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Multimodal neuroimaging features might enable accurate classification and 

provide personalized treatment options in psychiatric domain. We conducted a 

retrospective study to investigate whether structural and functional features for 

predicting response to overall treatment of schizophrenia at the end of the first 

or a single hospitalization and in addition cross validate the results. This 

structural and functional magnetic resonance imaging (MRI) study included 85 

and 63 patients with schizophrenia at baseline in dataset 1 and 2, respectively. 

After treatment, patients were classified as responders and non-responders. 

Features of gray matter and functional connectivity were extracted. Radiomics 

analysis was used to explore the predictive performance. Prediction models were 

based on structural features, functional features, and combined features. We 

found that the prediction accuracy was 80.38% (sensitivity: 87.28%; specificity 

82.47%) for the model using functional features, and 69.68% (sensitivity: 

83.96%; specificity: 72.41%) for the model using structural features. Our model 

combined both structural and functional features accurately predicted 92.04% 

responder and 80.23% non-responders to overall treatment, with an accuracy of 

85.03%. These results highlight the power of structural and functional 

MRI-derived radiomics features to predict early response to treatment in 

schizophrenia. Prediction models of the very early treatment response in 

schizophrenia could augment effective therapeutic strategies. 

Key words:  schizophrenia/antipsychotics/early treatment response/prediction/ 

magnetic resonance imaging/radiomics 
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Introduction 

Schizophrenia is a severe mental disorder that ranks among the major conditions 

contributing the global burden of disease and is regarded as a global public-health 

challenge. Currently, an obvious clinical obstacle for schizophrenia is a lack of 

personalized treatment. Driven by the need for better management of schizophrenia, 

as well as advances in neuroimaging,1 a quest for accurate prediction of early 

treatment response2, 3 was noted in psychiatric domain. 

Longer duration of untreated psychosis is associated with poorer outcome,4 

including social functioning, response to treatment, and physical illnesses, making a 

compelling argument for treating patients with schizophrenia or other psychotic 

disorders as soon as possible.5 On the contrary, shortening the interval between the 

first onset of schizophrenia and the start of intervention leads to better outcomes.6 

Early intervention service can save young lives, and young people may benefit from 

disease-modifying strategies applied early.7 The notion of emphasizing the early 

intervention should also be paralleled by predicting response at early stage, because 

predictive markers can be helpful in treatment selection. Emerging neuroimaging 

studies indicate that structural and functional magnetic resonance imaging (MRI) 

techniques may be able to predict the response of treatments in schizophrenia, as well 

as first-episode or acute schizophrenia (see Cui et al for review).3 

To this end, radiomics is gaining significance in psychiatric research, enabling 

imaging data to improve predictive accuracy within clinical decision support.8 

Radiomics is a powerful tool in psychiatry and is evolving rapidly, producing robust 
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for schizophrenia9 and attention deficit hyperactivity disorder.10 In processing, the 

features after rigorous preprocessing of each imaging modal were selected as 

radiomics features. Here, prediction model was based on all of the features of training, 

without any subjective selection. Each feature after dimensionality reduction 

contributes to the prediction of clinical efficacy. In contrast, conventional prediction 

methods usually calculate the inter-group differences of imaging data and then predict 

some clinical outcome through correlation analysis. Due to individual differences of 

schizophrenia, after comparison with correction between different groups, some 

characteristics may not be detected, which may serve the classification and prediction. 

Promisingly, a valid approach by means of functional connectivity to diagnose 

schizophrenia has been developed using radiomics strategy with an accuracy of 87%.9 

Its increasing importance in medical imaging creates an ideal situation for application 

of radiomics in neuroradiology where there is no “lesion” but there are “features” for 

mental disorders, i.e., brain structure and connectome derived from MRI.11, 12 Future 

research needs to integrate and optimize them to achieve an accurate prediction for 

individualized clinical management of schizophrenia. 

