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Abstract 

Seasonality of transmission environment, which includes snail populations and habitats, or human-snail 

contact patterns, can affect the dynamics of schistosomiasis infection, and control outcomes. 

Conventional modeling approaches often ignore or oversimplify it by applying ‘seasonal mean’ 

formulation. Mathematically, such ‘averaging’ is justified when model outputs/quantities of interest 

depend linearly on input variables. That is not generally the case for macroparasite transmission models, 

where model outputs are nonlinear functions of seasonality fashion.  

Another commonly used approach for Schistosomiasis modeling is a reduction of coupled human-snail 

system to a single ’human equation’, via quasi-stationary snail (intermediate host) dynamics. The basic 

questions arising from these approaches are whether such ‘seasonal averaging’ and ‘intermediate host 

reduction’ are suitable for highly variable/seasonal environments, and what implications these methods 

have on models’ predictive potential of control interventions. 

Here we address these questions by using a combination of mathematical analysis and numerical 

simulation of two commonly used models for macroparasite transmission, MacDonald (MWB), and 

stratified worm burden (SWB) snail-human systems. We showed that predictions from ‘seasonal 

averaging’ models can depart significantly from those of quasi-stationary models. Typically, seasonality 

would lower endemicity and sustained infection, vs. stationary system with comparable transmission 

inputs. Furthermore, discrepancies between the two models (‘seasonal’ and its ‘stationary mean’) 

increase with amplitude (or variance) of seasonality. So sufficiently high variability can render infection 

unsustainable. Similar discrepancies were observed between coupled and reduced ’single host’ models, 

with reduced model overpredicting sustained endemicity. Seasonal variability of transmission raises the 

question of optimal control timing. Using dynamic simulation, we show that optimal timing of repeated 

MDA is about half season past the snail peak, where snail population attains its minimal value. 

Compared to sub-optimal timing, such strategy can reduce human worm burden by factor 2 after 5-6 
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rounds of MDA. We also extended our models for dynamic snail populations, which allowed us to study 

the effect of repeated molluscicide, or combined strategy (MDA + molluscicide). The optimal time for 

molluscicide alone is the end or the start of season, and combined strategy can give additional 

reduction, and in some cases lead to elimination. 

Overall, reduced sustainability in seasonal environment makes it more amenable to control 

interventions, compared to stationary environment.  

Introduction 

Seasonal transmission of an infectious disease is a common phenomenon, defined by time dependent 

transmission rates that vary over the season. Schistosomiasis is a case example where the seasonality is 

related to snail populations linked to weather patterns (rainfall, temperature), and/or behavioral factors 

(human-snail contacts). But mathematical models of Schistosome transmission rarely account for 

seasonality, with implication to accuracy of model prediction and opportunity to gain insight into public 

health practice, like optimal timing of interventions. 

Basic reproduction number ( 0R ) is a fundamental concept widely used in population biology and 

infectious disease modeling. In the context of infectious diseases, 0R is used to assess the magnitude of 

disease outbreak, spread or endemic (equilibrium) level [1 ].  Its applications range from modeling of 

human-to-human communicable diseases to vector-mediated systems for macroparasite diseases, such 

as Ross-MacDonald models of schistosomiasis (see e.g. 2, 3, 4,5,6). Though 0R  was first explicitly derived 

for simple single population models, this concept was further extended to more complex meta-

population systems, e.g. spatially connected environment with multiple host sites (see e.g. 7, 8,9, 10,11). 

Mathematically, 0R   is most appropriate for stationary environment where disease transmission 

parameters are kept fixed. However, in many cases, such environment is highly variable, e.g. seasonal 

change of vector population or contact patterns, as well as abrupt changes caused by control 

interventions. 

One way to incorporate such variability in mathematical models is through appropriate ‘seasonal 

averaging’ of environment and/or behavioral inputs. However, little effort was spent to assess the effect 

of ‘seasonal averaging’ for analysis of disease predictions, and control outcomes. In general, the use of 

averaging methods in non-stationary dynamical systems can be justified when variability is marginal 
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relative to baseline mean state or when quantities of interest (e.g. dynamic variables or outputs) depend 

linearly on variable inputs. Under such conditions, the ‘averaged’ stationary model with properly 

adjusted coefficients is able to reproduce approximate ‘mean’ behavior of the non-stationary (time 

periodic) system. However, neither of these conditions holds for nonlinear disease transmission models 

in variable seasonal environment. The outputs of such system are nonlinear functions of its input 

variables, and they can depart significantly from the expected ‘mean’ behavior. 

Besides seasonal averaging, another commonly used approximation in modeling vector-host 

transmission is a reduction of the coupled system to a single host equation, via quasi-equilibration of 

fast vector variables. Such reduction is commonly justified by distinct time scales: slow ‘host-parasite 

dynamics’ vs. fast ‘vector-intermediate host’. Indeed, in the context of schistosomiasis time scales for 

snail dynamics vary from weeks-to-months, while human and worm scales are order of magnitude 

slower (years). 

Reduced models are convenient for theoretical analysis and for numeric simulations (see e.g. 2 , 3). Such 

reduction procedures however, require more careful analysis beyond simple ‘time-scale’ heuristics, to 

assess possible departure of the reduced or averaged models (‘single-host’ or ‘seasonal-mean’) from 

their fully coupled, non-stationary precursor. 

Here we assess the effect of seasonal averaging and intermediate host reduction for schistosomiasis 

transmission in seasonal environment, and their implications on predicting control outcomes (MDA). On 

human side, we shall mostly use mean worm burden (MWB) MacDonald formulation (4, 5-7), but make a 

few comment on other possible approaches, like stratified worm burden system (8-10). Seasonal 

transmission environment can appear as variable snail population and/or variable human-snail contacts.  

In this paper, we mainly focus on seasonal snail variability (their population density) that determines 

their infection level, and snail-to-human transmission rate. Mathematically, different functions can be 

used to account for variable snail population, under different environmental conditions(precipitation, 

temperature, et al) (see e.g. 11,12, 13, 14, 15, 16).  The two commonly observed patterns include: (i) 

moderate snail variability about ‘mean value’ with approximately equal high and low seasons, (ii) long 

dry season (with low / zero snail density and transmission) followed by short rainy season, with bursting 

snail population and intensified transmission rate.  

We shall employ two mathematical functions for such seasonal patterns, namely (i) trigonometric 

function ( )1 cos 2a tπ+  with amplitude 0 1a< < , for alternating high/low seasons of equal duration, (ii) 
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concentrated peak density over low-level background with prescribed seasonal mean value =1.  The 

latter also have a version of amplitude parameter ( 0 1a< < ), but its meaning and implication are 

different. 

