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Abstract 

Background  

The search for neuroimaging biomarkers of alcohol use disorder (AUD) has primarily been 

restricted to significance testing in small datasets of low diversity. To identify neurobiological 

markers beyond individual differences, it may be useful to develop classification models for 

AUD. The ever-increasing quantity of neuroimaging data demands methods that are robust to 

the complexities of multi-site designs and are generalizable to data from new scanners. 

Methods 

This study represents a mega-analysis of previously published datasets from 2,034 AUD and 

comparison participants spanning 27 sites, coordinated by the ENIGMA Addiction Working 

Group. Data were grouped into a training set including 1,652 participants (692 AUD, 24 sites), 

and test set with 382 participants (146 AUD, 3 sites). A battery of machine learning classifiers 

was evaluated using repeated random cross-validation (CV) and leave-site-out CV. Area under 

the receiver operating characteristic curve (AUC) was our base metric of performance.  

Results  

Multi-objective evolutionary search was conducted to identify sparse, generalizable, and high 

performing subsets of brain measurements. Cortical thickness in the left superior frontal gyrus 

and right lateral orbitofrontal cortex, cortical surface area in the right transverse temporal gyrus, 

and left putamen volume, appeared most frequently across searches. Restricting a regularized 

logistic regression model to these four features yielded a test-set AUC of .768. 
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Conclusions 

Developing classification models on multi-site data with varied underlying class distributions 

poses unique challenges. Supplementing datasets with controls from new sites and performing 

feature selection increases generalizability. Four features identified by evolutionary search may 

serve as specific biomarkers for individuals with current AUD. 
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Introduction 

While the evidence associating alcohol use disorder (AUD) with structural brain differences is 

strong, there is considerable merit in establishing robust and generalizable neuroimaging-based 

AUD biomarkers. These biomarkers would have objective utility for diagnosis and may 

ultimately help in identifying youth at risk for AUD and for tracking recovery and treatment 

efficacy in abstinence, including relapse potential. While these types of clinical applications have 

not yet been realized with neuroimaging, current diagnostic practices are far from perfect: The 

inter-observer reliability of past year AUD, as diagnosed by the DSM-IV, was calculated with 

Cohen’s kappa as .74±.09 (1). More immediately, neurobiological markers of AUD can give 

clues to potential etiological mechanisms. 

Here, we apply a supervised learning approach, in which a function is trained to map 

brain structural measures to AUD diagnosis, and then evaluated on unseen data. Prior 

approaches to developing machine learning classifiers for AUD include a similar binary machine 

learning classification approach discriminating between AUD and substance naive controls (2). 

Their analysis made use of 296 participants, case and control, and reported a leave-one-out 

cross validated (CV) balanced accuracy of 74%. A further example of recent work includes that 

by Adeli et al. on distinguishing AUD from controls (among other phenotypes), on a larger 

sample of 421, yielding a balanced accuracy across 10-fold CV of 70.1% (3). In both examples, 

volumetric brain measures were extracted and used to train and evaluate proposed machine 

learning (ML) algorithms. The present study differs from prior work in both its sample size 

(n=2,034) and complex case to control distribution across many sites. Mackey et al. developed 

a support vector machine (SVM) classifier that obtained an average area under the receiver 

characteristic operator curve (AUC) of .76 on a subset of the training data presented within this 

work (4). Our present study expands on this previous work by exploring an extensive range of 

classifiers using new, additional samples. Further, we explore the importance of the specific 
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cross validation schemes that can be employed, address matters of residualizing data for known 

covariates, and also focus on an approach to determine robust feature importance. 

An important consideration for any large multi-site neuroimaging study, particularly 

relevant in developing classifiers, is properly handling data from multiple sites (5). Any useful 

classifier should generalize to new data, possibly from a different scanner or country. In this 

sense, any information gleaned from a classifier that generalizes poorly to unseen data is 

unlikely to represent the actual effect of interest. More generally and within the broader field of 

ML, the task of creating “fair” or otherwise unbiased classifiers has received a great deal of 

attention (6). In our study, the imbalance between numbers of cases and controls across 

different sites is a significant challenge, as unrelated, coincidental scanner or site effects may 

easily be exploited by multivariate classifiers - leading to spurious or misleading results.  

