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Abstract

Here we apply the concept of transfer learning to time series forecasting models for
mosquito-borne diseases. Transfer learning, in this application, allows us to use
knowledge obtained from modeling one disease to predict an emerging one for which
extensive data is still not available. Here we discuss the performances of two families of
models for predicting Chikungunya and Zika using models trained with dengue time
series, in two Brazilian cities: Rio de Janeiro and Fortaleza.

Introduction 1

It is common for a given insect to be the main vector for more than one pathogen. this 2

is certainly true for the mosquito Aedes aegypti, which is a vector for various viruses 3

such as the dengue virus (DENV), Zika Virus (ZIKV), Chikungunya virus (CHIKV), 4

yellow fever virus (YFV) among others. It is also common to have a lot of historical 5

transmission data on one disease but little to none on a emerging one. 6

Aedes aegypti’s distribution is restricted to tropical and subtropical climates, which 7

reflects its sensitivity to temperature, humidity and other weather constraints. The 8

modulation of its life cicle by climate, shapes the seasonality of the diseases it transmits. 9

In Brazil, Aedes aegypti has been historically associated with the transmission of 10

dengue, making it a marked seasonal disease. In recent years, A. aegypti has also been 11

notably responsible for epidemics of the Zika and Chikungunya virus. 12

In this paper we propose to adopt the widely used method of transfer-learning to 13

take advantage of the long time series available for dengue and explore the performance 14

of dengue forecast models to predict the weekly incidences of Zika and Chikungunya as 15

well. Transfer learning is a method used in association with deep learning models. Here 16

we will use a deep learning model, in the form of a LSTM (long short term memory) 17

recursive neural network model, which we have shown, in a previous work[ref], to yield 18

accurate forecasts for weekly dengue incidence. But we will also use an ensemble 19

regression model, namely a Random Quantile Forest model. Besides weekly incidence, 20

climate variables such as temperature, humidity, and atmospheric pressure are also used 21

as predictors. A spatial component built from the incidence at neighboring cities is also 22

included. We present results of the forecast of total incidence of arboviral disease as well 23

as of each disease separately and discuss the relative performances of the model for each 24

of these tasks. 25
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Materials and methods 26

Data 27

The data used in this work comes from the Infodengue project [1], which monitors these 28

arboviroses in Brazil. In figure 1 we can see the incidence series for states in Brazil 29

which had significant outbreaks of the 3 arboviroses since 2016 soon after Chikungunya 30

and Zika arrived in Brazil. 31

Fig 1. Weekly incidence for the state of Ceará, Brazil. Here we can see how
the three arboviroses are correlated.

Forecast models 32

Both LSTM and RQF models were trained to predict 4 weeks ahead of the last data 33

point(wt+4). Both models use 4 weeks of historical data to generate forecasts. Forecasts 34

are done in a rolling window fashion. Both models use as predictors, the following series: 35

number of cases, Effective reproduction number (Rt),Temperature, Humidity and 36

Atmospheric pressure. Besides relying on local data, the forecast models also includes 37

the same set of series from other cities belonging to a cluster of “epidemiologically 38

similar” cities, defined by hierarchical agglomerative clustering based on the correlation 39

distance between each city, i.e., the higher the correlation between their incidence time 40

series the closer they are [2]. 41

LSTM. A LSTM model is a recurrent deep neural network model developed to handle 42

predictions of time series [3]. We used a LSTM model with 3 LSTM units followed by 3 43

dropout layers. The model was trained for 300 epochs with early stopping using a 44

mean-log squared-error (MLSE) loss function and a Nesterov Adam optimizer [4]. 45

Besides playing an important role in preventing overfitting during training [5], the 46

dropout layers were also used in the prediction step to generate an ensemble of LSTM 47

networks. This allows us to estimate confidence intervals by computing the relevant 48

statistics from several predictions sampled from the ensemble [6]. Figure 2 shows 49

dengue forecasts by the LSTM model for the city of Fortaleza. The black and red lines 50

represent the incidence and the predictions of neural network respectively. The shaded 51

blue area gives the corresponding 95% confidence interval for the predictions estimated 52

from dropout sampling. The predictions curve (i.e, the red line in the figure) is simply 53

the median of predictions computed with dropout sampling. The dashed green vertical 54
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line in the figure marks the boundary between training and test data. As can be seen 55

from the figure, the model performs well even a few years in the future. 56

57

Fig 2. LSTM forecast for dengue incidence (black line) Prediction (red line)
with 95% interval for the city of Fortaleza. Every point in the red line corresponds to a
prediction from 4 weeks before. 58

Random Quantile Forest (RQF). Random Forest models calculate an ensemble of 59

regression trees from random subsets of data. RQF models are an extension to regular 60

random forests in which the full conditional distribution of Y given X = x is calculated. 61