Earlier theoretical papers (17,18) studied seasonally varying (periodic) human-snail contact patterns and 

their impact on schistosomiasis endemic state and persistence. In particular, 18 estimated endemicity 

thresholds for periodically varying MacDonald system. Here we change the focus from ‘seasonal contact’ 

to ‘seasonal snail population’, and extend the scope of their analysis by exploring the implications of 

seasonality for sustained infection, and control interventions, MDA and molluscicide.  

The bulk of our analysis employs prescribed snail population (density) function ( )N t . The study of 

molluscicide control however, requires a dynamic snail population that could respond to an abrupt 

change, environmental and/or human-made interventions. Such resource-driven models of snail 

population biology were developed in several papers (e.g. 15, 16 , 19). These works however, did not apply 

dynamic snail models for transmission/control analysis. Our paper attempts to fill this gap. Alongside 

prescribed function ( )N t  we develop model of resource driven seasonal snail, and apply it to study 

molluscicide. 

Two basic parameters employed in our analysis are basic reproduction number 0R  (of ‘mean’ 

stationary system), and amplitude (a) of seasonal variability.  

By combining mathematical analysis with numeric simulations, we address several questions:  

(i) combined effect of ( )0 ,R a  on periodic/stationary patterns of human-snail infection and 

their seasonal means. Among other results we identified parameter ranges where 

transmission becomes unsustainable for different types of seasonality.  

(ii) We explore long terms effect of repeated MDA in different model formulations. Once again, 

‘reduced’ and ‘seasonal-mean’ MacDonald system can depart significantly from compete 

(fully coupled) dynamical system.  

We apply our model to study optimal seasonal timing of repeated interventions MDA, molluscicide, 

or integrated strategies, that would achieve maximal parasite burden reduction over limited time-

span (6-10 years). For MDA alone, we estimated optimal seasonal timing in the range ¼ - ½ season 

past snail peak. Optimal effect of molluscicide on worm reduction is achieved at the end or start of 
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season (preceding snail peak). For mixed strategy (MDA + molluscicide) we can use estimated 

optimal timing of each intervention, to achieve best results.  
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Modeling setup 
Stationary transmission environment: 0R  analysis 

Simple MacDonald system for 2 variables ( )w t - human MWB, and ( )y t - infected snail prevalence, 

consists of coupled differential equations  

 

( )1

dw A y w
dt
dy B w y y
dt

γ

ν

= −

= − −
  (1.1) 

with transmission coefficients A, B, and worm/snail loss rates ( ),γ ν . The former A  is proportional to 

snail density N, the latter B depends on human population size H. System (1.1) can be rescaled in 

dimensionless form, given by a single parameter 0
A BR
γ ν

=  (see Box 1), 

 
( )

( )0 1

dw y w
dt
dy R w y y
dt

ν
γ

= −

= − −  

  (1.2) 

Parameter 0R  is responsible for endemic equilibria of (1.2) and for endemic to zero transition. A simple 

illustration is herd immunity, vaccine coverage fraction ( 01 1/f R> − ) to prevent an outbreak. 

Second order system (1.2) can be reduced by replacing ‘fast’ snail equation is with its quasi-equilibrium 

value (see Box 1) due to’ short’ snail  time scales (months) compared to ‘slow’ human- worm dynamics 

(years). The reduced MacDonald system is a single equation  

 0

0

1
1

Rdw w
dt R w

 
= − + 

  (1.3) 

Both full and reduced systems (1.2)- (1.3) share endemic equilibrium in a stationary environment. 

Significant differences however, could arise is seasonal environment.  
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MacDonald system with mating and aggregation. Many conventional approaches, going back to the 

original MacDonald paper 4, assume worm burden is distributed in host population according to 

negative binomial (NB) pattern with mean value , and aggregation parameter 0k >  (5,7,20,21). In 

such setting, the force of snail infection (= B w ) of (1.1) is no more proportional to MWB . Instead, 

one should use mean mated count (MCB), which depends on worm distribution in host community. For 

assumed NB – distribution, it can be estimated via so-called mating function ( )0 1k wφ< < , namely MCB 

= ( )kw wφ . Equations (1.1) are modified accordingly 

 

( ) ( )1

dw A y w
dt
dy B w w y y
dt

γ

φ ν

= −

= − −
  (1.4) 

After rescaling (Box 1) we recast it as 

Box 1: Rescaled (dimensionless) MacDonald system (1.1) for variable w w
A
γ → 

 
, ( )0 , 1w y< <   

depends on a single parameter 0
A BR
γ ν

=  . It consists of human and snail equations: (H) dw y w
dt

= − ;   

(S) ( )( )0 1dy R w y y
dt

ν
γ

= − − . In stationary environment such (H-S) system has stable endemic 

equilibrium, 
* *

01 1/w y R= = − , provided 0 1R > , and unstable infection-free (zero) state. The (S) 

equation can be further reduced to its quasi-equilibrium state, 0

01
R wy

R w
≈

+
 , assuming snail turnover 

rate compared to worm mortality ( / 1γ ν  ). Then (H-S) system becomes a single worm equation (W) 

0

0

1
1

Rdw w
dt R w

 
= − + 

. Systems (H-S) and (W) have identical equilibria, and their solutions remain close 

under stationary or slowly varying environmental change (e.g. near constant snail density and exposure/ 
contamination rates). 
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( )

( )0 1

dw y w
dt
dy AR w w y y
dt

γ

ν φ
γ

= −

  
= − −  

  

  (1.5) 

or its reduced (single-host) version  

 
( )
( ) ( )0

0
0

/
1 | ,

1 /
R A wdw w F w R A

dt R A w w
φ γ

γ
φ γ

 
= − =  + 

  (1.6) 

Compared to (1.2) modified system (1.5) depends on 2 dimensionless parameters, transmission 

coefficients ( )/ ; /A Bγ ν  , or  pair 0 ,A B AR
γ ν γ

 
= 

 
 , rather than single 0R . There are other fundamental 

differences between simple MacDonald (1.2), and its modified version (1.5). The former has two 

equilibria (zero-endemic), whose stability types are determined by 0R  ( 0 1R >  - stable endemic, 0 1R < - 

stable zero), saddle-node type. Modified system (1.5) is bistable for sufficiently large  0 1cR R> >  , 

above critical value cR . Figure F of Supplement illustrates critical 2.4cR = , for specific choice of 

transmission coefficients. It has stable equilibria (zero + endemic), and intermediate (unstable) 

breakpoint (see Supplement, Figure Mated MacDonald). Such breakpoints have important implications 

for MDA control, explained below. 

Seasonal environment  

Non-stationary transmission dynamics can arise from multiple sources, including natural (seasonal 

snail populations), behavioral (human-snail exposure/contamination), or repeated interventions, like 

MDA or molluscicide. In this section we focus on variable snail population, given by function N(t) (see 

e.g. 19, 15). There are different types of snail environment, that make time dependent snail population 

( )N t . We do not attempt to classify and study all such patterns of natural variability, but confine our 

analysis to 2 typical periodic functions 

I. Trigonometric: ( ) ( ), 1 cos 2N t a a tπ= +  of amplitude 0 1a≤ ≤ , whereby season is evenly divided 

between high / low snail density (above and below-average). 
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II. Peak-type ( ),N t a  of amplitude 0 1a≤ <  (Figure 1), defined via elliptic theta function. Amplitude a 

has different meaning now.  Large a (close to 1) features sharp seasonal peak of short duration 

about t=0, followed by long dry period ( ( ) 0N t ≈ ) over the remaining ‘dry’ season.  