A related consideration is how one should interpret the neurobiological significance of 

features that contribute most to a successful classifier. We propose a multi-objective genetic 

algorithm (GA) based feature selection search to isolate meaningful brain measures and tackle 

the complexities of handling differing class distributions across sites. GA are considered a 

subset of evolutionary search algorithms within the broader field of artificial intelligence. A 

sizeable body of research has been conducted into the usage of multi-objective genetic 

algorithms, introducing a number of effective and general techniques to navigate high 

dimensional search spaces, e.g., various optimization and mutation strategies. (7,8,9). Our 

proposed GA is designed to select a set of features both useful for predicting AUD and 

generalizable to new sites. By selecting not just predictable, but explicitly generalizable and 

predictable features, we hope to identify features with true neurobiological relevance. We draw 

motivation from a large body of existing work that has successfully applied GAs to feature 

selection in varied machine learning contexts (10, 11). 

This study represents a continuation of work by Mackey et al. and the Enhancing Neuro-

Imaging Genetics through Meta-Analysis (ENIGMA) Addiction Working Group 
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(http://enigmaaddiction.com), in which neuroimaging data were collected and pooled across 

multiple laboratories to investigate dependence on multiple substances (4). Here, we focus on a 

more exhaustive exploration of machine learning to distinguish AUD from non-dependent 

individuals, spanning 27 different sites. We evaluate the role of varied cross-validation (CV) 

strategies in addition to the optional inclusion of control-only sites. We also introduce methods 

suitable for complex multi-site data with varied underlying class distributions. Finally, we present 

classification results for a left-out testing set sourced from three unseen sites, as a measure of 

classifier generalizability.  
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Methods and Materials 

Dataset 

Informed consent was obtained from all participants and data collection was performed in 

compliance with the Declaration of Helsinki. Individuals were excluded if they had a lifetime 

history of any neurological disease, a current DSM-IV axis I diagnosis other than depressive 

and anxiety disorders, or any contraindication for MRI. A variety of diagnostic instruments were 

used to assess alcohol dependence (4). 

Participants’ structural T1 weighted brain MRI scans were first analyzed using 

FreeSurfer 5.3 which automatically segments 14 bilateral subcortical regions of interest (ROIs) 

and parcellates the cortex into 78 bilateral ROIs, for a total of 150 different measurements 

representing cortical mean thickness and surface area along with subcortical volume according 

to the Desikan parcellation (12, 13). Quality control of the FreeSurfer output including visual 

inspection of the ROI parcellations was performed at each site according to the ENIGMA 

protocols for multi-site studies, available at: http://enigma.ini.usc.edu/protocols/imaging-

protocols/. In addition, a random sample from each site was examined at a central location to 

ensure consistent quality control across sites. All individuals with missing volumetric or surface 

ROIs were excluded from analyses.  

In total, 2,034 participants from 27 different sites met all inclusion criteria. Further, data 

were separated into a training set composed of 1,652 participants (692 with AUD), from 24 sites 

with the remaining 382 participants (146 with AUD) from 3 sites isolated as a test set. The 

testing set represents a collection of new data submitted to the consortium that was not included 

in the most recent working group publication (4), constituting as realistic a test set as possible. 

Table 1 presents basic demographic information on training and test splits. Within the training 

set, two sites contained only cases, 14 sites included only controls, and five sites contained an 
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unbalanced mix in the number of cases and controls. Figure 1 shows the distribution by site, 

broken down by AUD versus control. 

 

Exploratory Data Analysis 

In this section, we describe an exploratory analysis investigating different choices of training 

data, classification algorithm, and cross-validation strategy. A final framework for training is 

determined from this exploration, and its implementation and evaluation are covered in the 

following sections.  

We explored classifier performance first on a base training dataset (Figure 1, sites 1-8), 

composed of only sites containing at least one case participant. The same experimental 

evaluation was then repeated with an augmented version of the dataset, adding additional 

participants from 16 control-only sites (Figure 1, sites 9-24). The top row of Figure 2 outlines 

these two options within the context of our experimental design. 