Given such a background, we aimed to investigate the psycho-radiomic 

application using structural morphology and functional connectivity to predict the 

response to overall treatment of schizophrenia at the end of the first or a single 

hospitalization. The mean length of stay in hospital is around 2-3 weeks (arranging 

from 17.2 days to 20.3 days) for patients in the current study. This period is of clinical 

importance because patients will usually demonstrate whether they respond to an 
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initial antipsychotic medication or not in the first 2 weeks (see the Appendix for 

review), also, response of the first 2-4 weeks of treatment is remarkably predictive of 

long-term response.13, 14 In addition, we cross-validated our results via two 

independent cohorts. We hypothesized that this strategy can be harnessed via 

structural and functional MRI at baseline and leveraged through radiomics approach 

to aid prediction of early response to anti-psychotic treatment. Imaging-based model 

to predict early response contributes to the precise medicine in psychiatric domain. 

 

Methods 

Participants 

Two independent datasets were included in this study, and a partial sample in this 

study have been investigated in Cui et al,9, 15 which report the inclusion and exclusion 

criteria in details. The dataset 1 included 85 patients with schizophrenia, which were 

collected between May 2011 through September 2013. The structural clinical 

interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, 

Text Revision (DSM-IV-TR) were used, and consensus diagnoses were made using 

all the available information. Each patient was assessed by using the Positive and 

Negative Syndrome Scale (PANSS) at the time of imaging. The dataset 2 included 63 

patients with schizophrenia spectrum disorder, including schizophrenia (n = 34), 

schizophreniform disorder (n = 22), and brief psychotic disorder (n = 7). Patients were 

diagnosed according to DSM, Fifth Edition (DSM-5) between April 2015 through 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.20020784doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.06.20020784
http://creativecommons.org/licenses/by-nc-nd/4.0/


December 2017, with no more than two weeks of cumulative exposure to 

antipsychotics. Those with illness duration of fewer than six months were assessed 

through follow-up clinical evaluations. Patients who were diagnosed with 

schizophrenia during follow-up were included in the current study. This study was 

approved by the local ethics committee of Xijing Hospital. All participants (or their 

parents for those under age of 18 years) gave written informed consent after a full 

description of the aims and design of the study. 

In this study, the first hospitalization refers to first episode patients, and a single 

hospitalization refers to non-first episode patients. The majority of patients received 

second-generation antipsychotics, including risperidone (61.4% in dataset 1; 57.1% in 

dataset 2), olanzapine (27.3%; 28.6%), ziprasidone (8.0%; 1.6%), quetiapine (12.5%; 

1.6%), paliperidone (12.5%; 17.5%), aripiprazole (4.5%; 9.5%), amisulpride (2.3%; 

6.3%), and clozapine (0.0%; 1.6%). The minority of patients received first-generation 

antipsychotics, including haloperidol (19.3%; 15.9%), chlorpromazine (3.4%; 1.6%), 

perphenazine (2.3%; 0.0%), and sulpiride (1.1%; 1.6%). A total of 18 patients in 

dataset 1 and 21 patients in dataset 2 were treated with electroconvulsive therapy 

(ECT). Moreover, 58 patients in dataset 2 underwent repetitive transcranial magnetic 

stimulation (rTMS). Treatment response before discharging was assessed using 

percentage change of symptoms based on PANSS. Responders were defined as 30% 

reduction in PANSS total scores traditionally used.16, 17 Table 1 provides further 

details on the two patient populations. 

A part of overlapping participants was used elsewhere: 50 of the 85 patients in 
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dataset 1 and 36 of the 63 patients in dataset 2 have been previously reported.3, 9, 12, 18
 

The previous studies dealt with neural substrates of auditory verbal hallucinations,18 

disease definition 9 and prediction of response to treatment,3 and connectome 12 using 

functional or structural imaging whereas in this manuscript we report on the 

predictive capacity of functional and structural MRI after early treatment for 

schizophrenia via radiomics. 

