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Abstract  

 

Alzheimer’s disease (AD) is the most common type of age related dementia. Many hypotheses 

shed light on several reasons that lead to AD development. The cholinergic hypothesis describes 

that destruction of an essential neurotransmitter, acetylcholine by acetylcholinesterase (AChE) 

enzyme, leads to the AD onset. The hydrolysis of acetylcholine by excess amount of AChE 

decreases the amount of acetylcholine in the brain, thus interfering with the normal brain functions. 

Many anti- AChE agents can be used to treat AD by targeting AChE. In our study, 14 anti- AChE 

agents from plants: 1,8-cineol, berberine, carvacrol, cheilanthifoline, coptisine, estragole, 

harmaline, harmine, liriodenine, myrtenal, naringenin, protopine, scoulerine, stylopine were tested 

against AChE and compared with two controls: donepezil and galantamine, using different 

techniques of molecular docking. Molecular docking study was conducted for all the 14 selected 

ligands against AChE to identify the best three ligands among them. To determine the safety and 

efficacy of the three best ligands, a set of tests: the druglikeness property test, ADME/T test, PASS 

& P450 site of metabolism prediction, pharmacophore mapping and modelling and DFT 

calculations were performed. In our experiment, berberine, coptisine and naringenin were 

determined as the three ligands from the docking study. Further analysis of these 3 ligands showed 

coptisine as the most potent anti-AChE agent. The molecular dynamics simulation study showed 

quite results for the coptisine- AChE docked complex. Administration of berberine, coptisine and 

naringenin could be potential treatments for AD. 

Keywords: Alzheimer’s disease, molecular docking, ADME/T, acetylcholine, phytochemicals  
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1. Introduction 

Alzheimer's Disease (AD) was first described by Alois Alzheimer in 1907. It is one of the most 

prevalent dementia type disease as well as a common type of age related dementia that is increasing 

its numbers day by day [1, 2]. The common symptoms of AD include intellectual morbidity, 

delusions, psychomotor dysregulation, hallucinations etc. [3]. Genetic factors play key roles in the 

familial cases of Alzheimer’s disease [4]. There are many reasons that lead to the AD development. 

Many hypotheses have been developed by the scientists that indicate several reasons for AD 

development. One hypothesis is called the amyloid cascade hypothesis, where the deposition of β-

amyloid plaques in the brain is responsible for the development of AD. Abnormal processing of 

amyloid precursor protein (APP) by β-secretase enzyme produces the β-amyloid plaques in the 

brain. Studies have showed that these plaques interfere with the normal brain functions [5]. 

Moreover, another hypothesis called oxidative stress hypothesis, describes that because of the 

deposition of increased amount of iron, aluminium and mercury, free radicals are generated very 

rapidly and lipid peroxidation and protein and DNA oxidation increases dramatically in the brain. 

The stresses produced by these oxidation events are responsible for the development AD [6]. 

According to another hypothesis called cholinergic hypothesis, the loss of functions of cholinergic 

neurons and cholinergic neurotransmission in the brain is responsible for AD [7]. Our study was 

conducted focusing on the cholinergic hypothesis of AD development. 

1.1. The cholinergic hypothesis and AD development 

The cholinergic hypothesis involves one of the major neurotransmitters, acetylcholine and its 

regulation by two enzymes, acetylcholinesterase and choline acetyltransferase [8]. Acetylcholine 

(ACh) is a major neurotransmitter that mediates many important functions of the brain including 

the learning and memory processes. Acetylcholine mediates its effects through binding to two 
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types of receptors: nicotinic (α7 and α4β2) and muscarinic receptors (M1 muscarinic receptor). 

The acetylcholine is synthesized by an enzyme called choline acetyltransferase (ChAT). ChAT 

catalyzes the transfer of the acetyl group from acetyl coenzyme A (AcCoA) to choline (Ch) in the 

pre-synaptic neuron and thus synthesize the ACh. The ACh is then secreted by the pre-synaptic 

neuron into the synapse. The ACh in the synapse mediates its effects by binding to either the 

nicotinic receptor or muscarinic receptor. To maintain the proper concentration of ACh in the 

brain, an enzyme called acetylcholinesterase (AChE), is synthesized. This enzyme is a serine 

hydrolase that hydrolyzes ACh to acetate and choline. The choline is again taken up by the pre-

synaptic neuron for recycling and reusing. In this way, the balance of acetylcholine is maintained 