Three machine learning algorithms suitable for binary classification (Figure 2, middle 

row) were implemented within the python library Scikit-learn (14). Most simply, we considered a 

regularized ridge logistic regression classifier (l2 loss) with regularization parameter values 

chosen through an internal CV. Another variant of regularized logistic regression optimized with 

stochastic gradient descent (SGD) was implemented with an elastic net loss (l1 and l2). A 

nested random parameter search was conducted, across 100 values, determining the choice of 

loss function and regularization values (15). Finally, we considered a Support Vector Machine 

(SVM) with radial basis function (rbf) kernel, which allowed the classifier to learn nonlinear 

interactions between features (16). Like the hyperparameter optimization strategy employed for 

the SGD logistic regression, a random search over 100 SVM parameter combinations, with 

differing values for the regularization and kernel coefficients, was employed with nested CV for 

parameter selection. Exact training details are provided in the supplemental materials.  
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Proper CV is of the utmost importance in machine learning applications. It is well known 

that - if improperly cross-validated - classifiers can overfit onto validation sets, and even with 

more sophisticated CV techniques can overestimate expected generalization (17). Within this 

work, we made use of standard random repeated 3-fold CV, where an indication of classifier 

performance is given by its averaged performance when trained on one portion of the data and 

tested on a left-out portion, across different random partitions (18). We also made use of a 

leave-site-out CV scheme across the five sites that include both cases and controls. These 

options are shown in the bottom row in Figure 2. We computed metrics according to both 

schemes for all considered classifiers on the training dataset. Area under the Receiver 

Operating Characteristic curve (AUC) was used as a base performance metric insensitive to 

class imbalance (19). 

 

Final Analytic Pipeline 

We implemented a GA designed to select sets of features most useful in training a site 

generalizable classifier. Towards this goal, the GA repeatedly trained and evaluated a 

regularized logistic regression classifier, as introduced earlier, on initially random subsets of 

possible features. These feature subsets were then optimized for high AUC scores as 

determined by the leave-out site CV using the five sites that include both cases and controls. 

Multi-objective optimization was conducted with the aid of a number of successful GA 

strategies, and these include: random tournament selection (20), feature set mutations, 

repeated runs with isolated populations, a sparsity objective similar in function to “Age-fitness 

Pareto optimization” (21), among others. An introduction to GA and a complete description of 

our design decisions regarding the algorithm are provided in the supplemental material. 

The algorithm was run across six different variants of hyperparameters, as shown in 

Figure 3. We explored choices related to size (number of subsets of features considered in 

each round) and scope (how many times the search is iterated) in addition to objective 
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functions. The results from each search variant represent thousands of subsets of features, 

each with an associated performance score. We restricted the output from each search to only 

the top 200 - and therefore to high performing - feature subsets. The final feature subsets were 

ultimately pooled together and considered in a feature importance meta-analysis. In determining 

feature importance, the following considerations were used: each subset’s individual 

performance (higher performance weighted higher) and the number of features (subsets with 

more features were penalized). A final measure of feature importance was calculated as the 

average feature importance from each of the six search variants computed separately. Within 

each search variant, an individual feature’s importance was defined as the sum of a feature 

set’s fitness scores, further divided by the number of total features in that set, across all the top 

200 sets in which that feature appeared. Importances per set were then normalized, such that 

intuitively a feature present in all of the top 200 feature sets would have a value of 1, and if 

present in none, 0. Each feature’s final score therefore represents that feature’s averaged score 

(between 0 and 1) as derived from each separate search. We were interested at this stage in 

identifying a relative ranking of brain features, as, intuitively, some features should be more 

helpful in classifying AUD, and features that are useful towards classification are candidates to 

be related to the underlying AUD neurobiology.  

