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Abstract 

A focus in recent decades has involved examining the potential causal impact of educational 
attainment (schooling years) on a variety of disease and life-expectancy outcomes. Numerous 
studies have broadly revealed a link suggesting that as years of formal schooling increase so too 
does health and wellbeing; however, it is unclear whether the associations are causal. Here we 
use Mendelian randomization, an instrumental variables technique, to probe whether more years 
of schooling are causally linked to type 2 diabetes (T2D) and 10 of its risk factors. The results 
reveal a protective effect of more schooling years against T2D (odds ratio=0.39; 95% confidence 
interval: 0.26, 0.58; P=3.89 x 10-06), which might be mediated in part by more years of schooling 
being protective against the following: having a first-degree relative with diabetes, being 
overweight, and having high blood pressure, higher levels of circulating triglycerides, and lower 
levels of HDL cholesterol. More schooling years had no effect on risk for gestational diabetes or 
polycystic ovarian syndrome and was associated with a decreased likelihood of moderate 
physical activity. These findings imply that strategies to retain adults in higher education may 
help reduce the risk for a major source of metabolic morbidity and mortality. 
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Tacit to most epidemiological research is a desire to infer whether an environmental exposure 
impacts some outcome in a causal fashion. A particular area of focus in recent decades has 
involved examining the impact of educational attainment (years of schooling) on a variety of 
disease and life expectancy outcomes1. Numerous studies have broadly revealed a strong 
statistical association suggesting that as the years of formal schooling increase so too does health 
and wellbeing 2. Indeed, educational attainment has been associated with diverse mental and 
physical health outcomes, including depression, cancer incidence, heart disease, and diabetes1. 

Entangled in this line of inquiry (and all of social science research), however, is a concern about 
the evidence for causal inference open to scholars3. With regard to the associations between 
educational attainment and health outcomes, Montez and Friedman (2015) caution: “Studies such 
as those highlighted above often implicitly assume that educational attainment has a causal 
influence on adult health; however, this assumption has long been challenged. If the assumption 
is incorrect then investing in education policies and schooling systems may waste government 
spending and not manifest in improved population health” (p.1)1. To be sure, there is emergent 
evidence utilizing quasi-experimental and natural-experimental designs which suggest some 
causal effects may exist in some contexts for educational attainment on health outcomes2. Yet, 
there remains an overall dearth of evidence utilizing designs admitting of stronger causal 
inference capabilities.  

More recently, scholars have begun utilizing data gleaned from large genomic consortia and 
publicly available genome wide association (GWA) studies to construct instrumental variables 
comprised of trait-relevant single-nucleotide polymorphisms (SNPs). When certain assumptions 
(discussed below) are satisfied in the data, it is possible to investigate whether some type of 
modifiable risk or protective factor causally impacts some outcome4. Known as Mendelian 
Randomization (MR), this variant of instrumental variable analysis has been increasingly widely 
applied to a variety of medical and epidemiological outcomes5. In the current study, we apply 
MR modeling strategies to zoom in on whether educational attainment plays a causal role in the 
prevention of one of society’s most pressing public-health challenges: type 2 diabetes (T2D) and 
10 of its risk factors. 

Results 

T2D. A strong protective effect against T2D is observed for more Education Years (odds ratio, 
OR, for T2D per SD increase in Education Years): IVW estimate 0.39; 95% confidence interval 
(CI): 0.26, 0.58; P=3.89 x 10-06). The sensitivity estimators aligned in direction and magnitude of 
effects with the IVW’s estimate, and the MR-Egger intercept test indicated no evidence for 
directional pleiotropy. (Since this is also the case for all the tests – none showed evidence for 
direction pleiotropy with the MR-Egger intercept test, this statement will not be repeated for the 
remaining results).  

Sibling, mother, and father with diabetes. Small protective effects against having a sibling, 
mother, or father with diabetes are observed for more Education Years (ORs for a first-degree 
relative with diabetes per SD increase in Education Years): sibling IVW estimate 0.97; 95% CI: 
0.96, 0.98; P=4.23 x 10-11); mother IVW estimate 0.97; 95% CI: 0.96, 0.98; P=6.66 x 10-7); 
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father IVW estimate 0.98; 95% CI: 0.97, 0.99; P=0.0008. The sensitivity estimators aligned in 
direction and magnitude of effects with the IVW’s estimate. 