 

Image Acquisition 

High-resolution structural and functional imaging was acquired on a Siemens 3.0 T 

scanner for dataset 1 and a GE 3.0 T scanner for dataset 2 using protocols published 

previously 9. Dataset 1 and 2 were combined for the following analysis. 

 

Data Preprocessing 

Functional images of two datasets were preprocessed using the CONN toolbox 

(functional connectivity toolbox v17.f, https://web.conn-toolbox.org/). Firstly, the first 

10 volumes were excluded to avoid the interference of magnetic field and ensure the 

signal to reach equilibrium. To remove spurious sources of variance, linear detrending 

was performed for time series of all of the regions of interest (ROI). Subjects were 

excluded if any translation or rotation parameters of head movements were exceeded 

± 1 mm and/or ± 1°. The corrected functional images were firstly co-registered to 

each subject’s T1 images without re-slicing. Then, T1 images were normalized to the 

Montreal Neurological Institute (MNI) space using the Statistical Parametric Mapping 
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(SPM) software, which generated a transformed matrix from native space to the MNI 

space. The resulted transformed matrix was used to normalize functional images to 

the MNI space. Next, the scrubbing procedure implemented in the Artifact Detection 

Tools (ART) (http://www.nitrc.org/projects/artifact_detect.html) was applied to 

minimize image artifacts due to head movement. Six head motion parameters and 

their first-level derivative, the averaged signal of cerebrospinal fluid and white matter, 

and the scrubbing signal from the time series were regressed out. Band-pass filtering 

(0.01–0.1 Hz) and smoothing with a 6 mm full width at half maximum Gaussian 

kernel were performed. 

T1 Sequence image processing was performed using the Freesurfer image 

analysis suite (version 6.0, http://surfer.nmr.mgh.harvard.edu/). Briefly, preprocessing 

was performed with the following steps: (a) skull stripping, (b) normalization to a 

standard anatomical template, (c) correction for bias-field homogeneity, (d) 

segmentation of subcortical white matter and deep gray matter volumetric structures, 

(e) gray-white mater boundary tessellation and a series of deformation procedures 

which consist of surface inflation, (f) registration to a spherical atlas and parcellation 

of the cerebral cortex into units based on the gyral and sulcal structures. 

 

Features Construction 

Functional connectivity features construction. A complete brain parcellation including 

91 cortical areas and 15 subcortical areas from the FSL Harvard-Oxford Atlas was 

used to segment the whole brain into 106 non-cerebellar anatomical ROI. For each 
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subject, each ROI’s time series was extracted as the average time series across all 

voxels within that region. Finally, Pearson correlation coefficients were calculated 

between each pair of preprocessed ROI time series, and a temporal correlation matrix 

of the size of 106 × 106 was obtained for each subject. 

 

Cortical features construction. Due to cortical abnormalities implicated in 

schizophrenia, cortical neuroanatomical features were used in the current study. The 

information which collected from preprocessing was used for calculating 408 

structural measures morphological features, including volumetric (68 measures of 

cortical thickness, surface area, and gray matter regional volume) and geometric (68 

measures of mean curvature, metric distortion, and sulcal depth) based on 

Desikan-Killiany Atlas. 

 

Features Selection 

We used a 10-folds cross validation-based Least Absolute Shrinkage and Selection 

Operator (CV-LASSO) method to further select features (see the Appendix for 

review). Briefly, 148 subjects were randomly separated into 10 groups. Each time, one 

group in turn was excluded from the dataset, and the LASSO method with mean of 

square error (MSE) as the cost function was used on the remaining nine groups to 

narrow down the initial 5565 functional connectivity features and 408 cortical 

morphology features into the most important features according to the MSE + 1 SE 

criteria. This step was repeated 10 times, which resulted in 10 different groups of 
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selected features. Finally, the functional connections that were included in the selected 

feature group at each step (i.e., 10 groups) were selected as LASSO features for 

further analysis.9 

 

Classification Model 

In our study, the differences of functional connectivity and cortical features between 

patients in the two datasets were calculated, and no significant difference was found 

before we selected the prediction model (supplementary table 1 in Appendix). We 

combined data from two samples, in order to improve the diversity of samples, which 

will promisingly reflect the real clinical settings and improve the stability of the 

training model and the accuracy of classification. The supported vector machine 

method was used to construct the classification model based on LASSO features. 