in the normal brain. However, there is evidence that, in the brain of AD patients, the overexpression 

of AChE occurs. Due to this reason, the break-down of acetylcholine occurs at a high rate, which 

decreases the required amount of ACh in the brain. Due to the scarcity of enough ACh in the brain, 

the neuron cells can’t mediate their functions properly and brain damage as well as memory loss 

occur, which lead to the onset of AD development (Figure 01). The AChE inhibitors repress or 

inhibit the activity of AChE. For this reason, AChE can be a potential target for anti-AChE drugs 

to treat AD (Figure 01) [9, 10, 11, 12, 13]. 
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Figure 01. Cholinergic hypothesis and role of acetylcholinesterase in AD development. 

Acteylcholine (ACh) is synthesized (synthesizing reaction is catalysed by choline 

acetyltransferase, ChAT) and released by the pre-synaptic neuron. The acetylcholine mediates its 

effects on the post-synaptic neuron through nicotinic and/or muscarinic receptors. The ACh later 

performs the downstream signalling in the post-synaptic neuron. Acetylcholinesterase  (AChE) 

enzyme breaks down the ACh and overexpression of AChE lowers the amount of acetylcholine in 

the brain which leads to the AD onset. AChE inhibitors repress the AChE activity, thus aid in the 

AD treatment. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.04.20016535doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.04.20016535
http://creativecommons.org/licenses/by/4.0/


6 
 

 

1.2. Anti-acetylcholinesterase agents from plants 

Plants have a long history to be used in various medical purposes [14, 15]. Recently, various anti-

AChE agents have been identified in the plants. Many of these natural agents show good efficacy 

in inhibiting the AChE activity [16, 17]. In our study 14 potential anti- AChE agents were selected 

to analyze their inhibitory activities against the AChE enzyme as well as their safety and efficacy, 

using the techniques of molecular docking. The list of the 14 agents are listed in Table 01 along 

with their source plants. Molecular docking, also known as computational drug design, is a widely 

accepted and used technique for new lead discovery. This technique reduces both time and costs 

of the drug discovery processes. Till now, over 50 drugs have been designed with the aid of 

computational simulation tools and many of them received FDA approval for marketing. 

Molecular docking tries to predict the pose, interaction and conformation of a ligand molecule 

within the binding pocket of a target molecule by mimicking or simulating the actual biological 

environment in the computer software. After estimating the type of interactions, the software 

assigns scoring function to each of the bound ligands that reflects their binding affinity. The lower 

the score, the greater the binding affinity. These scores are predicted by specific algorithms of the 

softwares [18, 19]. Along with the molecular docking study, ADME/T tests are also done to 

identify the safety and efficacy of a candidate drug molecule [20]. The study was designed to 

identify three best ligand molecules among 14 selected ligands. At first, the molecular docking 

study was conducted for all the 14 selected ligands against the AChE enzyme (PDB ID: 1ACJ). 

Based on the docking score, three best molecules were selected. Later, druglikeness property 

experiments, ADME/T tests, PASS prediction, P450 site of metabolism prediction, 

pharmacophore mapping and modelling, solubility prediction and DFT calculations were 
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performed on the three best selected ligands using various tools to determine their safety and 

efficacy. Later, molecular dynamics simulation study was carried out on the best selected ligand 

(Figure 02). Molecular docking study using different ligands has already been performed against 

the AChE enzyme (PDB ID: 1ACJ), where satisfied results were obtained [21]. Two FDA 

approved drugs: donepezil and galantamine, were used as positive controls in the experiments. 

These two drugs are also AChE inhibitors. Galantamine is approved for treating the mild and 

moderate AD and dopenezil is used to treat mild, moderate and severe AD [22]. 
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Table 01. List of the 14 anti- AChE agents from plants used in the study. 