As referenced in Figure 3, we selected a “best” subset of features with which to train 

and evaluate a final regularized logistic regression classifier on the withheld testing set. We 

determined the “best” subset of features to be those which obtained a final feature importance 

score above a user defined threshold. Ideally, this threshold would be determined analytically on 

an additional independent validation sample by relating classifier performance, with access to 

only those features over threshold, to that threshold. With limited access to data from case-

control balanced sites, we employed only internal CV towards the choice of threshold. Post-hoc 

analyses were conducted with differing thresholds, providing an estimate as to how important 

this step may prove in future analyses.  
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Results 

Exploratory Data Analysis 

The complete exploratory training set results are shown in Table 2. Regularized logistic 

regression on the base dataset yielded an AUC of .907 ± .022 (standard deviation across folds) 

under 3-Fold CV versus .560 ± .189 under leave-out-site, and with added controls an AUC of 

.917 ± .010 with random CV and .636 ± .169 with leave-out-site. The choice of classifier 

produced only minor differences in performance (±.02), regardless of the CV method. Including 

additional control participants yielded a small boost to random 3-fold CV scores (.003 - .023), 

and a more noticeable gain to leave-out site CV scores (.053 - .091). The CV strategy (Random 

vs. Leave-out-site) produced the largest discrepancy in scores (.267 - .347) with the former 

yielding inflated results. 

 

Feature Importance 

The top 15 features as determined by average weighted feature importance, from all six 

searches (i.e., base training dataset only and base plus control-only datasets, by three machine-

learning algorithms; see Figure 2), are presented in Figure 4. Four features emerged with an 

importance score greater than .8 (where an importance score of 1 represents a feature present 

in every top feature set and 0 in none), followed by a slightly sharper decline and, not shown, a 

continuing decline. Also shown are the cortical surface area and thickness features as projected 

onto the fsaverage cortical surface space. The left putamen (.816) and left pallidum (.210) 

volumes were the only subcortical features with feature importance scores over .05 (not shown).  

 

Testing Set Evaluation 

Further internal nested validation on the training selected a threshold of .8 weighted feature 

importance and above, which corresponds to the top four features only (Figure 4). The final 
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model, trained on only this “best” subset of four features, achieved an AUC of .768 on the 

testing set. The ROC curve for this classifier on the testing set is shown in Figure 5.  We further 

conducted a number of post-hoc analyses on the testing dataset. To confirm the predictive utility 

of GA feature selection, a regularized logistic regression model and SVM model with access to 

all features were both trained on the full training dataset and evaluated on the testing set. The 

logistic regression scored .697 AUC and the SVM .673 AUC. Similarly, regularized logistic 

regression and SVM models were trained on all features, but without the inclusion of additional 

control-only sites, and scored respectively .647 and .609 AUC. The final model was better than 

both the logistic regression model with all features and subjects (p=.0098) and without control 

subjects (p=3.5x10-5). We further investigated the choice of user defined threshold in selecting 

number of top features by testing the inclusion of top 2 to 15 features. Some notable differences 

can be seen in performance, for example: .782 AUC with top three, .737 AUC with top five and 

.741 AUC with top ten. 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion  

We used multi-site neuroimaging data to identify structural brain features that classify new 

participants, from new sites, as having an AUD with high accuracy.  In doing so, we highlighted 

the importance of carefully chosen metrics in accurately estimating ML classifier performance in 

the context of multi-site imbalanced neuroimaging datasets. We further explored several 

techniques, ranging from analytical methods to more general approaches, and their merit 

towards improving classifier performance and generalizability. Our proposed GA-derived feature 

importance measure, in addition to aiding classification, might help in identifying 

neurobiologically meaningful effects. 

A clear discrepancy arose between random repeated CV (i.e., participants randomly 

selected from across sites) and leave-site-out CV results (Table 2). We suspect that the random 

repeated CV overestimates performance due to covert site effects. The classifiers appeared to 

memorize some set of attributes, unrelated to AUD, within the case- and control-only sites, and 

therefore were able to accurately predict AUD only if participants from a given site were present 

in both training and validation folds. Performance on leave-site-out CV, in contrast to random 

repeated CV, better estimates classifier generalizability to new unseen sites. This is validated by 

post hoc analyses in which a logistic regression trained on all features obtained a test set AUC 

(.697) far closer to its training set leave-out site CV score (.636 ± .119) then its random repeated 

CV score (.917). While this observation must be interpreted within the scope of our presented 

imbalanced dataset, these results stress the importance of choosing an appropriate 

performance metric, and further highlight the magnitude of error that can be introduced when 

this metric is chosen incorrectly.   

