean and standard deviation, enhanced vegetation index (EVI), P. falciparum
temperature suitability index (Weiss et al., 2014b), elevation (NASA LP DAAC, 2013),
tassel cap brightness, tassel cap wetness, accessibility to cities (Weiss et al., 2018), night
lights (Elvidge et al., 2017) and proportion of urban land cover (Esch et al., 2018).
The land surface temperature, EVI, and tasseled cap indices were derived from satellite
imagery and gap-filled to remove missing data caused by factors like cloud-cover (Weiss
et al., 2014a) and rescaled to a spatial resolution of approximately 5×5km (Weiss et al.,
2015) that defined the output of the final prevalence and incidence maps. Some covariates
were log-transformed to remove skewness or removed due to multicollinearity with other
predictor variables using the threshold of 0.8. The covariates were standardised to have
a mean of zero and a standard deviation of one.

Baseline Disaggregation Model
Values at the aggregated, polygon level are given the subscript a while pixel or point
level variables are indexed with b. The polygon incidence case count data, ya is given a
Poisson likelihood
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Fig. 1. Reported incidence data and modelled incidence maps for Senegal. The national
boundary of Senegal is shown in grey and missing data is left white. The adjusted input aggre-
gated data is plotted in Panel A, while Panel B maps the predictions of the prevalence Gaussian
Process model for for spatially cross-validated out-of-sample polygons and Panel C maps the
predicted incidence from the joint model.

Fig. 2. Reported incidence data and modelled incidence maps for Madagascar. The adjusted
input aggregated data is plotted in Panel A, while Panel B maps the predictions of the prevalence
Gaussian Process model for for spatially cross-validated out-of-sample polygons and Panel C
maps the predicted incidence from the joint model.
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Fig. 3. Reported incidence data and modelled incidence maps for Indonesia. The national
boundary of Indonesia is shown in grey and missing data is left white. The adjusted input
aggregated data is plotted in Panel A, while Panel B maps the predictions of the prevalence
Gaussian Process model for for spatially cross-validated out-of-sample polygons and Panel C
maps the predicted incidence from the joint model.

ya ∼ Poisson(iapopa)

where ia is the estimated polygon incidence rate and popa is the population at risk
within that admin unit polygon (as apposed to the true health centre catchment area).

Incidence rate is linked to latent pixel-level incidence (ib), prevalence (pb) and pre-
dictor variables by the following system of equations.
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ia =

∑
b∈a ibpopb∑
b∈a popb

Here, b ∈ a denotes that the summation is over the pixels in polygon a. Incidence is
related to prevalence by

ib = PrevInc(pb).

Here PrevInc is a function from a previously fitted model (Cameron et al., 2015)

PrevInc : f (pb) = 2.616pb − 3.596pb
2 + 1.594pb

3.

The linear predictor of the model, ηb, is related to the latent prevalence scale by a typical
logit link function.

pb = logit−1(ηb)

The form of this set of link functions means we calculated predictions of prevalence and
incidence simultaneously whether both data types or just one were used.

The linear predictor is composed of an intercept, b0, covariates, X, and a vector of
regression coefficients β. We also include a spatial, Gaussian random field, us(ρ, σu) and
a polygon-level iid random effect, va(σv).

ηb = β0 + βX + us(ρ, σu) + va(σv)

The Gaussian spatial effect u(s, ρ, σu) has a Matérn covariance function and two hy-
per parameters: ρ, the nominal range on the longitude-latitude scale (beyond which
correlation is < 0.1) and σu, the marginal standard deviation. The iid random effect,
va ∼ Normal(0, σv), was grouped by polygon, with all pixels within polygon j being
grouped together. Internally, this effect is parameterised as the log of the precision,
ωv = log(τv) = log( 1

σv
2 ) to improve numeric stability. This random effect modelled both

missing covariates and extra-Poisson sampling error.
Finally, we complete the model by setting priors on the parameters β0,β, ρ, σu and

σv. The intercept was given a wide prior, b0 ∼ Normal(−2, 4), with a mean relating
to a prevalence of 0.12 as we know a priori that these countries have low or medium
levels of malaria transmission. We set independent, regularising priors on the regression
coefficients βi ∼ Normal(0, 0.04). Given the standardised covariates, an intercept of
-3 and a regression coefficient from the 95% interquartile range of this distribution,
each covariate would be able to predict prevalences between 0.004 and 0.27. This prior
encodes our belief that the full range of malaria transmission can not be explained
by a single covariate and our desire to regularise the model. This regularisation is
particularly important given the small number of administrative units in Senegal (n =
46) and Madagascar (n = 110).