Data from different studies on snail abundance support such patterns, e.g. (13, 19 22). In both cases, 

( ),N t a  is rescaled so that its seasonal mean, ( )
1

0
1N N t dt= =∫ . Function ( ),N t a   represents relative 

snail density, its absolute ‘mean’ values N  is included into parameter 0R .  

The variability of function ( ),N t a can be measured by its variance, 2 2 1Nσ = − .  In case (i), 

2 23

2

3
2

aσ = <  is limited, while case (ii) allows unlimited values of variance, as ( 1a → ) and population 

peak sharpness.  
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System (1.7) with periodic ( )N t  of either type has stable periodic solutions ( ) ( ){ }* *,w t y t   

determined by ( )0 ,R a , which play the role of endemic equilibria for stationary model. 

To derive ‘seasonal’ dynamic equations, similar to (1.2)-(1.3) , we can follow the scheme of Box 1, but 

some modifications are needed to account for non-stationary . Specifically, infected prevalence 

variable ( )0 1y t< <  in (1.2) should be replaced by infected snail density ( ( ) ( )0 y t N t< < ), and constant 

snail mortality ν  by time-dependent function ( )tµ  (Box 2). The resulting modified MacDonald takes 

the form 

Box 2: Periodic seasonal forcing is determined by relative snail population density ( )N t  with mean 

( )
0

1 1
T

T
N N t dt= =∫ , either trigonometric function  ( ) ( ), 1 cos 2N t a a tπ= +  of amplitude ( 0 1a≤ <

), or ‘single-peak’ type ( )N t  (Figure 1). Some modifications are needed to accommodate variable snail 

population, namely  

(i) prevalence variable ( )y t  in (1.1) is replaced by infected snail density ( ( ) ( )0 y t N t< < ), 

and susceptible pool is given by clipped function   

(ii) fixed snail mortality (= rescaled rate 1 of  (1.2)) is replaced by time dependent rate function

( ) ( ) ( )( )max 1; /t N t N tµ ν′= − . 

Such dynamic (time-dependent) function ( )tµ  should replace its rescaled ‘natural mortality’ ( = 1) in 

case of steep population drop ( ( ) ( )/N t N t ν′− > ), lest function ( )y t  (infected snail pool) would 

exceeds total population ( )N t . In our setup, natural snail mortality (ν ) refers to abundant food supply, 

while steep population decline (e.g. dry season), means increased mortality ( ) ( )max , /N t N tν ′−   , 

hence function ( )tµ  . The reduced worm equation (1.3) is modified accordingly (equation (1.8)). In 

either case, full (2D) system (1.7) or reduced (1.8) , there exists a stable periodic solution ( )*w t , which 

plays the role of stable endemic equilibrium. In can be computed from the fixed point of the 
corresponding Poincare (period) map.  
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( )

( )( ) ( )0

dw y w
dt
dy R w N t y t y
dt

γ

ν µ

= −

 = − − 

  (1.7) 

Its reduced version is given by  

 
( )

( )
0

0

1
R N tdw w

dt t R wµ
 

= −  + 
  (1.8) 

The key inputs for (1.7)-(1.8) is seasonal population density ( )N t , and stationary-mean 0R   of rescaled 

system (Box 1). The role of conventional endemic equilibria (
* *

01 1/w y R= = − ) is played by period 

solutions: ( ){ }* ,w t a , for (1.8), or ( ) ( ){ }* *, , ,w t a y t a  for (1.7). 

Comments. The above derivation of seasonal snail model (1.7) or (1.8) can be extended to any 

transmission system, e.g. MacDonald with mating (1.5)-(1.6), or SWB.  

Besides seasonally varying snail population ( )N t , another source of variable transmission can be 

seasonal human-snail contact patterns, described by function ( )tω .  Indeed, both transmission 

coefficients A, B of the coupled system are proportional to ( )tω . Two periodic inputs ( ( ) ( );N t tω ) are 

sometimes combined into a single product-type term (see e.g.  17, 18).  While superficially ‘seasonal snail’ 

and ‘seasonal contact’ may look similar, there are significant differences in their equations, e.g. excess 

snail mortality in (1.7), (1.8); their dynamic responses may differ. In this paper we shall confine our 

analysis to seasonal snail population, and seasonal effect of periodic repeated MDA interventions. 

Dynamic snail population 

For most parts of our analysis, we use prescribed seasonal snail function ( ),N t a , but molluscicide 

requires dynamic snail model, where populations ( ) ( ){ },N t y t  could respond to any environmental or 

human-made change. Here we adopt a simplified version of snail model 19 , where ( )N t  obeys a logistic 
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growth model with prescribed maximal reproduction rate β  , seasonal carrying capacity (CC) ( )K t , 

and mortality ν , 

 ( )1 /dN N K N N
dt

β ν= − −  (1.9)  

Periodic CC-function ( ),K t a  is taken as trigonometric (type I), peak (type II). Equation (1.9) has stable 

periodic solution ( ),N t a , which plays the role of the above prescribed type I-II N. We further assume 

snail infection has marginal effect on its growth/ mortality (due to small patency conversion fraction of 

snails). So equation (1.9) (variable N ) is decoupled from transmission dynamics (1.7), (1.8), and can be 

used as input for MacDonald system. 

Typical solution curves ( ) ( ) ( ){ }, , , ,K t a N t a y t for type I-II seasonality are shown in Supplement 

(Figure …). While function ( ),K t a  has its peak and trough at 0t =  and 1/ 2t =  (start, middle), ( ),N t a  

lags behind (by about .1 of season), followed by ( )y t . We also note that seasonal mean values ( )N a  are 

now reduced ( 1N < ), and their 0R  (for comparison with prescribed N- case) must be adjusted 

accordingly.  