In addition to performing model and parameter selection based on a more accurate 

internal metric, the addition of control-only participants proved beneficial to classifier 

performance (.053 - .091 gain in leave-out site AUC). This effect can be noted within our 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


exploratory data analysis results (Table 2) comparing leave-site-out CV results between the 

base-only dataset and the base plus control-only site dataset. When extra control participants 

are added performance increased up to .09 AUC. Post-hoc analysis revealed a similar 

performance gain on the testing set from adding control participants; logistic regression plus .05 

AUC and SVM plus .06 AUC. This boost likely reflects a combination of two circumstances. In 

the first, the underlying ML algorithm is aided by both more data points to learn from and a more 

balanced case to control distribution, which have both been shown to aid binary classification 

performance (22). The second reflects a resistance to the learning of site-related effects which, 

as noted above, can lead to the algorithm detrimentally learning covert site effects. This is 

potentially due to the inclusion of more sites and scanners, which makes the unintentional 

learning of specific site effects (as a proxy for AUD) more difficult. As neuroimaging data banks 

continue to grow, the potential arises for supplementing analyses with seemingly unrelated 

external datasets in clever and powerful ways.  

Our proposed GA-based feature selection, with inclusion of leave-site-out criteria, 

proved to be useful in improving classifier generalizability. This is highlighted by a .071 boost to 

AUC score in a model trained on only the top identified four features in contrast to a model 

trained with all the available features. We believe the observed performance boost to be a result 

of only allowing the classifier to learn from features previously determined to be useful towards 

site generalizable classification. In this way, the final classifier can avoid adverse site effects 

through a lack of exposure to brain measurements highly linked to specific sites. Further post-

hoc results indicate even higher performance with just the top three features (+.014 vs. selected 

top four feature model), and a slight decrease with the addition of more features. While these 

results are post-hoc, they do suggest an inherent benefit to sparsity of selected features. This 

falls in line with the general understanding of the generalizability versus overfitting tradeoff, 

where limiting the number of input features can function as regularization, in this case limiting a 

model's ability to overfit by not providing it access to spurious features. In future work, an 
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additional validation set might prove useful in selecting between different final models and 

thresholds, in addition to careful comparisons between different feature selection methods.  

A persistent issue in typical interpretation from ML models is the issue of shared 

variance between different features. The features a single model selects may very well have 

suitable surrogate features within the remaining dataset. In contrast, our feature importance 

metric is derived from thousands of models, providing the chance for equivalent features, with 

shared variance, to achieve similar importance scores. A natural distinction nevertheless exists 

between predictive features and those that emerge from univariate testing as significant. 

Specifically, the absence of a feature within our final model, (i.e., unimportance of a feature by 

our metric), does not necessarily imply a lack of association between that feature and AUD. An 

absence could alternatively indicate that a different feature better captures some overlapping 

predictive utility, which is different conceptually from sharing variance in that in this case one 

feature is consistently more useful for prediction. The redundant feature therefore might not 

appear as important despite an association with AUD when considered in isolation. On the other 

hand, a feature with a relatively weak association could emerge with consistently high feature 

importance if it proves uniquely beneficial to prediction. Above and beyond univariate 

significance, if a given feature does have predictive utility, it strongly suggests that a real 

association exists. Our selected top features were both identified as consistently useful features 

within the training set and experimentally confirmed as site generalizable on the testing set. 

The top four features as identified by our introduced metric of feature importance were 

the average cortical thickness of the left superior frontal gyrus and right lateral orbitofrontal 

cortex (OFC), the left putamen volume and the average surface area of the right transverse 

temporal gyrus. Specifically, cortical thinning, volume and surface area reduction across these 

regions prompt the trained model towards an AUD prediction. Thinning, within the left superior 

frontal gyrus and right lateral OFC, agrees broadly with the literature which has consistently 

shown frontal lobe regions to be most vulnerable to alcohol consequences (23). Prefrontal 
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cortical thinning and reduced volume in the left putamen seem to further indicate specific 

involvement of the mesocorticolimbic system. This dopaminergic brain pathway has been 

consistently linked with alcohol dependence and addiction in general (24, 25). Likewise, a 

recent voxel-based meta-analysis showed a significant association between lifetime alcohol 

consumption and decreased volume in left putamen and left middle frontal gyrus (26).  