We assigned ρ and σu a joint penalised complexity prior (Fuglstad et al., 2018) such
that P (ρ < ζ) = 0.00001 and P (σu > ξ) = 0.00001. We used different ζ and ξ values
for each country: Indonesia ζ = 3, ξ = 1, Senegal ζ = 1, ξ = 0.5 and Madagascar
ζ = 1, ξ = 1. We believe that a large proportion of the variance of malaria prevalence
and incidence cannot be explained by a linear combination of the covariates selected at
the scale of individual countries (Bhatt et al., 2017), so we set this prior such that the
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random field could explain most of the range of the data. As Senegal has a lower range
of incidences in the data we set ξ to a smaller value for this country.

We assigned σv a penalised complexity prior (Simpson et al., 2017) such that P (σv >
0.05) = 0.0000001. This was based on a comparison of the variance of Poisson random
variables, with rates given by the number of cases observed, and an separately derived
upper and lower bound for the case counts using the approach defined by Cibulskis and
colleagues (Cibulskis et al., 2011). We found that an iid effect with a standard deviation
of 0.05 was able to account for the discrepancy between the assumed Poisson error and
the separately derived measurement error.

The models were implemented and fitted in R (R Core Team, 2018) using Template
Model Builder (Kristensen et al., 2016) which allows a Laplace approximation of the
posterior to be calculated. We note that R-INLA (Lindgren and Rue, 2015) can be used
to fit disaggregation models but only when a linear link function is being used (Wilson
and Wakefield, 2018). The hyperparameters are fitted using empirical Bayes whereby
the hyperparameters are learned from the data but are treated as point estimates rather
than using the full posterior of the hyperparameters.

Prevalence Gaussian process covariate model
The prevalence Gaussian Process model (henceforth the prevalence GP model) is the
same as the baseline disaggregation model except that it has one extra covariate. This
covariate is created by fitting a Gaussian random field to the prevalence survey data.
For each country we fitted a binomial likelihood, hierarchical Gaussian random field with
the same hyperpriors for ρ and σu as above. These models were fitted using R-INLA
(Lindgren and Rue, 2015). To be in the correct scale for the dissagregation model, the
inverse logit of the predicted Gaussian field (i.e. the linear predictor of the model) was
used as the additional covariate.

Full joint model
The final model is a joint-likelihood model with separate likelihoods for prevalence point-
surveys and polygon incidence data. The polygon data are assigned a Poisson likelihood
as before. Additionally, the point-survey data, with positive cases zb, are given a binomial
likelihood

zb ∼ Binomial(pb, nb)

where pb is the estimated prevalence and nb is the observed survey sample size. As this
model has both prevalence and incidence data we add a parameter α that modifies the
relationship between the two.

ib = exp(α)PrevInc(pb).

The only further additions to the baseline model are in the linear predictor which
becomes

ηb = β0 + 1pβp + βX + us(ρ, σu) + va(σv) + wb(σw).
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Table 1. Summary of out-of-sample accuracy for all cross-validation experiments.
Mean absolute error of predicted incidence rate against out-of-sample observed
data for three countries.

Cross-validation Country Baseline Prev GP Joint
Random Indonesia 13.95 14.09 13.79

Senegal 12.41 12.37 13.07
Madagascar 39.06 35.82 36.36

Spatial Indonesia 14.77 14.77 16.46
Senegal 13.09 12.21 15.15
Madagascar 67.73 50.38 44.05

As well as the global intercept, β0, this model has a prevalence survey specific inter-
cept βp where the indicator function, 1p denotes that this term is zero except when a
prevalence point-survey is being considered. The iid random effect, va ∼ Norm(0, σv),
was again grouped by polygon, with all pixels and point-surveys within polygon a being
in the same group as polygon a. The second iid random effect, wb ∼ Normal(0, σw),
was applied to each point-survey. To improve numeric stability this effect is also pa-
rameterised internally as the log of the precision, ωw = log(τw) = log( 1

σw
2 ). This effect

modelled extra-binomial sampling noise. As such, this random effect is not included in
the predicted uncertainty in the incidence or prevalence layers.