Ten-folds CV was used to assess the reliability of the classification model. Briefly, 

148 subjects were randomly separated into 10 groups. Each time, one group in turn 

was used as a test group and the other nine groups were used as training groups. This 

step was repeated 10 times, and each time, accuracy, sensitivity, specificity and recall 

indices were calculated. Finally, the mean of each index across the 10 times was used 

to assess the performance of the constructed model. The weights of each LASSO 

feature were also calculated to measure the importance of each feature in the 

classification model. 
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Results 

Clinical Characteristics at Baseline 

Table 1 shows the full description of demographic and clinical characteristics of 

patients. No significant difference was found in gender and education between 

responders and non-responders. 

 

Features after Dimensionality Reduction 

Twelve features were remained in the model for combination of structural and 

functional MRI, involved 3 cortical features and 9 functional connections 

(supplementary table 2 and figure 2). 

 

Prediction Performance 

Our model combined both structural and functional features accurately predicted 

92.04% responder and 80.23% non-responders to overall treatment, with an accuracy 

of 85.03%. The prediction accuracy was 80.38% (sensitivity: 87.28%; specificity 

82.47%) for the model using functional features, and 69.68% (sensitivity: 83.96%; 

specificity: 72.41%) for the model using structural features (figure 3A). Results of 

inter-dataset cross validations confirm the capacity of discriminating responders from 

non-responders by features from different scanners (supplementary table 2). The 

analysis after excluding patients treated with ECT (18 in dataset 1; 21 in dataset 2) 

suggested similar predictive capacity (figure 3B). Likewise, taken rTMS into 

consideration, the further analysis replicated these results after excluding patients 
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treated with rTMS (supplementary table 3). Supplementary table 4 shows the 

prediction performance using baseline PANSS general psychopathology score and 

age. 

 

Correlation Analysis 

No significant correlation between features and PANSS total scores survived after 

correction for multiple comparisons (supplementary table 5). 

 

Discussion 

Identifying the biomarkers of schizophrenia has a critical role in fundamental research 

and clinical practice. In this study, combining structural/functional MRI and radiomics 

analysis, we effectively predict early antipsychotic treatment response in 

schizophrenia for the first or a single hospitalization with an accuracy of 85.03% 

(sensitivity: 92.04%; specificity: 80.23%), a comparable or superior capacity of MRI 

to that for predicting response to rTMS 5 sessions per week during the 3-week 

period19 and treatment with risperidone/aripiprazole for 12 weeks,20 risperidone for 10 

weeks,21 or quetiapine for 7 months22 in patients with schizophrenia. 

Previous studies have implicated predictive value of structural and functional 

MRI in schizophrenia using machine learning (supplementary table 6). Structural 

MRI-based markers are known to accurately predict response to rTMS in patients 

with schizophrenia (84.8% accuracy, 79.2% sensitivity, and 90.2% specificity), 
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involving reduced gray matter density in the prefrontal, insular, medial temporal, and 

cerebellar cortices and increments in the parietal lobe and thalamus.19 Functional 

connectivity of the striatum is suggested to be a reasonable predictor for antipsychotic 

response (80% sensitivity and 75% specificity), showing higher response rate to be 

associated with lower connectivity linked to the anterior cingulate and medial 

prefrontal cortex and with higher connectivity linked to the posterior cerebral areas.20 