 

No Compound name Plant source References 

01 1,8-cineol Rosmarinus officinalis [23] 

02 Berberine Berberis vulgaris [24]  

03 Carvacrol Thymus vulgaris [25] 

04 Cheilanthifoline Corydalia dubia [26] 

05 Coptisine Coptis chinensis, Berberis bealei and Phellodendron 

chinense 

[27] 

06 Estragole Ocimum basilicum, Ocimum africanum, Ocimum 

americanum, and Ocimum minimum 

[28] 

07 Harmaline Peganum harmala [29] 

08 Harmine Peganum harmala [29] 

09 Liriodenine Beilschmiedia alloiophylla [30] 

10 Myrtenal Hedychium gardnerianum  [31, 32] 

11 Naringenin Citrus junos [33] 

12 Protopine Corydalis ternata [34] 

13 Scoulerine Corydalia dubia [26] 

14 Stylopine Corydalis crispa [35] 
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Figure 02. The flowchart of the work-plan of the experiment. 
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Figure 03. 3D structure of acetylchoniesterase enzyme (PDB ID: 1ACJ). The structure was taken 

from Protein Data Bank online server (https://www.rcsb.org/) and visualized using Discovery 

Studio Visualizer. 
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Figure 04. 2D representations of the all the 14 ligands used in the experiment. The ligand 

structures were taken from PubChem server (www.pubchem.ncbi.nlm.nih.gov). A. 1,8-cineol 

(PubChem CID: 2758); B. Berberine (PubChem CID: 2353); C. Carvacrol (PubChem CID: 

10364); D. Cheilanthifoline (PubChem CID: 440582); E. Coptisine (PubChem CID: 72322); F. 

Estragole (PubChem CID: 8815); G. Harmaline (PubChem CID: 3564); H. Harmine (PubChem 
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CID: 5280953); I. Liriodenine (PubChem CID: 10144); J.  Myrtenal (PubChem CID: 61130); K. 

Naringenin (PubChem CID: 932); L. Protopine (PubChem CID: 4970); M. Scoulerine (PubChem 

CID: 22955); N. Stylopine (PubChem CID: 6770).  
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2. Materials and Methods 

Ligand preparation, Grid generation and Glide docking, 2D representations of the best pose 

interactions between the three best ligands and their respective receptors were obtained using 

Maestro-Schrödinger Suite 2018-4. The 3D representations of the best pose interactions between 

the ligands and their respective receptors were visualized using Discovery Studio Visualizer [36, 

37]. The 2D structures of ligands were downloaded from PubChem in SDF format 

(www.pubchem.ncbi.nlm.nih.gov) and the receptors were downloaded from protein data bank 

(www.rcsb.org). 

2.1. Protein Preparation 

Three dimensional structure of acetylcholinesterase enzyme (PDB ID: 1ACJ) was downloaded in 

PDB format from protein data bank (www.rcsb.org) (Figure 03). The proteins were then prepared 

and refined using the Protein Preparation Wizard in Maestro Schrödinger Suite 2018-4 [38]. All 

the waters were deleted from the protein during protein preparation. Finally, the structure was 

optimized and then minimized using force field OPLS_2005. Minimization was done setting the 

maximum heavy atom RMSD (root-mean-square-deviation) to 30 Å and any remaining water less 

than 3 H- bonds to non-water was again deleted during the minimization step. 

2.2. Ligand Preparation 

Structures of the controls: donepezil (PubChem CID: 3152) and galantamine (PubChem CID: 

9651) and the selected ligands: 1,8-cineol (PubChem CID: 2758), berberine (PubChem CID: 

2353), carvacrol (PubChem CID: 10364), cheilanthifoline (PubChem CID: 440582), coptisine 

(PubChem CID: 72322), estragole (PubChem CID: 8815), harmaline (PubChem CID: 3564), 

harmine (PubChem CID: 5280953), liriodenine (PubChem CID: 10144), myrtenal (PubChem 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.04.20016535doi: medRxiv preprint 

http://www.pubchem.ncbi.nlm.nih.gov/
http://www.rcsb.org/
http://www.rcsb.org/
https://doi.org/10.1101/2020.01.04.20016535
http://creativecommons.org/licenses/by/4.0/


14 
 

CID: 61130), naringenin (PubChem CID: 932), protopine (PubChem CID: 4970), scoulerine 

(PubChem CID: 22955), stylopine (PubChem CID: 6770) were downloaded in SDF format 

(sequentially) from PubChem (www.pubchem.ncbi.nlm.nih.gov) (Figure 04). These structures 

were then prepared using the LigPrep function of Maestro Schrödinger Suite 2018-4 [39]. 

Minimized 3D structures of ligands were generated using Epik2.2 and within pH 7.0 +/- 2.0. 

Minimization was again carried out using OPLS_2005 force field which generated 32 possible 

stereoisomers. 