We assigned σw a penalised complexity prior such that P (σw > φ) = 0.0000001. This
was chosen by finding the maximum difference in prevalence between point-surveys (with
a sample size greater than 500 individuals) within the same raster pixel. The differences
between points within the same pixel can only be accounted for by the binomial error and
this iid effect. Given that the error on a prevalence estimate with sample size greater
than 500 is quite small, the iid effect needs to be able to explain this difference. In
Senegal and Madagascar this value was relatively small so we set φ = 0.05. In Indonesia
however, there was a high density of prevalence surveys and heterogeneity in estimated
prevalence within single pixels. Therefore we set φ = 0.3.

Given that the PrevInc relationship is fitted to the best available data, we have fairly
strong a priori confidence in it. Therefore, our prior belief is that exp(α) is close to one
(i.e. the relationship remains unchanged) and therefore that α is close to zero. We set
our prior as α ∼ Normal(0, 0.001).

Experiments
To compare the three models we used two cross-validation schemes. In the first (random),
the incidence data was split into ten cross-validation folds while all the prevalence data
was used in each case (Figure S1. In the second validation scheme, the incidence data was
split into spatial cross-validation folds, using k means clustering on polygon centroids,
while again all prevalence points were used in all folds (Figure S2). The number of folds
was seven for Indonesia, five for Senegal and three for Madagascar due to their differing
sizes and epidemiological settings. This scheme tests specifically whether the joint model
can improve predictions by increasing geographic data coverage.

We considered the ability of the model to predict polygon incidence to be our main
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objective and our performance metric for this was mean absolute error (MAE). As the
models were fitted on data on different scales we found that observations and predictions
were sometimes correlated but shifted from the one-one line (i.e. were biased) and there-
fore correlation metrics were misleading. To assess how well the models were calibrated
we considered coverage of the 80% predictive credible intervals on the hold-out data.

Results

Under the random cross-validation scheme, the prevalence GP model performed best
in Senegal and Madagascar while the joint model performed best in Indonesia (Table
1). The differences were relatively small in all three countries. This lack of strong
differences is highlighted by there being no clear differences in scatter plots of observed
and predicted data across the three methods (Figure 4).

Under the spatial cross-validation scheme, the baseline model and prevalence GP
models performed best in Indonesia, the prevalence GP performed best in Senegal while
the joint model performed best in Madagascar (Table 1). In contrast to the random
cross-validation results, the differences between models was quite strong. Furthermore,
notable differences can be seen in the scatter plots of observed and predicted values
(Figure 5). In Indonesia it can be seen that the joint model is more strongly biased
at low incidence values with many data points being overpredicted. However, the joint
model clearly performs better in Madagascar with the polygon-only model unable to
predict high incidence observations accurately. Out-of-sample predictions, under spatial
cross validation, from the prevalence GP model and full joint model can be seen in
Figures 1 – 3.

All models seem to be fairly well calibrated (Table 2). The proportion of out-of-
sample incidence datapoints being within their 80% credible intervals ranged between
0.51 and 0.88. However, in most cases coverage was between 0.7 and 0.8 implying that
the models were a little overconfident in their predictions. There was no clear difference
in calibration between the different models.

We can further investigate why the models performed as they did by examining the
parameters estimated in the models fitted to all data (Tables S1–S3). Firstly we can
compare the regression parameter for the prevalence GP covariate in the three countries
noting that in Indonesia the prevalence GP model performed worse than baseline under
random cross-validation and had equal performance to baseline under spatial cross-
validation. We see that the regression parameter for this covariate was small in Indonesia
(mean = 0.06, sd = 0.12) but relatively large and positive in both Senegal (mean = 0.30,
sd = 0.17) and Madagascar (mean = 0.36, sd = 0.07).