Besides, functional connectivity of the superior temporal cortex has been found to be 

informative in predicting response to antipsychotics (82.5% accuracy, 88.0% 

sensitivity, and 76.9% specificity) using machine learning algorithms,21 by which the 

classification accuracy was 79% (sensitivity = 75%; specificity = 83%) to predict the 

negative symptom improvement using workig memory-related functional 

connectivity.22 While it remains to be determined which core features on structural 

and functional MRI possesses such a predictive capacity, an alternative approach 

could be the radiomics. It helps to save raw data and discover their contribution, 

which could be loss of certain conventional analysis. 

In this study, feature selection identified cortical measures in the right precuneus, 

cuneus, and inferior parietal lobule and functional connectivity involved superior 

temporal gyrus, temporal pole, LTG, supramarginal gyrus, temporal occipital fusiform 

cortex, lateral occipital cortex, inferior frontal gyrus, precentral gyrus, putamen, 

caudate, pallidum, intracalcarine cortex, parahippocampal gyrus, and brain stem that 

significantly contributed to discrimination. We showed that the curvature of right 

inferior parietal cortex and functional connectivity between the triangular part of right 
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inferior frontal gyrus pars and left putamen contributed mostly in the prediction, 

which are overlapping findings detected by above mentioned studies, and are 

underlying schizophrenia as demonstrated by previous studies.23, 24 The neuroimaging 

literatures have been encouraging in delving into the neural substrates behind 

schizophrenia.25-28 The current study is paving the way to establish predictive 

indicators based on deeper understanding of the pathophysiology of the disorder, as 

proposed by Tandon el al.29 

The aim to explore neuroimaging markers of schizophrenia has long been 

pursued. Radiomics,30, 31 a central technique aiding decision making in clinical 

practice, is considered as “the bridge between medical imaging and personalised 

medicine”.32 A large body of studies suggests its increasing importance in medical 

imaging,8 which tries to build a deep learning algorithm for automated medicine,33-35 

creating an ideal situation for application of deep learning in psychoradiology36 where 

there are features, rather than lesions, i.e., the alterations of cerebral structures and 

functions. Generally speaking, radiomics features build upon the volume of interest 

and then they are linked to clinical data.37, 38 Although no entire lesion can be used for 

extracting features in mental disorders, we could consider abnormal structures and 

functions in the brain and even the whole brain as the volume of interest for analysis, 

as Sun et al 10 and Cui et al 9 performed in attention deficit hyperactivity disorder and 

schizophrenia, respectively. These studies extracted features from the whole-brain 

gray matter and white matter and functional connectivity with significant difference. 

Holding the properties of large-scale data, both clinical imaging archives and 
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functional imaging are reliably leveraged by radiomics method in psychiatry. 

Additionally, patients suffer from numerous adverse effects induced by 

antipsychotics. The mean length of stay in hospital was 2-3 weeks for patients 

included in our study. Prediction of the very early response for the first or a single 

hospitalization could be helpful in implying long-term outcome of patients with 

schizophrenia. Radiomics methods, as demonstrated by a series of recent 

neuroimaging studies, hold great promise for improving the diagnosis, treatment, and 

prediction of prognosis in psychiatric domains, which will have an effect on 

personalized medicine. On the basis of neuroimaging-based markers, radiologists 

could provide evidence for pyschiatrists to facilitate the clinical decision making. 

We need to take several considerations into account when interpreting our results. 

First, radiomics analysis using a large sample may increase the accuracy of predicting 

treatment response, but the sample size was limited after excluding patients who 

received ECT. Larger sample size will be helpful. Second, in addition to ECT, these 

two patient cohorts underwent heterogeneous treatments, which therefore may 

introduce an inevitable effect on the findings. Third, there is heterogeneity between 

dataset 1 and 2. The dataset 1 included the patients with schizophrenia, while the 

dataset 2 included patients with schizophrenia, schizophreniform disorder, or brief 

psychotic disorder. The duration varies in different disorders, and this population of 

patients suffered from the heterogeneous baseline severity of symptoms in dataset 1, 

and the patients differed regarding age in dataset 2, which might be potential 

confounding factors. Nevertheless, this is a very exploratory study with no hold out 
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sample to example generalization. These concerns suggest the need for randomized 

controlled trials for the direct validation of radiomics in the setting of treatment 

response in schizophrenia. 