Results 

Seasonal variability and sustained infection  

While stationary systems (1.2)- (1.3) allow direct analysis of equilibrium states via 0R , non-stationary 

systems like (1.7)-(1.8) require numeric simulations. Here we examine the question of seasonal 

averaging, and single-host reduction for simple MacDonald system, via comparison of (1.2)-(1.7) vs. (1.3)

-(1.8). Most results below involve periodic (endemic) equilibria ( )* ,w t a , and their seasonal mean 

( ) ( )* ,w a w t a= . We list a few key results of our analysis (further details can be found in 

Supplement). 

i) Stationary full (host-vector) and reduced (single host) MacDonald systems share the same 

equilibria and 0R , but when perturbed from equilibrium (e.g. via MDA) their relaxation patterns 
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to equilibrium differ, with reduced system relaxing faster (Supplement Figure A). Higher 

relaxation rate (rebound) would imply less efficient MDA control in reduced system compared 

to full MacDonald host-vector system. 

ii) The role of stationary equilibria in variable environment is played by periodic (dynamic) 

solutions ( ) ( ){ }, , ,w t a y t a , see Figure 2 (more details shown in Supplement Figure C for 

trigonometric N, and Figure D for peak-type N.)  

iii) Seasonal-mean values ( )0,w a R  is a decreasing function of a , with maximum at the stationary 

endemic state ( 0a = ), where 01 1/w R= − . Depending on 0R  the drop can become 

significant for high seasonality ( 1a ≈ ), up to 40% reduction. Reduced (single-host) model 

maintains similar qualitative patterns (loss of ( )w a  with a), but its sustained levels and 

seasonal means are higher, than the full MacDonald system (Figure 2(a)- Figure 3(a)). 

iv)  Seasonal variability, around its mean value, is relatively low for the worm burden ( )*w t  (<5%), 

but attains much higher levels for infected snail density ( )*y t . Peak worm burden ( )*w t  lags 

behind peak snail density ( )N t  (and infected density ( )y t ) by about one quarter of a season.  

v) Figure 2(b) and Figure 3(b) show similar features for type –II function ( )N t , in terms of its 

amplitude parameter a. Increased a (localized wet season) would lower periodic equilibria. As 

above, we observe marked difference between periodic patterns of reduced vs. complete 

MacDonald system (see Supplement Figure D). Their seasonal mean functions ( )0,w a R  also 

depart significantly, particularly at large a, with complete 2D MacDonald predicting elimination 

at sufficiently high a (solid curves), while reduced model maintaining ‘positive’ endemic value 

for all a (dashed curves). 

vi) We further extended this analysis by scanning the ( )0,a R  - parameter space to select regions 

of ‘endemicity’ ( ( )0, 0w a R >  ), and ‘elimination’ ( ( )0, 0w a R = ). Thick red curve of Figure 4 

marks the boundary between two regions, for trigonometric ( ),N t a  (left), and peak-type 

(right). 

Overall, we find seasonal snail variability makes infection less sustainable (c.f. 18), and thus 

easier to control. The reduced host only system overestimates sustainability and control outcomes for 

MacDonald system. 
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MDA control in stationary environments 

Periodic MDA in stationary environment for simple MacDonald system 

An MDA session at time T is represented in our setup as instantaneous reduction of mean 

burden (due to short drug life-time), ( ) ( )fw T w Tε→ , where constant fε  combines drug efficacy ε  

(fraction of surviving worms), and population coverage fraction 0 1f< <   

 ( )1f f fε ε= + −   

The latter applies to population groups (e.g. worm strata), or the entire community (MacDonald MWB). 

One can think of such MDA- event as a sharp spike of worm mortality over short duration. Formally 

represented by Dirac delta function. 

Each MDA-event is followed by rebound - relaxation towards endemic state (equilibrium, periodic, et al). 

Such relaxation patterns can differ in complete (2D) vs. reduced MacDonald (Supplement Figure A). A 

regularly spaced sequence of MDA-events creates yet another type of periodic variability in dynamic 

system. This time periodicity is affected by worm mortality, rather than snail population growth/decay. 

So ( )tγ  becomes a periodic function with sharp (Dirac delta) spikes, or their finite approximation. As 

above, one can ask whether such periodic mortality ( )tγ  can be approximated by its ‘mean’ value,  

 ( )11 ln 1/ fT
ε

γ
γ γ  +=


 
 

  (1.10) 

Here the natural  0R  (Box 1) is replaced by effective reduced value due to (1.10) 

 
( )( )

0

1 ln 1/ /
e

f
f

RR
Tε γ+

=   (1.11) 

In particular, we ask whether reducing 1efR <  (via suitable combination of MDA frequency and 

efficacy-coverage) could lead to elimination. The condition for elimination in the stationary ‘mean’ 

system is  

 
( )

0

ln 1/
1 fR

Tγ
− <


 (1.12) 
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While numerator (1.12) is limited by drug efficacy ( fε ε≤ ) even at 100% coverage, its denominator 

could be made arbitrarily small by sufficiently frequent MDA sessions (small T). 

To test the validity of MDA averaging, we run numeric simulations of two model, periodic MDA, 

and its ‘average model” with enhanced worm mortality (1.10). The results (Supplement Figure E) show 

elimination path for the mean-MDA system, predicted by 1efR < , while the exact MDA-response curve 

is locked in a periodic (limit) cycle pattern, even above critical frequency ( cT T< ). Such limit-cycle 

response patterns arise in many transmission models, including SWB (see  23), they can frustrate target 

reduction goals via repeated MDA regimen (see 24).  

Parameter space analysis for MacDonald system with mating.  

Unlike simple MacDonald system (Box 1) with unstable-stable pair of equilibria (‘zero – 

endemic’), the mated system is bistable, for sufficiently high 0 cR R> . Specifically, it has ‘zero’ and 

‘endemic’ states (both stable), plus intermediate breakpoint (saddle) (Supplement Figure F). For detailed 

explanation, see ( 1, 9). Another important feature of mated MacDonald system, shared by SWB 9, is their 

dependence on two dimensionless parameters, e.g.  ,A B
γ ν

 
 
 

 , rather than single 0R  - their product.  

The bistable nature (breakpoint) of mated MacDonald system has implications for MDA control. 

One such implication concerns regions in the (A, B) –parameter space which separate ‘endemic’ bistable 

state from ‘zero infection’. These regions deviate from isocontours of 0R , so to predict elimination one 

needs two parameters (A,B), rather than single 0R (for details see Supplement Figure F, and 9).  

Even more stark departures arise for dynamic MDA simulations. Here we can use stationary 

transmission environment, but vary transmission coefficients. The results (Supplement Figure G) show 

large diversity of outcomes, depending on transmission coefficients (A, B), proportional to population 

densities ( A N∝ - snail, B H∝ - human). Different ‘snail per human’ ratios (A/B) correspond to 

different transmission environments (population densities), and under identical 0R  they can produce 

different outcomes (Supplement Figure G). In some cases (lower ‘snail/human’ ratio), it goes to 

elimination after finite number of MDA cycles (though total duration could vary). In other cases (high 

‘human/snail’ ratio), the system is locked in a limit cycle, due to post-MDA rebound. 
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We also observe a discrepancy between predictions of the reduced and complete MacDonald systems. 

Typically, reduced model would under-predict the MDA response, and show stronger rebound 

(Supplement Figure G). 