Overweight status. A strong protective effect against being overweight is observed for more 
Education Years (OR for being overweight per SD increase in Education Years): IVW estimate 
0.60; 95% CI: 0.51, 0.72; P=1.01 x 10-08). The sensitivity estimators mostly aligned in direction 
and magnitude of effects with the IVW’s estimate, with a slightly more protective effect 
observed for the weighted mode estimator. 

Physical activity. A strong protective effect against performing the most amount of moderate 
physical activity is observed for more Education Years (OR for the highest level of moderate 
physical activity compared to all other amounts of moderate physical activity per SD increase in 
Education Years): IVW estimate 0.77; 95% CI: 0.71, 0.84; P=1.08 x 10-08). The sensitivity 
estimators varied in the magnitude of their effects, which might indicate unwanted pleiotropy.  

High blood pressure. A modest protective effect against having high blood pressure is observed 
for more Education Years (OR for high blood pressure per SD increase in Education Years): 
IVW estimate 0.94; 95% CI: 0.92, 0.96; P=2.49 x 10-10). The sensitivity estimators aligned in 
direction and magnitude of effects with the IVW’s estimate. 

Gestational diabetes and polycystic ovarian syndrome. There were null effects for the 
influence of more Education Years on gestational diabetes and polycystic ovarian syndrome (OR 
for each per SD increase in Education Years): IVW estimate 1.00; 95% CI: 1.00, 1.00; 
gestational diabetes, P=0.1705; polycystic ovarian syndrome, P=0.2844. The sensitivity 
estimators aligned in direction and magnitude of effects with the IVW’s estimate: all = 1. 

HDL levels. An increase in HDL levels were observed for more Education Years (beta estimate 
per SD increase in Education Years): IVW estimate 0.14; 95% CI: 0.06, 0.22; P=0.0009). The 
sensitivity estimators varied in the magnitude of effects, indicating the potential for some 
unwanted pleiotropy. 

Triglyceride levels. A decrease in triglyceride levels were observed for more Education Years 
(beta estimate per SD increase in Education Years): IVW estimate -0.19; 95% CI: -0.27, -0.11; 
P=3.34 x 10-06). The sensitivity estimators aligned in direction and magnitude of effects with the 
IVW’s estimate. 

Table 1. Causal estimates for Education Years on T2D and 10 risk factors for T2D. 

Test SNPs Strength IVW MR-Egger MR-Egger intercept Weighted median Weighted mode 

 No. 
 

F 
 

OR  95% 
CI 

P OR 
 

95% CI P OR 
 

95% CI P OR 
 

95% CI P OR  95% 
CI 

T2D 17 13 0.39  0.26, 
0.58 

<0.00
1* 

0.38  0.05, 
3.09 

0.381 1.00  0.96, 
1.04 

0.979 0.41  0.24, 
0.69 

<0.00
1* 
 

0.37  0.17, 
0.80 

0.

Sibling 
with 
T2D 

64 38 0.97  0.96, 
0.98 

<0.00
1* 

0.95  0.90, 
1.00 

0.044 1.00  0.99, 
1.00 

0.424 0.97  0.95, 
0.98 

<0.00
1* 

0.94  0.90, 
0.98 

0.
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*Indicates P <0.005 (the Bonferroni threshold); T2D=type 2 diabetes; HDL=high-density 
lipoprotein cholesterol; Gest. diabetes=gestational diabetes; POS=polycystic ovarian syndrome; 
P=P-value; F=F-statistic; OR=odds ratio; CI=confidence interval. IVW=inverse-variance 
weighted test; IVW is the primary MR method. The MR-Egger, weighted median estimator, and 
weighted mode estimators are sensitivity tests for horizontal pleiotropy. If the magnitude and 
direction of their effects comport with those of the IVW estimate, this provides a screen against 
pleiotropy. The MR-Egger intercept is shaded grey because it is interpreted differently than the 
IVW estimate and the sensitivity estimators; the MR-Egger intercept provides a formal test for 
directional pleiotropy 6. If the MR-Egger intercept is not different than 1 on the exponentiated 
scale or 0 when non-exponentiated (P>0.05), this indicates a lack of evidence for bias due to 
pleiotropy in the IVW estimate. 

Discussion 

We observed a protective effect of Education Years against T2D, which might be mediated in 
part by more years of schooling being protective against the following: having a first-degree 
relative with diabetes, being overweight, and having high blood pressure, higher levels of 
circulating triglycerides, and lower levels of HDL cholesterol. These findings comport with 
another MR study that examined education and diabetes with UK Biobank data. Davies et al. 