Comparing the four selected regions in the present study with those determined to be 

significant by univariate testing on an overlapping dataset from Mackey et al. 2019, we find 

three regions in common (the exception being right transverse temporal gyrus surface, as 

surface area was not considered in that analysis). Further, left superior frontal and putamen 

appeared as two of the top 20 features in both folds of an SVM classifier trained and tested on 

split halves in the Mackey paper (right lateral orbital frontal only appeared in one-fold). Of the 

existing alcohol classifiers mentioned in the introduction by Guggenmos et al. (2018) and Adeli 

et al. (2019), only Adeli reported overlapping AUD associated regions with our top four: lateral 

orbitofrontal thickness and superior frontal volume. 

In interpreting the performance of a classifier linking brain measurements to an external 

phenotype of interest, we also need to consider how reliably the phenotype can be measured. 

The exact relationship between interobserver variability of a phenotype or specific diagnosis and 

ease of predictability or upper bound of predictability is unknown, but it seems plausible that 

they would be related. This proves pertinent in any case where the presented ground truth 

labels, those used to generate performance metrics, are noisy. We believe further study 

quantifying these relationships will be an important next step towards interpreting the results of 

neuroimaging-based classification, as even if a classifier capable of perfectly predicting between 

case and control existed, it would be bound by our current diagnostic standard. A potential route 

towards establishing a robust understanding of brain changes associated with AUD might 

involve some combination of standard diagnostic practices with objective measures or indices 

gleaned from brain-based classifiers. Relating classifiers directly with specific treatment 
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outcomes (potential index for recovery), or within a longitudinal screening context (potential 

index for risk) represent further exciting and useful applications. 

We have drawn attention to the impact on model generalizability of case distribution by 

site within large multi-site neuroimaging studies. In particular, we have shown that CV methods 

that do not properly account for site can drastically overestimate results, and presented a leave-

site-out CV scheme as a better framework to estimate model generalization. We further 

presented an evolutionary-based feature selection method aimed at extracting usable 

information from case- and control-only sites, and showed how this method can produce more 

interpretable, generalizable and high-performing AUD classifiers. Finally, a measure of feature 

importance was used to determine relevant predictive features, and we discussed their potential 

contribution to our understanding of AUD neurobiology.  

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgements 

This work was made possible by NIDA grant R01DA047119 awarded to Dr. Garavan. Sage 
Hahn was supported by NIDA grant T32DA043593. Data collection was made possible through 
the following grants: Dr. Korucuoglu received support for the Neuro-ADAPT study from VICI 
grant 453.08.01 from the Netherlands Organization for Scientific Research (NWO), awarded to 
Reinout W. Wiers. Drs. Schmaal and Veltman received funding from Netherlands Organization 
for Health Research and Development (ZonMW) grant 31160003 from NWO. Drs. Sjoerds and 
Veltman received funding from ZonMW grant 31160004 from NWO. Dr. van Holst received 
funding from ZonMW grant 91676084 from NWO. Dr. Luijten and Veltman received funding from 
VIDI grant 016.08.322 from NWO, awarded to Dr. Cousijn received funding for the Cannabis 
Prospective study from ZonMW grant 31180002 from NWO. Drs. Garavan and Foxe received 
funds from NIDA grant R01-DA014100. Dr. London was supported by NIDA grant R01 
DA020726, the Thomas P. and Katherine K. Pike Chair in Addiction Studies, the Endowment 
From the Marjorie Greene Family Trust, and UCLA contract 20063287 with Philip Morris USA. 
Data collection by Dr. Momenan was supported by the Intramural Clinical and Biological 
Research Program funding ZIA AA000125-04 DICB (Clinical NeuroImaging Research Core to 
RM) of the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Dr. Paulus received 
funding from NIMH grant R01 DA018307. Dr. Stein was supported by the Intramural Research 
Program of NIDA and NIH. Dr. Sinha received funds from NIDA (PL30–1DA024859–01), the 
NIH National Center for Research Resources (UL1-RR24925–01), and NIAAA (R01-
AA013892). Prof. Yücel was supported by National Health and Medical Research Council 
Fellowship 1117188 and the David Winston Turner Endowment Fund. Dr. Thompson was 
supported in part by NIH grant U54 EB020403.  
 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Disclosures 