In Madagascar the joint model performed the best in the spatial cross-validation
scheme and better than the baseline in the random cross-validation scheme. Comparing
the estimated parameters of the joint model between Madagascar and the other two
countries therefore is useful. The prevalence intercept, βp, is large in the Senegal fit
(mean = 1.36, sd = 0.13) but small in Indonesia (mean = 0.03, sd = 0.20) and Mada-
gascar (mean = 0.07, sd = 0.10). This implies there is a strong discrepency (given the
prevalence to incidence model) between the prevalence and incidence data in Senegal.
Furthermore, the standard deviation of the prevalence point iid effect, wb(σw), is much
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Fig. 4. Observed-predicted plots (square root scale) of modelled annual malaria incidence
(cases per 1000) by country from the random cross-validation experiments for Indonesia (Panel
A), Senegal (Panel B) and Madagascar (Panel C). Results from the baseline disaggregation
model are shown in red, the prevalence GP model is shown in green while the joint model
is shown in blue. The one-one line is shown with a black line and a simple linear regression
through the points is shown by a coloured line.
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Fig. 5. Observed-predicted plots (square root scale) of modelled annual malaria incidence
(cases per 1000) by country from the spatial cross-validation experiments for Indonesia (Panel
A), Senegal (Panel B) and Madagascar (Panel C). Results from the baseline disaggregation
model are shown in red, the prevalence GP model is shown in green while the joint model
is shown in blue. The one-one line is shown with a black line and a simple linear regression
through the points is shown by a coloured line.
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Table 2. Summary of coverage of 80% credible intervals. The proportion of held out
data points that fall within their 80% credible intervals. Cases where this is below
0.7 are highlighted in bold.

Cross-validation Country Baseline Prev GP Joint
Random Indonesia 0.73 0.72 0.72

Senegal 0.76 0.78 0.80
Madagascar 0.78 0.79 0.78

Spatial Indonesia 0.71 0.72 0.51
Senegal 0.78 0.88 0.71
Madagascar 0.67 0.70 0.72

larger in Indonesia (mean ωw = −2.6, sd ωw = 0.09 which corresponds to a mean of
σw of 13.46) than in Senegal (mean ωw = −1.03, sd ωw = 0.13 which corresponds to a
mean of σw of 2.80) or Madagascar (mean ωw = −0.77, sd ωw = 0.11 which corresponds
to a mean of σw of 2.16). This implies there is a lot of noise in the prevalence data in
Indonesia.

We set a strong prior on α being close to one, encoding our belief that the incidence
prevalence relationship should be close to the previously fitted model. The estimated
value for α in all three countries is very close to one (Tables S1–S3). While this might
be driven by the prior, we can conclude that there is no strong evidence from the data
that this relationship should be scaled differently by country.

Overall, inclusion of the spatial information from prevalence surveys yielded predic-
tions that were as good or better than the baseline model in all six experiments (three
countries and two cross-validation schemes). The prevalence GP model was as good or
better than baseline in five out of six experiments. In contrast, the joint model was only
better than baseline in three out of six experiments.

Discussion

We have compared the predictive performance of three models: a baseline polygon-
only model; a disaggregation model with spatial information from prevalence surveys
included as an additional covariate from a separate Gaussian process (GP) model; and
a model that jointly learns from polygon incidence data and prevalence point-surveys.
Overall the prevalence GP model appeared to perform best. While the joint model some-
times performed best it also performed worse than baseline in half of the experiments.
Therefore, fitting a spatial Gaussian process to prevalence points and including these
predictions seems to be a more reliable way of using spatial information from prevalence
points. However, given that this comparison was conducted on datasets from only three
countries, it is challenging to draw firm conclusions.