In sum, these results highlight the power of structural and functional 

MRI-derived radiomics features to predict early response to treatment in 

schizophrenia. More expansively, our findings emphasize the predictive capacity for 

long-term response in schizophrenia and the clinical relevance of structural and 

functional neuroimaging in mental illnesses by means of radiomics, an essential 

strategy for individualized intervention. This work points the way toward future 

predictive biomarker development in the field of psychoradiology,36 centered on 

large-scale clinical imaging data, for efficient treatments reworked for now. 
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Tables 

Table 1. Sample Demographics 

 Dataset 1  Dataset 2 

Characteristic Respond

ers 

(n = 47) 

Non-respond

ers 

(n = 38) 

P 

valu

es 

 Respond

ers 

(n = 41) 

Non-respond

ers 

(n = 22) 

P 

valu

es 

Age (y) 25.1 ± 

5.7 

26.0 ± 7.0 0.87

7 

 21.9 ± 

5.5 

26.0 ± 9.1 0.02

8 
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Gender (M/F) 26/21 22/16 0.81

2 

 27/14 11/11 0.22

0 

Education 

level (y) 

13.2 ± 

1.8 

12.8 ± 1.8 0.35

4 

 12.1 ± 

2.7 

12.5 ± 3.4 0.60

1 

Duration of 

illness (mon) 

18.2 ± 

23.0 

27.5 ± 33.6 0.15

8 

 11.9 ± 

14.7 

17.1 ± 28.3 0.42

8 

FE/NFE 30/19 21/17   36/5 19/3  

PANSS score 

at baseline 

       

Total score 97.6 ± 

20.0 

91.1 ± 14.3 0.08

8 

 83.0 ± 

21.8 

87.9 ± 12.2 0.33

3 

Positive score 24.3 ± 

6.4 

23.1 ± 7.9 0.45

1 

 22.2 ± 

6.2 

21.3 ± 5.5 0.57

3 

Negative 

score 

23.2 ± 

9.4 

23.19 ± 6.7 0.97

6 

 19.2 ± 

6.7 

22.2 ± 8.7 0.13

3 

General 

psychopathol

ogy score 

50.1 ± 

9.6 

44.9 ± 7.7 0.00

8 

 43.7 ± 

9.5 

44.4 ± 6.4 0.72

0 

PANSS score 

at discharging 

       

Total score 66.83 ± 

15.5 

81.0 ± 11.6 < 

0.00

 54.0 ± 

11.2 

79.3 ± 10.9 < 

0.00
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1 1 

Positive score 15.8 ± 

4.5 

19.8 ± 5.8 0.00

1 

 12.7 ± 

4.4 

18.3 ± 4.4 < 

0.00

1 

Negative 

score 

16.2 ± 

6.0 

21.0 ± 6.0 < 

0.00

1 

 11.7 ± 

3.6 

21.3 ± 6.7 < 

0.00

1 

General 

psychopathol

ogy score 

34.8 ± 

8.2 

40.2 ± 6.0 0.00

1 

 29.5 ± 

6.6 

39.7 ± 4.2 < 

0.00

1 

Stay in 

hospital (d) 