Mother 
with 
T2D 

62 36 0.97  0.96, 
0.98 

<0.00
1* 

0.98  0.93, 
1.04 

0.563 1.00  1.00, 
1.00 

0.734 0.98  0.97, 
1.00 

0.016 0.99  0.96, 
1.02 

0.

Father 
with 
T2D 

60 37 0.98  0.97, 
0.99 

<0.00
1* 

1.00  0.94, 
1.06 

0.984 1.00 1.00, 
1.00 

0.547 0.98  0.96, 
0.99 

0.006 0.98  0.94, 
1.01 

0.

Over-
weight 

54 20 0.60  0.51, 
0.72 

<0.00
1* 

0.61  0.22, 
1.74 

0.364 1.00  0.98, 
1.02 

0.972 0.58  0.46, 
0.73 

<0.00
1* 

0.47  0.25, 
0.91 

0.

Phys 
ical 
activity 

49 37 0.77 0.71, 
0.84 

<0.00
1* 

0.87  0.54, 
1.40 

0.568 1.00  0.99, 
1.01 

0.623 0.79  0.70, 
0.91 

<0.00
1* 

0.97  0.69, 
1.36 

0.

High 
blood 
pressure 

45 36 0.94  0.92, 
0.96 

<0.00
1* 

0.94  0.83, 
1.07 

0.369 1.00  1.00, 
1.00 

0.928 0.93  0.91, 
0.96 

<0.00
1* 

0.91  0.85, 
0.97 

0.

Gest.  
diabetes 

69 38 1.00  1.00, 
1.00 

0.171 1.00  1.00, 
1.00 

0.748 1.00 1.00, 
1.00 

0.547 1.00 1.00, 
1.00 

0.257 1.00  1.00, 
1.00 

0.

POS 68 38 1.00  1.00, 
1.00 

0.284 1.00  1.00, 
1.01 

0.606 1.00 1.00, 
1.00 

0.460 1.00  1.00, 
1.00 

0.469 1.00  1.00, 
1.00 

0.

                 
Test SNPs Strength IVW MR-Egger MR-Egger intercept Weighted median Weighted mode 

 No. F 
 

β  95% 
CI 

P β  
 

95% CI P β  
 

95% CI P β  
 

95% CI P β   
 

95% 
CI 

HDL 
levels 

52 12 0.14  0.06, 
0.22 

<0.00
1* 

0.35  
 

-0.14, 
0.84 

0.171 -0.004  
 

-0.012, 
0.005 

0.403 0.09  
 

-0.04, 
0.21 

0.163 0.004  
 

-0.27, 
0.28 

0.

Trigly-
ceride 
levels 

52 23 -0.19 -0.27, 
-0.11 

<0.00
1* 

-0.19  -0.67, 
0.29 

0.440 -4.06E-
06  

-0.008, 
0.008 

0.999 -0.19  -0.30, -
0.08 

0.001 -0.23 -0.48, 
0.03 

0.
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(2018) observed that leaving secondary school at an older age was causally protective against 
diabetes7. Their study differed from the present one in that ours examined education inclusive of 
college—Davies et al. (2018) focused on education up to college. Here, we document that the 
protective effect of education extends beyond schooling in adolescence. Years of schooling after 
high school decrease the chance of T2D.   

In the present study, more years of schooling had no effect on risk for gestational diabetes or 
polycystic ovarian syndrome and was associated with a decreased likelihood of moderate 
physical activity. Regarding the later, another recent MR study found little evidence that more 
education increased vigorous physical activity8. Thus, it seems unlikely that the protective effect 
of Education Years against T2D occurs through an influence on physical activity.   

The protective effect against having a first-degree relative with diabetes is intriguing. Several 
recent studies have documented that there is a bidirectional causal relationship between fluid 
intelligence and years of schooling9,10. While having higher fluid intelligence may causally 
impact more years of schooling, the magnitude of the effect for more years of schooling 
increasing fluid intelligence is comparatively larger: that is, the impact of Education Years on 
intelligence is more than two-fold greater than the impact of intelligence on Education Years9,10. 
Like educational attainment, which is sometimes treated as a proxy for cognitive ability, being 
brighter is protective against an array of negative health-outcomes11. This means that it is 
possible that intelligence is confounding the present findings, especially those pertaining to a 
protective effect of more years of schooling against having a first-degree relative with diabetes. 
However, due to the durable influence of educational attainment on intelligence, it is also 
conceivable that those with more education positively influence their family members in ways 
that reduce risk for T2D. 