2.3. Receptor Grid Generation  

Grid usually confines the active site to shortened specific area of the receptor protein for the ligand 

to dock specifically. In Glide, a grid was generated using default Van der Waals radius scaling 

factor 1.0 and charge cutoff 0.25 which was then subjected to OPLS_2005 force field. A cubic box 

was generated around the active site (reference ligand active site). Then the grid box volume was 

adjusted to 15×15×15 for docking test.  

2.4. Glide Standard Precision (SP) and Extra Precision (XP) Ligand Docking, Prime MM-

GBSA Prediction and Induced Fit Docking 

SP and XP glide docking were carried out using Glide in Maestro Schrödinger Suite 2018-4 [40]. 

The Van der Waals radius scaling factor and charge cutoff were set to 0.80 and 0.15 respectively 

for all the ligand molecules. Final score was assigned according to the pose of docked ligand within 

the active site of the receptor. The ligand with lowest glide docking score(s) was considered as the 

best ligand. The docking results are listed in Table 02. After successful docking, the 2D 

representations of the best pose interactions between the three best ligands and their receptor were 

generated using Maestro-Schrödinger Suite 2018-4 (Figure 05). The 3D representations of the 
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best pose interactions between the three best ligands and their receptor were obtained using 

Discovery Studio Visualizer (Figure 06). The interaction of the best three ligands with various 

amino acids of the receptor protein was also visualized by Discovery Studio Visualizer (Figure 

07). The molecular mechanics- generalized born and surface area (MM-GBSA) tool was used to 

determine the ΔGBind scores and induced fit docking (IFD) was carried out to predict the XP GScore 

scores of only the three best ligand molecules. Both the MM-GBSA and IFD studies was carried 

out using Maestro-Schrödinger Suite 2018-4. To determine the ΔGBind scores of the best three 

ligands, OPLS_2005 was selected as the force field as well as the VSGB solvation model was 

selected. The other parameters were kept default. To carry out the IFD study, the protein 

preparation was first carried out. Next, the OPLS_2005 was selected as the force field, rigid 

docking was selected in the conformational sampling parameter, receptor van der Waals screening 

was set at 0.70, ligand van der Waals screening was set at 0.50 and maximum number of poses 

was set at 2, refine residues within 2 angstrom of ligand poses and Extra Precision (XP) were 

selected. Other parameters were kept default. The results of MM-GBSA (ΔGBind scores) study and 

IFD (XP GScore and IFD values) study are listed in Table 03. Moreover, Table 03 lists the different 

types of bonds and bond distances that took part in the interaction of the three best ligands and 

their receptor, AChE. After the docking analysis, the best ligand molecule from each of the 

receptor category were chosen and then they were further analyzed for druglikeness properties, 

ADME/T predictions, PASS, P450 site of metabolism predictions and DFT calculations. 

2.5. Ligand Based Drug Likeness Property and ADME/Toxicity Prediction  

The molecular structures of the three best ligands were analyzed using SWISSADME server 

(http://www.swissadme.ch/). In the druglikeness property test, Lipinki’s rule of five or not, along 

with some other properties were predicted. Various physicochemical properties of ligand 
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molecules were calculated using OSIRIS Property Explorer. The drug likeness properties of the 

selected ligand molecules were analyzed using SWISSADME server as well as the OSIRIS 

Property Explorer [41, 42]. The results of drug likeness property analysis are summarized in Table 

04 [43]. The ADME/T for each of the ligand molecules was carried out using an online based 

server ADMETlab (http://admet.scbdd.com/) to predict their various pharmacokinetic and 

pharmacodynamic properties including blood brain barrier permeability, human intestinal 

adsorption, Caco-2 permeability, Cytochrome P (CYP) inhibitory capability, half-life, 

mutagenicity etc. [44]. The numeric and categorical values of the results showed by ADMETlab 

tool were changed into qualitative values according to the explanation and interpretation described 

in the ADMETlab server (http://admet.scbdd.com/home/interpretation/) for the convenience of 

interpretation. The results of ADME/T for all the ligand molecules are depicted in Table 05. 