As a result, it is a non-parametric, consistent and accurate way to determine conditional 62

quantiles from high-dimensional predictors [7]. Let A = [aij ] be an array containing the 63

D = 4 most recent observations from each predictor series. Thus the regression model 64

can be simply represented by 65

ŷt+τ = At−τ,jβ
T
t−τ,j + εt, (1)

where τ ∈ (1 . . . 4) and j ∈ (1..n) where n is the number of predictors. 66

The full model includes the 5 predictor series for the city being predicted plus the 67

same set from every other city belonging to its cluster. 68

Figure 3 shows dengue forecasts for Rio de Janeiro by the RQF model. 69
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70

Fig 3. Baseline forecast for dengue in Rio de Janeiro. Random quantile forest
model trained on data from 2010 to mid 2016. Red line is the median prediction, with
95% intervals in light purple. 71

Model fitting and usage 72

Both models where trained with dengue and environmental data from 2010 to 2019. 73

They were then saved and used for rolling predictions using Zika and Chikungunya 74

series substituting for the dengue data. Predictions for Zika and Chikungunya, based on 75

the models learned from the dengue data, were generated only from 2016 onward since 76

before this year the two viruses were virtually absent from Brazil. 77

Comparing models on a quantile scale 78

In order to allow the pooling of the prediction errors of different weeks w and cities c 79

into a common scale, we transformed all the observations and predictions to their 80

quantile value on the empirical cumulative distribution of historical incidences at each 81

epidemiological week and city. Thus all errors become a difference between quantiles: 82

E iw,c := [q(ŷw,c)− q(yw,c)] ∈ (−1, 1). (2)

This quantile difference will give us part of the diagnostic. It will tell us how 83

accurately the model predicted the actual week it is trained at. However, one may also 84

be interested on how well the model has predicted the historical median. We will denote 85

this second deviation by ξ := [q(ŷw,c)− 0.5] ∈ (−0.5, 0.5). 86

For the purpose of assessing the viability of applying transfer learning from dengue 87

to Chikungunya and Zika we will consider only the first error, E . 88

Results 89

Figures 2 and 3 show rolling predictions 4 weeks ahead both in-sample and 90

out-of-sample along with 95% predictive intervals, for dengue in Fortaleza and Rio de 91

Janeiro, respectively. They illustrate the predictive accuracy of both models. These 92

serve as baseline for the performance of cross-forecasting. 93
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Fig 4. Predicting Chikungunya using a RQF model trained on dengue data in Rio de
Janeiro.

The performance of RQF for Chikungunya is shown in figure 4 for Rio de Janeiro 94

and on figure 5 for Fortaleza. For Zika the predictions of the RQF model for the city of 95

Fortaleza can be seen on figure 9. 96

LSTM cross-prediction results for Chikungunya are shown in figures 6 and 7 for Rio 97

and Fortaleza respectively, and on figure 8 for Zika. 98

Table 1 summarizes the cross-predictive errors for both models on both Zika and 99

Chikungunya, for each city. 100

Another representation of the cross-prediction errors can be found on figures 10, 11, 101

12 and 13 for Chikungunya on both Rio de Janeiro and Fortaleza. These figures plot 102

quantiles of the prediction values, q(ŷw,c) against the quantiles of the observations, 103

q(yw,c). All weeks are aggregated on a single plot, so when we observe that a given 104

model disagrees with the observations on a given percentile, we are not referring to a 105

particular week, or magnitude. In other words, if the predicted quantile is higher than 106

the observed quantile, when both are below the median, the prediction is actually a 107

better approximation to the historical median than the observed value whenever it is 108

below the historical expectation. 109

Discussion 110

As shown in the results section, transfer leaning between dengue incidence forecast 111

models and other arboviroses transmitted by the same vector can be an interesting 112

approach. Typically, in transfer learning applications, the previously trained models get 113

retrained with the new data set, to help the model combine the specifics of the new 114

data set with the previously learned problem. However, for this application, we skipped 115
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Fig 5. Predicting Chikungunya using a RQF model trained on dengue data in
Fortaleza.

Fig 6. Predicting Chikungunya using a LSTM model trained on dengue data in Rio de
Janeiro.
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Fig 7. Predicting Chikungunya using a LSTM model trained on dengue data in
Fortaleza.