20.3 ± 

11.0 

17.2 ± 7.8 0.15

6 

 20.0 ± 

8.7 

17.4 ± 7.1 0.24

3 

Treatment 

without/with 

ECT 

35/12 32/6 0.27

4 

 26/15 16/6 0.45

5 

Antipsychotic 

dose, mg/da 

11.4 ± 

4.7 

10.9 ± 4.9 0.62

5 

 12.0 ± 

5.5 

11.5 ± 6.5 0.73

5 

Changes in 

PANSS 

score, % 

47 ± 14 16 ± 11 < 

0.00

1 

 57 ± 17 14 ± 18 < 

0.00

1 

ECT, electroconvulsive therapy; FE, first episode; NFE, non-first episode; PANSS, 

Positive and Negative Syndrome Scale. 
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aDose of current antipsychotic medication was converted to Defined Daily Dose 

(DDD) (WHO Collaborating Centre for Drug Statistics Methodology, 2014).  

 

Table 2. Results of Cross Validationa 

 Features after 

dimensionality reductionb 

Contribu

tion 

Degree 

(%) 

Accur

acy

（%） 

Sensiti

vity

（%） 

Specifi

city

（%） 

AU

C 

(%) 

FC aSTG.R-aSTG.L 43.23 80.38 87.28 82.47 83.

67 TP.L-iLOC.R 17.96 

Caudate.L-Pallidum.R 12.93 

iLOC.L-aPaHC.R 9.87 

ICC.R-aPaHC.R 5.39 

IFG.tri.R-Putamen.L 4.98 

pLTG.R-ICC.R 2.44 

PreCG.L-Brain-Stem 2.37 

pSMG.L-TOFusC.R 0.83 

Cortex Meancurv_Cuneus.R 36.05 69.68 83.96 72.41 72.

97 Metric_Distortion_Posterior

cingulate.R 

32.91 

Volume_Precuneus.R 30.46 

Meancurv_Inferiorparietal. 0.58 
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R 

Combina

tion 

aSTG.R-aSTG.L 32.33 

85.03 92.04 80.23 
87.

29 

TP.L-iLOC.R 14.97 

IFG.tri.R-Putamen.L 10.56 

pLTG.R-ICC.R 8.55 

Volume_precuneus.R 8.08 

Meancurv_cuneus.R 7.98 

iLOC.L-aPaHC.R 5.87 

PreCG.L-Brain-Stem 5.05 

pSMG.L-TOFusC.R 2.92 

Meancurv_inferiorparietal.

R 

2.18 

Caudate.L-Pallidum.R 1.38 

ICC.R-aPaHC.R 0.12 

aPaHC, anterior parahippocampal gyrus; aSTG, anterior superior temporal gyrus; FC, 

functional connectivity; ICC, intracalcarine cortex; IFG.tri, inferior frontal gyrus pars 

triangularis; iLOC, inferior lateral occipital cortex; pITG, posterior inferior temporal 

gyrus; PreCG, precentral gyrus; pSMG, posterior supramarginal gyrus; TOFusC, 

temporal occipital fusiform cortex; TP, temporal pole. 

aResults represent mean values of cross validation for 1000 times. 

bL indicates the left hemisphere, and R indicates the right hemisphere. 
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Figures legends 

 

Fig. 1. Workflow for analysis. Overview of data preprocessing, anatomical and 

functional feature reconstruction, feature selection, and classification. 
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Fig. 2. Connections contributed to prediction. Connections are scaled by their 

contribution degree. 

 

A 

 

B 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 7, 2020. ; https://doi.org/10.1101/2020.02.06.20020784doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.06.20020784
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Fig. 3. ROC curves for the prediction of treatment response with radiomics. (A) Red, 

blue, and yellow lines indicate predictive capacity using cortical features, functional 

connectivity features, and combination of them, respectively. Accordingly, areas under 

ROC curves were 72.97%, 83.67%, and 87.29%. (B) Red, blue, and yellow lines 

indicate predictive capacity using cortical features, functional connectivity features, 

and combination of them after excluding patients treated with ECT, respectively. 

Accordingly, areas under ROC curves were 69.19%, 85.14%, and 87.26%. 
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