The key conclusions are (i) conventional 0R  has little predictive value for endemic equilibrium analysis 

of mated MacDonald system (zero-to-endemic transition) ; (ii) reduced model (via snail quasi-equilibria) 

can grossly underestimate MDA responses; (iii) different choices of dimensionless (A,B) transmission 

coefficients that make up 0R  correspond to different snail-to- human abundance. High A (or ratio 

/N H ) produce stronger post-MDA rebound, and compound time and effort required for elimination. 

Similar effect of snail environment on MDA outcomes was observed and studied for SWB transmission 

models (23,25,26). As with MacDonald systems, large snail-to-human ratio was shown to reduce the 

efficacy of repeated MDA. So near-identical host communities in terms of baseline infection, could 

produce vastly different MDA outcomes depending on snail environment (hot-spots vs. good 

responders).26 

Optimal MDA timing for seasonal transmission environment. 

In this analysis we used seasonal MacDonald system (1.7) with two types of seasonal ( )N t . In each 

case we computed its endemic periodic state ( ) ( ){ }* *,w t y t  , and run 6-year annual MDA with 

combined efficacy parameter (1- ) .4M f fε ε= + = ,  corresponding to drug efficacy ( .15 .25ε = − ) 

and coverage fraction ( 0.75f ≈ ). For both types of seasonality ( ),N t a   we took 0 6; .95R a= =  (close 

to maximal amplitude). 

The upper panels of Figure 5 compare MDA histories of seasonal ( )N t  vs. its stationary (seasonal-

mean) counterpart. Both systems were treated at the season start ( 1,2,...τ = ). In both cases, MDA 

outcomes (seasonal vs. mean stationary) appear close in terms of dynamic variable ( )w t , and its 

seasonal mean (Figure 5), over 6-year history. 

However, different seasonal timing τ of MDA can produce marked differences between stationary and 

non-stationary models.  Upper panels of Figure 6 demonstrate this effect by comparing MDA histories of 

0τ =  (season start) vs. .5τ = (middle). It raises the question of optimal choice of MDA timing, to 

achieve maximal burden reduction by the end of the program (Y6). 
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To this end, we run multiple simulations with different choices ( 0 1τ< < ), relative to snail peak ( 0τ =

). In each case, we estimated mean effect of a given τ - strategy, by averaging over the proper time 

interval [ ], 1τ τ + .  

Figure 6 shows the results (mean w – values) over 6-year control history for different choices of time 

shift τ . We find overall effect of τ  could be significant between ‘best’ and ‘worst’ timing, up to 40% 

improvement (Y6 over Y1) for trigonometric N and to 50% - for peak N. In both cases, we took high 

amplitude seasonality ( 0.95a = ). We observe the optimal timing τ  is between one quarter and half- 

season for type I, and close to a quarter for type II. Here season start is identified with peak snail 

population. The results are summarized in Table 2, for each τ  we compute ( ) ( )6 0, /w Y w Yτ  - endemic. 

Optimal timing for molluscicide and integrated strategies 

Molluscicide is considered a viable option for control of schistosomiasis 27. In this section we explore 

optimal timing for snail control (molluscicide), and integrated strategy (MDA + molluscicide), using 

logistic snail model (1.9) coupled to MacDonald system (1.7). 

Snail control (molluscicide) is implemented similar to MDA, as instantaneous event, whereby dynamic 

variables ( ) ( ){ },N t y t  are reduced by snail survival fraction ( 0 1Sε< < ) – the efficacy of molluscicide, 

and implementation time τ ,  

 ( ) ( ) ( ) ( );S SN N y yτ ε τ τ ε τ→ →   

We run control simulations for both types of seasonality with large amplitude factor, .9a =  (type I), and 

.6a =  (type II). In all cases, snail mortality and maximal growth were fixed at 4ν = /year, 20β = /year, 

consistent with estimated parameters 19. We also fixed 0 6R = , though its effective values (vs. fixed-N 

case) are somewhat lower, reduced by factor .73N =  (type I), and .67N = (type II). 

As above we sample several choices of seasonal timing ( 0 1τ≤ <  ), and for each τ -strategy compute its 

seasonal mean value. 

 Figure 7 shows typical 6-year histories for integrated control (MDA + molluscicide) for both types of 

seasonality, CC-function ( ),K t a . Two timing choices are compared, suboptimal 0τ =  (blue), and 
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0.5τ =  (yellow), close to optimal. In both cases, we took high seasonal variability ( 0.9a =  for type I, 

and 0.6a = for type II). Application of repeated molluscicide rapidly brings snail system to a periodic 

pattern (after 1-2 rounds) for function ( )N t - total population (unaffected by MDA). But infected snail 

density ( )y t  approaches zero (due to MDA effect on snail infection). 

Next we discuss specifically optimal timing to two types of seasonality. For molluscicide alone the results 

are shown in Table 3 (see supplement). The optimal timing (maximal MWB reduction) falls near start of 

season ( 0τ ≈ ) where CC-function ( ),K t a  reaches its maximum. The overall progress ( 6 1| / |t tw w= =

varies in the range 8-30% reduction of MWB, depending on the type of seasonality, and clearing 

efficiency Sε  (surviving snail fraction). 

The MDA-only strategy looks qualitatively similar to the previous case, prescribed N-function (Figure 6). 

The optimal timing is close to mid-season .5τ ≈  (Table 4 and supplement) is near mid-season. The 

mean burden reduction is much more significant now, varies in the range 80-97%, compared to 

molluscicide. 

The combined (MDA+ molluscicide) strategy was implemented at fixed snail removal rate, 0.3Sε = , and 

3 choice of MDA efficacy-coverage, ( )0.3,0.45,0.5Mε = . In the first experiment we run simultaneous 

MDA and molluscicide with different seasonal timing τ .  We also looked at then effect of seasonal 

amplitude a, strong or weak seasonality. The results are shown in Table 5. Overall, the effect of seasonal 

timing τ is less significant now, compared to molluscicide or MDA alone, though it increases with higher 

MDA efficacy. We believe this is due to different optimal values of τ for MDA (typical 0.5τ ≈ ), and for 

molluscicide (typical 0τ ≈ ). 

The maximal reduction varies (depending on Mε ) in the range 90-97% for type I ( 0.9a = ), and 

somewhat better results for type II with ( 0.6a = ); both cases represent strong seasonal variability. We 

observe similar results, but significant reduction (82-95%) for moderate or weak seasonality ( 0.5a = , 

type I, and 0.3a = type II).  The reason for improved control outcomes at higher a, is the reduced 

sustainability (endemicity) in highly variable environments, as explained above. 
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In the final experiment we took independent optimal τ , suggested by earlier simulations, 0.5τ =  for 

MDA, and 0τ =  for molluscicide. The results are shown in Table 6 (upper half), and compared results to 

the previous case, i.e. simultaneous MDA+ molluscicide schedule Table 5. 

Overall, we achieve further improvement (by factor 2-3) compared to best selection of Table 5 (lower 

half of Table 6). Depending of seasonal amplitude/type, and MDA coverage-efficacy Mε , the reduction 

can go as low as 0.5% of the baseline MWB. 