Dr. Sinha has served on the scientific advisory board of Embera Neuro-therapeutics. DJS has 
received research grants and/or consultancy honoraria from Lundbeck and Sun. Prof. Yücel has 
received funding from several law firms in relation to expert witness reports. PT received grant 
support from Biogen, Inc., for research unrelated to this study. All other authors have no 
financial disclosures.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


References  
 
1. Grant BF, Dawson DA, Stinson FS, Chou PS, Kay W, Pickering R (2003): The Alcohol Use 
Disorder and Associated Disabilities Interview Schedule-IV (AUDADIS-IV): reliability of alcohol 
consumption, tobacco use, family history of depression and psychiatric diagnostic modules in a 
general population sample. Drug and Alcohol Dependence 71: 7–16. 
 
2. Guggenmos M, Scheel M, Sekutowicz M, Garbusow M, Sebold M, Sommer C, et al. (2018): 
Decoding diagnosis and lifetime consumption in alcohol dependence from grey-matter pattern 
information. Acta Psychiatrica Scandinavica 137: 252–262. 
 
3. Adeli E, Zahr NM, Pfefferbaum A, Sullivan EV, Pohl KM (2019): Novel Machine Learning 
Identifies Brain Patterns Distinguishing Diagnostic Membership of Human Immunodeficiency 
Virus, Alcoholism, and their Comorbidity of Individuals. Biological Psychiatry 4: 589–599. 
 
4. Mackey S, Allgaier N, Chaarani B, Spechler P, Orr C, Bunn J, et al. (2018): Mega-Analysis of 
Gray Matter Volume in Substance Dependence. American Journal of Psychiatry 176: 119-128. 
 
5. Pearlson G (2009): Multisite Collaborations and Large Databases in Psychiatric 
Neuroimaging: Advantages, Problems, and Challenges. Schizophrenia Bulletin 35: 1–2. 
 
6. Noriega-Campero A, Bakker MA, Garcia-Bulle B, Pentland A (2019): Active Fairness in 
Algorithmic Decision Making. Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, 
and Society. 
 
7. Evolutionary Algorithms for Solving Multi-Objective Problems (2007): Genetic and 
Evolutionary Computation Series. Boston, MA: Springer US. 
 
8. Deb K, Pratap A, Agarwal S, Meyarivan T (2002): A fast and elitist multiobjective genetic 
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6: 182–197. 
 
9. Gen M, Lin L (2008): Genetic Algorithms. Wiley Encyclopedia of Computer Science and 
Engineering. 
 
10. Yang J, Honavar V (1998): Feature Subset Selection Using a Genetic Algorithm. Feature 
Extraction, Construction and Selection 117–136. 
 
11. Dong H, Li T, Ding R, Sun J (2018): A novel hybrid genetic algorithm with granular 
information for feature selection and optimization. Applied Soft Computing 65: 33–46. 
 
12. Dale AM, Fischl B, Sereno MI (1999): Cortical Surface-Based Analysis. NeuroImage 9: 179–
194. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


13. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, et al. (2006): An 
automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral 
based regions of interest. NeuroImage 31: 968–980. 
 
14. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. (2011): Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research 12: 2825–2830. 
 
15. Zou H, Hastie T (2005): Regularization and variable selection via the elastic net. Journal of 
the Royal Statistical Society: Series B (Statistical Methodology) 67: 301–320. 
 
16. Suykens JAK, Vandewalle J (1999): Least Squares Support Vector Machine Classifiers. 
Neural Processing Letters 9: 293–300. 
 
17. Santos MS, Soares JP, Abreu PH, Araujo H, Santos J (2018): Cross-Validation for 
Imbalanced Datasets: Avoiding Overoptimistic and Overfitting Approaches. IEEE Computational 
Intelligence Magazine 13: 59–76. 
 
18. Burman P (1989): A Comparative Study of Ordinary Cross-Validation, v-Fold Cross-
Validation and the Repeated Learning-Testing Methods. Biometrika 76: 503. 
 
19. DeLong ER, DeLong DM, Clarke-Pearson DL (1988): Comparing the Areas under Two or 
More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. 
Biometrics 44: 837. 
 