2.6. PASS (Prediction of Activity Spectra for Substances) and P450 Site of Metabolism 

(SOM) prediction 

The PASS (Prediction of Activity Spectra for Substances) prediction of the three best selected 

ligands were conducted by using PASS-Way2Drug server 

(http://www.pharmaexpert.ru/passonline/) by using canonical SMILES from PubChem server 

(https://pubchem.ncbi.nlm.nih.gov/) [45]. To carry out PASS prediction, Pa (probability "to be 

active") was kept greater than 70% because studies have confirmed that the Pa > 70% threshold 

gives highly reliable prediction [46]. In the PASS prediction study, both the possible biological 

activities and the possible adverse and toxic effects of the selected ligands were predicted. Table 

06 and Table 07 list the results of the PASS prediction studies. The P450 Site of Metabolism 

(SOM) of the three best selected ligand molecules were determined by online tool, RS-

WebPredictor 1.0 (http://reccr.chem.rpi.edu/Software/RS-WebPredictor/) [47]. The LD50 and 
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Toxicity class was predicted using ProTox-II server (http://tox.charite.de/protox_II/) [48]. The 

canonical SMILES of berberine, coptisine and naringenin were taken from PubChem server 

(https://pubchem.ncbi.nlm.nih.gov/) and the SMILES was used to predict the LD50 and toxicity 

class. Table 08 lists the results of P450 site of metabolism study. 

2.7. Pharmacophore Mapping and Modelling 

The pharmacophore mapping was carried out by online server PharmMapper (http://www.lilab-

ecust.cn/pharmmapper/) [49]. The ligands downloaded in sdf format from PubChem server were 

uploaded. The “maximum number of conformations” parameter was set at 1000, all possible 

targets were set at the “select target set” parameter and the “number of reserved matched targets” 

parameter was set at 1000. In the advanced options, the cut-off value of fit score was set at 0. All 

the other parameters were kept default. The pharmacophore mapping experiment was done for the 

three best ligand molecules among the 14 selected ligands (Figure 08 and Table 09) 

The pharmacophore modelling of the three best ligands were carried out using the Phase 

pharmacophore perception engine of Maestro-Schrödinger Suite 2018-4 [50]. The pharmacophore 

modelling was done manually. To carry out the process, the radii sizes were kept as the Van der 

Waals radii of receptor atoms, radii scaling factor was kept at 0.50, receptor atoms whose surfaces 

are within 2.00 Å of the ligand surface were ignored and the volume shell thickness was limited 

to 5.00 Å. The 2D and 3D pharmacophore modelling were carried out for the three best ligand 

molecules (Figure 09 and Figure 10). 

2.8. DFT calculation 

For the Density functional theory or DFT calculation, ligand structures were first prepared by 

LigPrep were used for DFT calculation using the Jaguar panel of Maestro Schrödinger Suite v11.4 
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[51]. In DFT calculation, Becke’s three-parameter exchange potential and Lee-Yang-Parr 

correlation functional (B3LYP) theory with 6-31G* basis set, were used [52, 53]. Quantum 

chemical properties such as surface properties (MO, density, potential) and Multipole moments 

were calculated along with HOMO (Highest Occupied Molecular Orbital) and LUMO (Lowest 

Unoccupied Molecular Orbital) energy. Then the global frontier orbital was analyzed and hardness 

(η) and softness (S) of selected molecules were calculated using the following equation as per Parr 

and Pearson interpretation and Koopmans theorem [54, 55]. The DFT calculation was done for the 

3 best ligand molecules. The result of DFT calculation is summarized in Table 10 and Figure 11. 

η = (HOMOℇ-LUMOℇ)/2, 

S = 1/ η  

 

2.9. Molecular Dynamics Simulation Study 

The molecular dynamics simulation study was carried out for the ligand molecule that was 

declared as the best among the selected 14 ligand molecules. From the analysis of the results, it 

was declared that, coptisine was the best ligand among the selected ligand molecules. The 

molecular dynamics simulation study of coptisine and acetylcholinesterase docked complex was 

performed by the online server iMODS (http://imods.chaconlab.org/). The server is a fast, user-

friendly and effective molecular dynamics simulation tool that can be used efficiently to 

investigate the structural dynamics of the protein complexes. The server provides the values of 

deformability, B-factor (mobility profiles), eigenvalues, variance, co-varience map and elastic 

network. For a complex or protein, the deformability depends on the ability to deform at each of 

its amino acid residues. The eigenvalue has relation with the energy that is required to deform the 

given structure and the lower the eigenvalue, the easier the deformability of the complex. 
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Moreover, the eigenvalue also represents the motion stiffness of the protein complex. The server 

is a fast and easy server for determining and measuring the protein flexibility [56, 57, 58, 59, 60]. 