We also find that adding molluscicide to MDA can bring a significant improvement, when both controls 

are properly timed. 

Conclusions and discussion 

The Basic reproduction number 0R is a dimensionless parameter widely used in infection modeling. It 

applies to model reduction (via non-dimensionalization), analysis of equilibria, endemic states and 

control. In simple cases it can be estimated directly from model inputs (transmission, recovery/ loss 

rates), and provides full information on endemicity or elimination. One can extend it for large systems 

with multiple compartments, like SWB, but its scope is more limited. In the SWB models, analysis of 

endemicity/ elimination requires at least 2 dimensionless parameters (see 9).  

Variable dynamic environment poses significant challenges. Here  alone cannot be used for 

prediction / analysis, without additional information on temporal variability. A conventional approach of 

seasonal averaging and reduction to quasi-stationary model is approximately valid at low seasonal 

variability. But it can depart markedly at high seasonal amplitude, both in terms of sustained infection 

and MDA responses. In general, increased variability makes infection less sustainable, so seasonal-mean 

MWB would drop with increased amplitude (or standard deviation) of varying snail population. It implies 

that such system may be more amenable to control interventions, compared to its stationary (mean) 

counterpart. 

Regular MDA regimen gives another example of periodic dynamic perturbation, where naïve application 

of 0R   could also fail. Comparing two types of variability, seasonal snail vs. repeated MDA, we draw the 

following conclusions: i) in the former case (seasonal snail), 0R   would typically overestimate 

sustainability of infection; ii) in the latter case, if we assume suitable drug efficacy and MDA coverage, 
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control-induced reproductive number 𝑅𝑅𝑐𝑐 would predict elimination, while the system is locked in a limit 

cycle.  

One basic conclusion of our analysis is the need to employ direct dynamic simulations in all cases of 

unsteady (seasonal) transmission.   

Such direct simulation allows one to explore, among other optimal timing for MDA, snail control or 

integrated strategies in variable environment.  

For MDA alone we found such optimal timing is close to half-season, which corresponds to minimal 

carrying capacity for snails. It’s also close to minimal snail density, which could be used as more practical 

measure for optimal MDA timing. We also found its progress (relative burden reduction), over short-

term 6-year control program, could vary markedly, and ‘optimal’ timing can achieve up to 50% 

improvement compared to suboptimal’ timing.  

For molluscicide control, the optimal timing is shifted closer to start of season, i.e. snail peak, but overall 

effect of molluscicide on burden reduction is less significant than MDA, even at high killing efficacy. 

The combined strategy MDA and molluscicide, can give an additional reduction of worm burden, 

compared to MDA alone. When both interventions are implemented simultaneously, intra-seasonal 

variability is less significant, since optimal choices for each one differs. But each intervention 

implemented at its own optimal timing can achieve much better results.  

Overall, snail control can add significantly to the program outcome; in some cases it can lead to near-

elimination after short (6-year) duration 

High seasonal variability gives better control outcomes in all cases, as it makes transmission and 

endemicity less sustainable.  
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Tables 
Table 1: Relative drop of seasonal mean burden as function of amplitude ( ) ( ).95 / 0w w , for 3 BRN 

values ( )0 1.5, 2.5, 4R = . 

 

Table 2: Progress (Y6/Y1) for several different choices of MDA timing τ of Figure 6.  Optimal timing is 
close to 0.5τ =  past snail peak. 

τ 0 0.1 0.25 0.5 0.75 0.9
𝐼𝐼 0.304 0.295 0.261 0.24 0.275 0.3
II 0.103 0.0687 0.0519 0.0535 0.0551 0.0702

 

 

Table 3: Progress of molluscicide control (Y6/Y1) at several values of seasonal timing 0 1τ≤ < , and 

molluscicide efficacy . 

Type I 
Amplitude 

0.9a =  
 

Type II 
Amplitude 

0.6a =  
 

 

 

 

Table 4: Progress (Y6/Y1) for MDA alone for several values of seasonal timing 0 1τ≤ < , and 3 levels of 

MDA efficacy { }0.3,0.45,0.5}Mε = . 

Type I 
Amplitude 

0.9a =  
 

Type II 
Amplitude 

0.6a =  
 

 

  

1.5 2.5 4
Reduced 0.84 0.93 0.96
Complete 2D 0.27 0.81 0.92

0 0.1 0.25 0.5 0.75 0.9
0.5 0.915 0.922 0.959 0.985 0.945 0.923
0.3 0.863 0.877 0.935 0.973 0.905 0.872
0.1 0.771 0.804 0.9 0.936 0.817 0.774

0 0.1 0.25 0.5 0.75 0.9
0.5 0.885 0.901 0.967 0.984 0.927 0.897
0.3 0.818 0.846 0.946 0.971 0.873 0.83
0.1 0.705 0.762 0.916 0.926 0.754 0.705

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0921 0.102 0.09 0.0537 0.0557 0.0751
0.45 0.201 0.208 0.191 0.154 0.161 0.185
0.5 0.246 0.251 0.234 0.199 0.209 0.231

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0571 0.0687 0.0495 0.0297 0.0308 0.0416
0.45 0.152 0.163 0.136 0.109 0.114 0.132
0.5 0.195 0.206 0.177 0.151 0.157 0.176
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Table 5: Combined MDA + molluscicide strategy conducted simultaneously (timing { }0; 0.1; 0.25;...τ = ) 

for  fixed molluscicide efficacy 0.3Sε = , and 3 choices of MDA efficacy ( )0.3,0.45,.05Mε = . 
St

ro
ng

 se
as

on
al

ity
 Type I 

Amplitude 
0.9a =  

 

Type II 
Amplitude 

0.6a =  
 

W
ea

k 
se

as
on

al
ity

 Type I 
Amplitude 

0.5a =  
 

Type II 
Amplitude 

0.3a =  
 

 

 

Table 6: Optimal MDA+molluscicide control for two types of seasonality at different seasonal amplitude 

a and 3 choices of MDA efficacy ( )0.3,0.45,.05Mε = . Optimal MDA was run at the midseason ( 0.5τ = ), 

while optimal molluscicide at the start of season ( 0τ = ). 