A full joint model using both prevalence surveys and incidence data gains a large
number of additional degrees of freedom compared to the baseline or prevalence GP
models. Therefore, it is worth considering why the performance of this model was
generally less good than the simpler prevalence GP model that did not benefit from the
additional degrees of freedom. One potential reason is that the malariometric data are
on different scales. Here we have used a previously fitted model (Cameron et al., 2015) to
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inform the joint model. However, this model was calibrated using relatively few matched
prevalence and incidence surveys as few of these have been conducted and published.
Although we added the parameter α that scales this relationship, it is a very simple
scaling. Furthermore the true relationship between prevalence and incidence is likely to
vary spatially as aspects such as immunity, seasonality, and population age-structure are
not constant (Cameron et al., 2015; Battle et al., 2015; Reiner et al., 2015). In using a
joint model we are accepting these limitations in the hope that the benefits of including
additional data outweigh the costs of using mismatched data.

Future models could potentially be improved by using a more flexible approach for
addressing the shortcomings of the prevalence-incidence relationship (Cameron et al.,
2015) being used in this context. This could be by estimating the parameters of the
polynomial jointly with the rest of the model. Informative priors based on the original
model could be used to regularise this joint fit both to prevent improbable inferences but
also because if the relationship were too flexible, the information from the prevalence
data might not contribute to informing the regression parameters and spatial random
field. This is particularly true for model forms such as a spline or a Gaussian process
on the relationship between prevalence and incidence. For the model to handle noisy or
biased prevalence point-surveys, the modeller can control the iid random effect on the
point-surveys, wb and the prevalence intercept βp. Here we have tried to maximise the
influence of the prevalence data by setting the prior based on the belief that the random
effect should only explain extra-binomial variation that is impossible to derive from the
covariates (e.g. based on the differences in prevalence surveys within the same pixel).
Weakening this prior will allow the iid effect to explain more of the prevalence point-
survey variation which both reduces the potential statistical power gained by adding the
point-surveys but also reduces the effects of biased or noisy estimates.

In this research we have used only linear covariates but previous work has demon-
strated that simple linear combinations of environmental covariates cannot fully explain
malaria risk (Bhatt et al., 2017). A number of methods could be used to include non-
linear effects of covariates and interactions into the model. Firstly, machine learning
models could be fitted to the prevalence data and then predictions from these models
could be used as covariates in the full model (Bhatt et al., 2017). This approach is
feasible but would not allow any information from the polygons to inform non-linear
relationships. Directly modelling non-linear effects in the full model could be achieved
by including simple non-linear functions such as splines (Sissoko et al., 2017; Sewe et al.,
2017; Hundessa et al., 2018), though the increased model complexity would require more
data than was used in Senegal and Madagascar in this study. Finally, Gaussian process
regression, with smoothly varying effects in environmental and geographic space could
be used (Law et al., 2018). Unfortunately, each of these options is computationally ex-
pensive without variational Bayes or other approximations (Law et al., 2018; Ton et al.,
2018), which can be difficult to derive. Additionally these models require a large volume
of response data and careful regularisation for good predictive performance.

We used three case studies, limited by the number of countries with good aggre-
gated incidence data as well as good prevalence survey data. Given the small number
of case studies it is hard to determine when these methods are likely to be most ef-
fective. However, the greatest benefits here were seen in Madagascar, a country with
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more intermediate transmission intensities. In the future, two groups of countries might
particularly benefit from the methods presented here. Firstly countries who have had
large prevalence surveys in the past and whose reporting systems are improving, such as
Ethiopia, might benefit from these methods. Secondly, countries that have lots of preva-
lence surveys and are adjacent to countries with good reporting systems, (e.g. Papua
New Guinea and neighbouring Indonesia), might also benefit from models that share
information between countries.

Conclusion

Overall, we have shown that including spatial information from prevalence surveys gen-
erally improves the predictive performance of disaggregation regression of aggregated
incidence data. However, we found that the more complex joint model was unreliable
in its predictive performance. In contrast, summarising the spatial information from
the prevalence surveys by fitting a spatial Gaussian process model and using predictions
from this model as a new covariate nearly always improved predictive performance. As
more countries produce reliable routine surveillance data, and as more countries reduce
their malaria prevalences to the point where prevalence surveys are no longer sensitive,
disaggregation regression will become more commonly used. Methods such as those pre-
sented here should be utilized and further refined to improve disaggregation regression
results where and when the requisite data are available.
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