20. Eremeev AV (2018): On Proportions of Fit Individuals in Population of Mutation-Based 
Evolutionary Algorithm with Tournament Selection. Evolutionary Computation 26: 269–297. 
 
21. Schmidt M, Lipson H (2010): Age-Fitness Pareto Optimization. Genetic Programming 
Theory and Practice VIII 129–146. 
 
22. Jordan MI, Mitchell TM (2015): Machine learning: Trends, perspectives, and prospects. 
Science 349: 255–260. 
 
23. Oscar-Berman M, Marinković K (2007): Alcohol: Effects on Neurobehavioral Functions and 
the Brain. Neuropsychology Review 17: 239–257. 
 
24. Filbey FM, Claus E, Audette AR, Niculescu M, Banich MT, Tanabe J, et al. (2007): Exposure 
to the Taste of Alcohol Elicits Activation of the Mesocorticolimbic Neurocircuitry. 
Neuropsychopharmacology 33: 1391–1401. 
 
25. Ewing SWF, Sakhardande A, Blakemore S-J (2014): The effect of alcohol consumption on 
the adolescent brain: A systematic review of MRI and fMRI studies of alcohol-using youth. 
NeuroImage Clinical 5: 420–37. 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


26. Yang X, Tian F, Zhang H, Zeng J, Chen T, Wang S, et al. (2016): Cortical and subcortical 
gray matter shrinkage in alcohol-use disorders: a voxel-based meta-analysis. Neuroscience & 
Biobehavioral Reviews 66: 92–103. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 23, 2020. ; https://doi.org/10.1101/2020.01.17.20016873doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.17.20016873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tables  
 
 

Split - AUD Participants Male (%) Mean age (std) 

Train - AUD 692 423 (.61) 33.36 ± 9.96 

Train - Control 960 554 (.57) 28.54 ± 9.56 

Test - AUD 146 79 (.54) 44.72 ± 10.55 

Test - Control 236 99 (.42) 42.33 ± 12.31 

 
Table 1: Sex and Age, across the full collected dataset from 27 sites as split further into training 
and withheld testing set, and by alcohol use disorder (AUD) vs. control. 
 
 

Dataset Classifier Random 3-Fold CV 
AUC 

Leave-out 5 Site CV 
AUC 

Base Logistic Regression .907 ± .022 .560 ± .189 

Base SGD .896 ± .012 .561 ± .183 

Base SVM .912 ± .011 .578 ± .111 

Base + Control only Logistic Regression .917 ± .012 .636 ± .169 

Base + Control only SGD .919 ± .009 .652 ± .132 

Base + Control only SVM .915 ± .014 .631 ± .139 

 
Table 2:  The results for each of the three considered classifiers with and without extra control 
participants (see Figure 1 for sites deemed extra control, namely those containing only control 
participants) across both cross validation (CV) strategies, as highlighted in Figure 2. Standard 
deviation in area under the receiver characteristic operator curve (AUC) across cross-validated 
folds is provided, as an estimate of confidence.  
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Figure Legends 
 
Figure 1: The distribution of both training (Sites 0-23) and testing (24-26) datasets is shown, and 
further broken down by AUD to case ratio per site.  
 
Figure 2:  The different permutations of analyses conducted internally on the training set, with 
differing input dataset options (top row), classifiers (middle row) and computed CV scoring 
metrics (bottom row). 
 
Figure 3: A simplified view of the final pipeline, where the full training dataset is employed in an 
evolutionary feature search designed to produce optimal subsets of high performing features. 
From this collection of feature subsets a meta-analysis for determining feature importance is 
conducted and a subset of ‘best’ features are selected. Next, a logistic regression classifier is 
trained and evaluated on the testing dataset, with access to only the ‘best’ subset of features. 
 
Figure 4: (A) The top 15 features, as ranked by average weighted feature importance (where 0 
indicates a feature appeared in none of the GA final models, and 1 represents a feature 
appeared in all) are shown. (B) The cortical thickness and (C) cortical average surface area 
feature importance scores, above a threshold of .1, are shown as projected onto the fsaverage 
surface space. 
 
Figure 5: The ROC curve for the final logistic regression model on the testing set, as restricted 
to only the “best” subset of 4 features. 
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