 Type I Type II 

  0.9a =   0.5a =   0.6a =   0.3a =  

In
de

pe
nd

en
t 

t
l  0.3 0.010  0.030  0.005  0.028 

0.45 0.048 0.090 0.030 0.088 

0.5 0.072 0.123 0.049 0.118 

Sy
nc

hr
on

ou
s 

t
l  0.3 0.029 0.053 0.017 0.050 

0.45 0.100 0.146 0.071 0.142 

0.5 0.135 0.187 0.100 0.183 

 

 

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0299 0.0324 0.0396 0.0358 0.0295 0.0289
0.45 0.0998 0.103 0.121 0.125 0.108 0.101
0.5 0.135 0.139 0.16 0.169 0.148 0.138

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0188 0.0223 0.028 0.0233 0.0178 0.0173
0.45 0.0714 0.0785 0.0974 0.095 0.0759 0.0707
0.5 0.1 0.109 0.134 0.134 0.109 0.101

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0531 0.0544 0.0572 0.0584 0.0536 0.0526
0.45 0.146 0.147 0.152 0.16 0.153 0.148
0.5 0.187 0.187 0.193 0.205 0.196 0.19

0 0.1 0.25 0.5 0.75 0.9
0.3 0.0511 0.053 0.0563 0.0573 0.0516 0.0504
0.45 0.142 0.144 0.15 0.159 0.15 0.144
0.5 0.183 0.184 0.191 0.204 0.194 0.186
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Figures 
 

 

 

Figure 1: Examples of type II ‘peak seasonality’, modeled by elliptic theta function,

( ) ( )2

1

, 1 2 cos 2n

n

N t a a ntπ
∞

=

= + ∑  of amplitude a. Functions ( ),N t a  are normalized, so that their 

seasonal mean ( )
1

0
1N N t d t= =∫ . 
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                  (a)                                                                                                    (b) 

 

Figure 2: Periodic solutions ( )*w t of complete system: type I trigonometric  (left panel) and type II 

peak  (right panel), for values of  and amplitude range 0 1a≤ ≤ , descending from 

stationary equilibrium 0a =  (blue) to  (purple). 
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(a) (b) 

  

Figure 3: Seasonal mean ( ) ( )* ,w a w t a=  as functions of amplitude a :  type I trigonometric ( ),N t a  

panel (a), and type II peak – panel (b). The full human-snail MacDonald (solid) vs. reduced system 

(dashed) for 3 values 0 1.5;2;3R = . Reduced model departs significantly from the full system at large 
seasonal amplitude ( .6a > ).  It can thus over-predict seasonal mean burden by wide margin.  
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Figure 4: Iso-contours of seasonal mean MWB function ( )0,w a R C= : left panel is trigonometric ( ),N t a   

, right panel – peak-type ( ),N t a . The range of contour values: 0 0.35C< <  (left), and 0 0.6C< <
(right). Thick red curve marks the boundary between endemic region (above), and zero-infection (below). 
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Figure 5: Annual MDA regimen for MacDonald system (1.7) with 2 types of seasonality and its adjusted 
stationary system: type I (left column) and type II (right column). Top plots compare MDA histories of 
seasonal MacDonald (blue) vs. the corresponding stationary (seasonal mean) MacDonald (yellow). 
Bottom panels show their seasonal-mean burden on tears 1-6. 
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(a)Type I                                                (b)Type II 

  

 

Figure 6: Seasonal timing ( 0 1St≤ < ) of annual MDA for both types of seasonal MacDonald systems. 

Upper panel show 2 dynamic histories at 0 0t =  (blue) and shifted 0 .5t =  (yellow). The low panels seasonal 

mean of each timing regimen St   (average ( )w t  over post treatment interval[ ], 1S St t + ). 
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Trigonometric  ( ),K t a , type I Peak ( ),K t a , type II 

  
 

Figure 7: Combined MDA + molluscicide strategies for type I-II seasonality (left-right panels). Two curves correspond to start of 
season (suboptimal timing 0τ = ), and mid-season ( 0.5τ = , close to optimal).  
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Supplement 
SWB system  
The SWB approach was developed and refined in several papers (8-10,22-25). It has many advantages 

compared to MacDonald MWB, simple or ‘mated’ (NB) version. SWB system carries detailed information 

on burden distribution and egg release by host population, but it requires no prior assumptions on 

burden distribution, like NB. Within-host worm biology (mating, mortality, fecundity) is naturally 

accommodated in SWB. While the number of SWB variables can be large (depending on stratification), it 

has the same parameters as MacDonald. In fact, the MWB variable ( )w t  is given by the first statistical 

moment (mean) of SWB distribution, and the w-equation of (1.7)-(1.4) is derived from SWB equations. 

The main difference between MWB and SWB comes in the snail force of infection (FOI) Λ -. For 

MacDonald system, Λ is a function of single (MWB) variable w, for SWB it depends on human infectivity 

E - combined egg release by worm burden strata, worm mating and fecundity. There is no direct link 

between w and E. 

Like simple MacDonald system, coupled SWB-snail system has a 0R  parameter that can be computed 

from its basic inputs. Such a parameter has similar meaning to MacDonald 0R , namely 0 1SWBR > implies 

unstable zero and stable endemic state, while 0 1SWBR <  has stable zero. Beyond that it carries no 

information on endemic state, variable environment, or dynamic interventions (MDA control outcomes). 

In fact, more detailed information on SWB equilibria can be derived from two transmission confidents A, 

B rather than their product (like 0R ). So, communities with identical human infection, but different snail 

environment (hence different pairs A, B) can produce vastly divergent control outcomes (Supplement).   

Parameter 0R of coupled SWB-snail system 

Here we derive 0R  formula for coupled SWB-snail system, assuming logistic snail population growth, 

and SEI snail infection dynamics, and nonlinear snail force of infection (FOI) (29).  

The relevant input parameters are listed in Table 1.  

Table 1: input parameters for coupled SWB-snail model  

1w∆ >  SWB worm step (threshold for mating) 
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0ρ  max egg-release/mated female worm 

0
m

m zρ ρ=  
Female worm fecundity in m-th worm burden stratum with crowding 
factor ( 1z <  ) 

1 2
/ 22

m
m

mm
m

φ −  
= −  

  
 Mean mated couple count for m-stratum (m adult worms) 

,γ µ  Worm mortality and host population turnover 
a “probability of worm establishment/contact / snail” 
ω  Human-snail contact rate 
b probability of snail invasion by merozoite 
N snail density/unit habitat 
H human population density/unit habitat 
c snail patency conversion fraction 
ν  snail mortality 
r  patency conversion rate 
β  Maximal growth rate (for logistic snail population) 

A a Nω=  

0B b Hω ρ=  
Transmission coefficients: snail-to-human and human-to-snail  

( )
( )
1 /
1 /

c
r

ν β
ν
−
+

 snail contribution to BRN of the coupled system 

The complete 0R consists of 3 factors: (i) conventional Ross-MacDonald 0R , expressed through 

transmission coefficients A,B, and worm, snail, host mortality/turnover rates; (ii) SWB factor, Formula  

applies to coupled SWB-snail system with simple SI snail, like. For modified SEI snail used in the current 

version 0
SWBR  is augmented by an additional “snail factor”: 

 
( )

( )
( )0

1 /
1 2

/ 22 1 /
C w w cA BR z

w r
ν β

γ µ ν ν
−∆ ∆  − 

= −  ∆+ +  
  (0.1) 

Formula (0.1) could be further extended to demographically structured SWB communities (e.g. children 

+ SAC + adult et al). 