Fig 8. Predicting Zika using a LSTM model trained on dengue data in Fortaleza.
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Fig 9. Predicting Zika using a RQF model trained on dengue in Fortaleza

February 3, 2020 8/14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 4, 2020. ; https://doi.org/10.1101/2020.02.03.20020164doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.03.20020164
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 10. QQplot for observed (x-axis) and predicted (y-axis) weekly incidences in the
city of Rio de Janeiro, cross-predicting Chikungunya from the dengue RQF model. Here
we can see that when the observed incidence is below the 20th percentile, the RQF
model tends to predict closer to the historical median overshooting the observed value
for the week.
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Fig 11. QQplot for observed (x-axis) and predicted (y-axis) weekly incidences in the
city of Fortaleza, cross-predicting Chikungunya from the dengue RQF model. Here we
note that the model’s predictions are right on the historical median whenever the
observations are below this expected level. Whenever the observed incidence is higher
than the expected incidence, the model correctly predicts these values (top-right of the
plot).
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Fig 12. QQplot for observed (x-axis) and predicted (y-axis) weekly incidences in the
city of Rio de Janeiro, cross-predicting Chikungunya from the dengue LSTM model. In
this case, the LSTM model seems to consistently underestimate the observed incidence.
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Fig 13. QQplot for observed (x-axis) and predicted (y-axis) weekly incidences in the
city of Fortaleza, cross-predicting Chikungunya from the dengue LSTM model. In the
city of Fortaleza the LSTM model seems to go for the historic median when the
observed values are below the percentile 20 of the historical distribution. But the model
and observations tend to be more in agreement when observations are at or above the
historical median.
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Table 1. Distribution of predictive errors(E, from equation 2) for the LSTM and RQF models. The table shows the
1st quartile, median, and 3rd quartile, respectively, for each model, city and disease.

Target RQF LSTM

Fortaleza
Chikungunya −0.38 −0.24 −0.04 −0.45 −0.29 −0.02
Zika −0.59 −0.47 −0.35 −0.36 −0.24 −0.05

Rio de Janeiro
Chikungunya −0.12 −0.02 0.04 0.22 0.35 0.48
Zika −0.59 −0.47 −0.35 N/A N/A N/A

this retraining step in order to retain good-sized data sets with which to test the models. 116

Had we used the shorter Zika and Chikungunya time series to retrain the models, we 117

would limit ourselves to provide only in-sample forecasts. On the other hand, by making 118

this decision we imposed a much harder challenge to the models, namely predicting Zika 119

and Chikungunya, having only been trained on dengue time series. 120

For this paper we have chosen two brazilian capitals, Fortaleza, in the northeast of 121

the country and Rio de Janeiro, in the southeast. These cities are separated by 122

approximately 2500 kilometers, and are under quite different climate regimes. This 123

choice reflects our desire to test the models in places where the diseases are under very 124

different environmental influences. This is apparent on the results, where we see that 125

the models don’t perform equally well when cross-predicting in each city. 126

Furthermore, we should consider what the differences in performance mean for each 127

individual city when using a single model to predict weekly incidences of different 128

arboviroses. Indeed, when using a model trained on the dengue data set of a fixed city 129

to predict Zika or Chikungunya weekly incidences for the same city, the environmental 130

predictor variables are kept the same for all three diseases and therefore the differences 131

in the predictions reflect the unique epidemiological dynamics of each arbovirosis at 132

that observed moment. Therefore, the method we presented here can also shed light on 133

how different the epidemiological dynamics of Zika and Chikungunya are as compared 134

to that of dengue. This is particularly relevant since it may indicate that other modes of 135

transmission may be present for arboviroses that behave very differently from dengue, 136

as is already known to be the case of Zika, which has confirmed cases of sexual 137

transmission [8]. 138

Conclusion 139

Cross-disease forecasting models like the ones presented here are important because 140

they allow us to take advantage from longer historic records from other diseases which 141

share similar transmission mechanisms and environmental determinants. 142

The results presented here expectedly show more uncertainty associated to 143

cross-forecasts when compared to forecasting the disease they were trained on. 144

Nevertheless the models show reasonable accuracy when cross-predicting Chikungunya 145

(figures 4, 5, 6 and 7), perhaps more than the same models would be capable of if they 146

were trained on the scarce available data for Chikungunya. 147

For Zika, cross-forecasts based of the RQF model did not work as well (figure 9). 148

Perhaps the fact that Zika can also be transmitted sexually [8] makes its epidemiological 149

dynamics sufficiently different from dengue to make cross-predicting ineffective. The 150

LSTM model showed similar performances when compared to RQF for Chikungunya 151

(figure 7). But for Zika (figure 8) the LSTM model performed much better than RQF 152

for cross-predictions. 153
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Machine learning models have shown great potential for infectious disease forecasting. 154

However, long enough time series, essential to train such models, are not easy to come 155

by. In this work we have shown the potential of cross-disease forecasts, for diseases with 156

similar transmission mechanisms. Despite the encouraging initial results there is still 157

plenty of room for improvements to the development and application of such models. 158
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