One limitation for the analyses of Education Years on a first-degree relative with diabetes is that 
it is possible that some cases of type 1 diabetes were included, since the UK Biobank questions 
that captured the measure for illnesses of relatives asked about “diabetes” – not specifically 
about T2D. However, the influence for this is expected to be minimal, since more than 90% of 
adults with diabetes have T2D12. 

The primary limitation of the present study is one that all MR studies are liable to: unwanted 
horizontal pleiotropy. However, the most logical pleiotropic confounder—intelligence—is one 
that is influenced by Education Years. Moreover, most of the sensitivity screens for possible 
violations to the MR assumptions revealed little evidence for distortions due to pleiotropy. The 
exceptions are for HDL levels and physical activity, for which there was enough variability 
across the sensitivity estimators to view their results with more caution. A strength of our study 
worth mentioning is that it leveraged the power of 11 large GWA studies to examine these 
complexly woven traits.  

The public-health relevance of the bidirectional causal relationship between intelligence and 
Education Years cannot be overstated, however. If the present findings primarily reflect the 
benefits of higher cognitive ability—which they could—then whether Education Years 
influences cognitive ability determines interventional strategies. Because Education Years 
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increases cognitive ability, public-health efforts to retain people in higher education may be 
warranted as part of a developing arsenal to help limit and even prevent the staggeringly 
deleterious effects of T2D. The message is the same, importantly, even if intelligence is not the 
driving force in the current study. Whatever it is about the landscape of higher education, more 
years of schooling appears to help reduce the risk for a major source of metabolic morbidity and 
mortality. 

Methods 

Conceptual approach. MR is an analytic, instrumental variables technique that capitalizes on 
Mendel’s Laws of Inheritance, genotype assignment at conception, and pleiotropy (genes 
influencing more than one trait) for causal inference13–15.  

MR uses genetic variants strongly associated with traits of interest as opposed to the observed 
traits themselves in models. By relying on the random assortment of alleles (Mendel’s Laws) and 
the temporal assignment of genotype at conception, MR avoids most sources of confounding and 
reverse causation that distort causal estimates in observational studies. In two-sample MR, 
summary statistics are pulled from two genome-wide association (GWA) studies. These 
summary statistics are the data sources for two-sample MR4,6,16–19 (Figure 1). 

 

Figure 1. Two-sample MR testing the causal effect of Education Years on T2D. Estimates of the 
SNP-Education Years associations (β^ZX) are calculated in sample 1 (from a genome-wide 
association, GWA, study of Education Years). The association between these same SNPs and 
T2D is then estimated in sample 2 (β^ZY) (from a T2D GWA study). These estimates are 
combined into Wald ratios (β^XY=β^ZY/β^ZX). The β^XY estimates are meta-analyzed using 
the inverse-variance weighted analysis (β^IVW) method and various sensitivity analyses. The 
IVW method produces an overall causal estimate Education Years on T2D. 

MR also exploits vertical pleiotropy. For example, the assumption that the genetic variants for 
Education Years have an influence on T2D through their influence on the Education Years is an 
exploitation of vertical pleiotropy. But vertical pleiotropy is not the only type of pleiotropy. 
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Horizontal pleiotropy also occurs. An example of horizontal pleiotropy would be if the SNPs 
associated with Education Years were also associated with some other trait (such as 
socioeconomic status), which then affects risk for T2D. This scenario would constitute a 
violation to the MR assumptions.   

MR assumptions. MR has the following assumptions: (i) genetic instruments are strongly 
associated with the exposure; (ii) genetic instruments are independent of confounders of the 
exposure and the outcome; and (iii) genetic instruments are associated with the outcome only 
through the exposure18,20. For example, the following must be true in order for the present 
analysis to be valid: (i) genetic variants robustly associated with Education Years must be chosen 
as instruments to test the causal relationship between Education Years and T2D; (ii) the genetic 
variants chosen to instrument Education Years must not be associated with confounders of the 
relationship between Education Years and T2D; and (iii) the genetic variants chosen to 
instrument Education Years must only impact T2D through their impact on Education Years. 
When violated, assumption (iii) describes horizontal pleiotropy, which can invalidate causal 
inference from vertical pleiotropy. Statistically based sensitivity estimators have been developed 
to evaluate potential violations to assumption (iii) (for more on this, see the subsection, 
Sensitivity analyses.) 