Formula (0.1) can be derived from the Jacobian analysis of the coupled system at zero equilibrium. 

Specifically, condition 0 1R =  marks a transition from stable to unstable zero (i.e. stable endemic state). 

But there is no direct link between 0R and endemic state, or possible MDA control outcomes.  
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In fact, a wide range of equilibria arises by varying dimensionless transmission rates 

( ){ }/ ; /A Bγ µ ν+ (e.g. different human-to-snail population density /H N ), with different MDA 

responses. 

Modeling setup 

Relaxation patterns to endemic equilibria for reduced and complete MacDonald system 

 

Figure A: Relaxation patterns of stationary MacDonald systems (reduced model, full model). Both systems relax to the same 

equilibrium *
01 1/w R= −  , but reduced model predicts faster relaxation rate.  

 

Typical dynamic seasonal snail patterns for MacDonald system with CC ( ),K t a , with properly adjusted 

snail mortality, so that ( ) ( ),y t N t a<  , for all t. 

 

Figure B: Typical seasonal patterns for logistic snail model with CC-function ( ),K t a , relative growth rate / 5β ν = , and 

snail mortality 4ν =  /year.  Left panel show shows MacDonald solution ( ) ( ){ },N t y t  for trigonometric ( ),K t a   of 
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amplitude 0.9a =  , 0 6R = . Right panel does the same for  peak-type ( ),K t a with 00.6; 6a R= = . Seasonal mean 

values ( )N a  are reduced compared to prescribed N-case: .73N =  (type I, left panel), and .67N = (type II, right panel) 
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Seasonal variability 
 

 

Figure C: Periodic solutions ( )*w t  with trigonometric ( )N t , for   values of ( )0 1.5, 2,3R =  and amplitude range 

0 1a≤ ≤ , descending from stationary equilibrium 0a =  (blue ) to .95a =  (purple). Reduced system  (left), and 
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complete system (right). Variation of ( )*w t  about its mean ( ) ( )* ,w a w t a=  is about 5%-10%, for all ( )0 ,R a . But 

seasonal mean function ( )w a   drops below its stationary equilibrium value *
01 1/w R= −   , for all 0a > . 
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(a)

 

Figure D: Periodic solutions ( )* ,w t a for –peak-type ( )|N t a , with 0 2,3R =   , and a range of amplitude 

values 0 .8a≤ ≤  (top to bottom). As in Figure C, left column shows reduced system, right column - 
complete system. 

MDA control in stationary environments 
Comparison of periodic MDA and its average-model prediction for simple MacDonald  

The results (Figure E) show elimination path (yellow curve) for the mean-MDA system, predicted by 

1efR < , while the exact MDA-response curve (blue) was locked in a periodic (limit) cycle pattern, even 

above critical frequency ( cT T< ).  
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Figure E: Averaging effect on MDA: two panels compare repeated periodic MDA history (blue), and the 
corresponding ‘mean drug clearing’ model (yellow). The former approaches limit cycle regime, the latter 
goes to elimination (effective BRN 1efR < ). Here we have chosen treatment period 1.7 1.89cT T= < = . 

Parameter space analysis for mated NB MacDonald 
MacDonald system with mating and NB worm burden requires 2 dimensionless parameters, instead of 
single 0R  

 

 

 

Figure F: (a) (A, B) parameter space of MacDonald system with mating for rescaled parameters
( )/A A γ µ→ + , /B B ν→ .  Shaded region is ‘stable zero’ (elimination case); open region has triple 

(bistable) equilibria. Orange lines are isocontours of { }0 2.4, 2.6, 2.8R A B= = . (b) Functions 

( )| ,F w A B  of reduced MacDonald system, for fixed 0 2.6R = , and 3 values {1.5,2,2.5}A = . Case 

0 2.6; 1.5R A= = is close to bifurcation (zero->triple equilibria). 
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Figure F(a) shows that ‘endemic persistence - elimination’ regions in the (A,B) –parameter 

space– deviate markedly from isocontours of 0R . This deviation renders it useless for analysis/prediction 

of long-term outcomes.  

Periodic MDA for MacDonald systems 

Here we shall use stationary transmission environment, but vary transmission coefficients.  

Specifically, we fixed 0 3R = , and took 4 A-values in the range 2-3.5. Figure G (a) shows the resulting 

reduced MacDonald functions (Box 1), and equilibria (zero – breakpoint - endemic). As transmission 

coefficients are proportional to population densities ( A N∝ - snail, B H∝ - human), different (snail 

per human) A/B ratio correspond to different transmission environments, and under identical 0R  they 

can produce different outcomes, Figure G (b). In all 4 scenarios, disease is eliminated in finite time, once 

prevalence falls below the breakpoint. But higher A (large snail-to-human ratio) have stronger rebound 

and require more MDA rounds. Figure G (b) show MDA histories for the reduced MacDonald system.  

Next we compared MDA predictions of the reduced model with the full host-vector MacDonald 

system, panels (c-f) of Figure G. The two models have comparable predictions at low transmission 2A =

, but they diverge markedly as A increases. In most cases the reduced model exhibits stronger post-MDA 

rebound, and therefore takes longer to eliminate, or to reach a breakpoint. The extreme case is 3.5A =  

(panel (f)), where complete model goes to elimination after 25 years of MDA, while the reduced model 

is locked in a limit cycle 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
Figure G: MDA control of MacDonald system with mating,  fixed 0 3R = , and 4 vales of transmission 

coefficient 2 3.5A = − . Panel (a) shows the corresponding reduced MacDonald functions 
Error! Reference source not found. and equilibria.  Panel (b) MDA histories of 4 communities. Panels (c-
f) compare MDA histories of the reduced model (blue) and the complete MacDonald (yellow), for 4 
choices of A. 
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Dynamic human-snail contacts in MacDonald system.  
Seasonality can affect both snail population biology, and human-snail contact patterns.  

The corresponding MacDonald system (assuming stationary snail) turns into 

 
( )

( ) ( )0 1

dw t y w
dt
dy R t w y y
dt

ω

ν ω
γ

= −

= − −  

  (0.2) 

Its reduced form 

 
( )
( )

2
0

0

1
1

R tdw w
dt R t w

ω
ω

 
= − 
 + 

  

Dynamic snail population   

Seasonal snail population in MacDonald system has significant effect on its dynamic patterns. Figures 

below illustrate for a range of 0R  and variability parameter 
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Figure H: Periodic snail solutions y(t) for 3 0R  values of Table 1, and amplitude range 0 .9α≤ ≤  (blue to red). 
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Figure I: Sustained seasonal patterns of the reduced MacDonald system and complete host-vector systems for 0 2R = . Total 

snail ( )N t  (blue), infected ( )y t  (yellow). Rapid decline of N(t), brings y(t) close to N. 
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