Design. This study explores the impact of Education Years on T2D and 10 risk factors for T2D. 
For the later, a list of established risk factors for T2D was obtained from the website for the 
American Diabetes Association (ADA) (https://www.diabetes.org/diabetes-risk)21: 

• Being 45 or older 
• Being Black, Hispanic/Latino, American Indian, Asian American, or Pacific Islander 
• Having a parent with diabetes 
• Having a sibling with diabetes 
• Being overweight 
• Being physically inactive 
• Having high blood pressure  
• Having low high-density lipoprotein (HDL) cholesterol  
• Having high triglycerides 
• Having had diabetes during pregnancy (gestational diabetes) 
• Having been diagnosed with Polycystic Ovary Syndrome 

Of these risk factors, all but “being 45 and older” and “being Black, Hispanic/Latino, American 
Indian, Asian American, or Pacific Islander” were suitable for investigation with two-sample 
MR. 

Exposure data source: Education Years. The instrument for Education Years was obtained 
from a GWA study of Education Years performed by Okbay et al. (2016), which included 
293,723 participants of European ancestry and adjusted for 10 principal components, age, sex, 
and study-specific controls22. Education Years, inclusive of college, was measured for those who 
were at least 30 years of age. International Standard Classification of Education (ISCED) 
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categories were used to impute a years-of-education equivalent (SNP coefficients per standard 
deviation, SD, units of years of schooling; an SD-unit of schooling=3.6 years).  

Outcome data source: T2D. The outcome data for T2D was extracted from Morris et al. (2012), 
which performed a GWA study of T2D in 149,821 participants of European decent, of which 
34,840 had T2D23. Their GWA adjusted for study-specific covariates and population structure. 

Outcome data source: sibling with diabetes. The outcome data for having a sibling with 
diabetes was extracted from a GWA study performed by the Medical Research Council-
Integrative Epidemiology Unit (MRC-IEU) staff, using PHESANT-derived24 UK Biobank 
data25,26 (UK Biobank data field 20111). Briefly, the UK Biobank is an open-access cohort that 
enrolled about 500,000 participants, largely of European descent27. Genetic, health, and 
demographic data were collected on many of the participants and were made publicly available 
for researchers. The MRC-IEU staff ran numerous GWA studies with UK Biobank variables, 
adjusted for age at recruitment and sex, and made their results available through MR-Base, a 
public repository of summary statistics from GWA studies for use in MR studies. The GWA 
study of having a sibling with diabetes contained 362,826 participants, of which 31,073 were 
classified as having a sibling with diabetes.   

Outcome data source: mother with diabetes. The outcome data for having a mother with 
diabetes was extracted from a GWA study performed by the MRC-IEU staff, which used 
PHESANT-derived UK Biobank data (UK Biobank data field 20110). The GWA study 
contained 423,892 participants, of which 40,091 were classified as having a mother with 
diabetes.  

Outcome data source: father with diabetes. The outcome data for having a father with 
diabetes comes from a GWA study performed by the MRC-IEU staff, which used PHESANT-
derived UK Biobank data (UK Biobank data field 20107). The GWA study contained 400,687 
participants, of which 38,850 were classified as having a father with diabetes. 

Outcome data source: overweight status. The outcome data for overweight status come from 
Berndt et al. (2013), which performed a GWA study of clinically defined overweight status in 
158,855 participants of European ancestry, of which 93,015 were classified as overweight28. 
Overweight case status was defined as BMI ≥25 kg/m2.  

Outcome data source: physical activity. The outcome data for physical activity come from a 
GWA study by the MRC-IEU staff, which used PHESANT-derived UK Biobank data for 
moderate physical activity, defined as the number of days of moderate physical activity per week 
performed for more than 10 minutes at a time. The GWA study included 440,266 participants.  

Outcome data source: high blood pressure. A GWA study of high blood pressure (a binary 
measure) was performed by the MRC-IEU staff using PHESANT-derived variables24 constructed 
from the UK Biobank data25,26 (data field 6150: “Vascular/heart problems diagnosed by doctor: 
high blood pressure”). There were 461,880 participants, of which 124,227 had high blood 
pressure as determined by a physician.  
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Outcome data source: gestational diabetes. The GWA study of gestational diabetes (a binary 
measure) was performed by MRC-IEU staff using PHESANT-derived variables 24 constructed 
from UK Biobank data25,26 (data field 4041). Participants were asked if they only had diabetes 
during pregnancy. There were 462,933 participants, 240 of which self-reported having had 
gestational diabetes.  

Outcome data source: polycystic ovarian syndrome. The outcome data for polycystic ovarian 
syndrome (a binary measure) was performed by MRC-IEU staff using PHESANT-derived 
variables24 constructed from the UK Biobank data25,26 (data field 20002). There were 462,933 
participants, of which 571 self-reported having polycystic ovarian syndrome.  

Outcome data source: HDL levels. The outcome data for circulating HDL levels (a continuous 
measure) come from Willer et al. (2013), which performed an age- and sex-adjusted GWA study 
of circulating HDL levels in up to 187,167 individuals, largely of European ancestry29. 

Outcome data source: triglyceride levels. The outcome data for triglyceride levels (a 
continuous measure) come from Willer et al. (2013), which performed an age- and sex-GWA 
study of circulating triglyceride levels in up to 177,861 individuals, largely of European 
ancestry29. 

To ease interpretability, all MR results for the effects of Education Years on T2D and T2D risk 
factors were exponentiated from log odds to odds ratios, except for outcomes of continuous 
variables (i.e., HDL and triglyceride levels), which are presented as beta estimates (Table 1).   

The summary statistics used for the MR analyses are available in Supplementary Tables 1-11. 

Instrument construction. As introduced in Figure 1, independent (those not in linkage 
disequilibrium, LD; R2 < 0.01) SNPs associated at genome-wide significance (P < 5 x 10-8) with 
Education Years were extracted from the Okbay et al. (2016) GWA study. The summary 
statistics for the Education Years-associated SNPs were then extracted from each of the outcome 
GWA studies. SNP-Education Years and SNP-outcome associations were harmonized and 
combined with the IVW method (Figure 1).  

Sensitivity analyses. A weakness of the IVW estimator is that its estimate can be biased if the 
meta-analyzed SNPs are directionally pleiotropic30. This can cause a violation to MR assumption 
(iii) and invalidate the findings. To address this, MR-Egger regression, weighted median, and 
weighted mode MR methods can be run as complements to the IVW. The directions and 
magnitudes of their effect estimates can be compared to those of the IVW. Doing so is a type 
triangulation: comparing approaches that have different assumptions to weigh evidence31. The 
reason for this is that the various MR sensitivity estimators make different assumptions about 
possible underlying pleiotropy. Due to their different assumptions, it is unlikely that the IVW 
and sensitivity estimators would be homogeneous in the directions and magnitudes of their effect 
estimates if there were substantial violations to MR assumption (iii). Therefore, triangulating 
their directions and magnitudes of effects provides a screen against pleiotropy. (Nuanced 
descriptions of how the various MR estimators deal with pleiotropy are described 
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elsewhere30,32,33). MR-Egger regression, weighted median, and weighted mode MR sensitivity 
methods were run for all analyses.  

A formal test for directional pleiotropy was also done with the MR-Egger intecept. If the MR-
Egger intercept is not different than 1 on the exponentiated scale or 0 when non-exponentiated 
(P>0.05), this indicates a lack of evidence for bias due to pleiotropy in the IVW estimate. 

In addition, potential outlier SNPs were removed using RadialMR regression34 for the MR tests 
of Education Years on T2D risk factors. (The differing number of SNPs for the Education Years 
instruments is due to this and that the various outcome GWA studies not having a uniform set 
SNPs in their association studies). All instrumental variables included in this analysis have 
Cochrane’s Q-statistic P-values indicating no evidence for heterogeneity between SNPs35. 
Heterogeneity in the effect estimates for SNPs can indicate pleiotropy. Thus, ensuring a lack of 
heterogeneity between SNPs is an additional method to boost the chance that MR assumption 
(iii) is not violated. Heterogeneity statistics are provided in Supplementary Tables 12-22. 

The IVW and sensitivity estimations were performed in R version 3.5.2 with the 
“TwoSampleMR” package16,36. Overall, 11 tests were performed. The Bonferroni correction was 
used to penalize for multiple testing: P=0.05/11 (0.005).  

Power. The study was powered for the test of Education Years on T2D, using mRnd MR power 
calculator (available at http://cnsgenomics.com/shiny/mRnd/)37. There was ≥80% power to 
detect odds ratios in the range of 0.3-0.7 (Figure 2). In addition to the overall power to detect an 
association, MR studies also rely on F-statistics. F-statistics provide an indication of instrument 
strength38. F-statistics <10 are conventionally considered to be weak39. F-statistics for each test 
are available in Table 1.  

 

Figure 2. Power calculations for a range of plausible effects estimates for the MR test of 
Education Years on T2D.  
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Data availability. All data sources are publicly available and are accessible within MR-Base: 
http://www.mrbase.org/16. 
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