For analysing the molecular dynamics simulation of the three complexes, the docked PDB files 

were uploaded to the iMODS server and the results were displayed keeping all the parameters as 

default.  

 

In this experiment, the two controls were used in molecular docking study, druglikeness property 

experiment and ADME/T test to compare their results with the three best selected ligands. 

However, the PASS prediction, P450 SOM prediction, pharmacophore mapping and modelling, 

solubility prediction and DFT calculations were carried out to determine and compare the 

biological activities of the three best ligands, for this reason, in these prediction tests, the two 

controls were not used. 
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Figure 05. 2D representations of the best pose interactions between the three best ligands and their 

receptor.  A. interaction between berberine and acetylcholinesterase, B. interaction between 

coptisine and acetylcholinesterase, C. interaction between naringenin and acetylcholinesterase. 

Colored spheres indicates the type of residue in the target: Red-Negatively charged (Asp, Glu), 

Blue- Polar (Ser, Gln, Asn), Green-Hydrophobic (Tyr, Met, Leu, Trp, Ile, Phe, Pro), Ash color- 

Glycine, Deep Purple- Unspecified molecules and the Grayish circles represent Solvent exposure. 

Interactions are shown as colored lines- Solid pink lines with arrow- H-bond in target (backbone), 
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Dotted pink lines with arrow- H-bond between receptor and ligand (sidechain), Solid pink lines 

without arrow- Metal co-ordination, Green line- Pi-Pi stacking interaction, Green dotted lines- 

Distances, Partially blue and red colored lines- Salt bridges. Ligands exposed to solvent are 

represented by grey sphere. The colored lines show the protein pocket for the ligand according to 

nearest atom. Interruptions of the lines indicate the opening of the pocket. 2D representations of 

the best pose interactions between the ligands and their respective receptors were obtained using 

Maestro-Schrödinger Suite 2018-4. 
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Figure 06. 3D representations of the best pose interactions between the ligands and their receptor. 

The proteins are represented in Solid ribbon model and the ligands are represented in Stick model. 

A. interaction between berberine and acetylcholinesterase, B. interaction between coptisine and 

acetylcholinesterase, C. interaction between naringenin and acetylcholinesterase. The 3D 

representations of the best pose interactions between the ligands and their respective receptors 

were visualized using Discovery Studio Visualizer. 
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Table 02. The docking results (binding energy) of all the 14 ligands and the controls along with 

the determination of Lipinski’s rule of five, their respective number of hydrogen bonds as well as 

interacting amino acids.  
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No Names of ligands 

(with PubChem 

CID) 

SP Docking Score 

(Binding Energy) 

(Kcal/mol) 

XP Docking 

Score (Binding 

Energy) 

(Kcal/mol) 

Lipinski’s rule 

of five 

Interacting residues of 

the target 

01 1,8-cineol 

(PubChem CID: 

2758) 

-4.844 -3.109 Yes Trp 84, Phe 330 

02 Berberine 

(PubChem CID: 

2353) 

-9.658 -13.571 Yes Gln 69, Phe 330, Gly 123, 

Trp 84 

 

03 Carvacrol 

(PubChem CID: 

10364) 

-6.060 

 

-6.986 Yes Tyr 334, Phe 330, Trp 432, 

Tyr 442, Trp 84, His 440 

04 Cheilanthifoline 

(PubChem CID: 

440582) 

-6.387 -7.398 Yes Gly 117, Trp 84, Phe 330, 

Trp 432 

05 Coptisine 

(PubChem CID: 

72322) 

-10.148 

 

-15.560 Yes Trp 432, Trp 84, Phe 330, 

His 440, Ser 122, Gly 117 

06 Estragole 

(PubChem CID: 

8815) 

-5.035 

 

-5.992 Yes Tyr 334, Phe 330, Ile 439, 

Trp 432, Trp 84 

07 Harmaline 

(PubChem CID: 

3564) 

-8.053 

 

-9.154 Yes Tyr 334, Trp 432, Trp 84, 

Glu 199, Tyr 442, His 440, 

Ile 439, Phe 330 

08 Harmine (PubChem 

CID: 5280953) 

-8.385 

 

-8.363 Yes  Phe 330, His 440, Trp 84 

09 Liriodenine 

(PubChem CID: 

10144) 

-7.754 -7.775 Yes Phe 330, Tyr 334, Tyr 121, 

Trp 84 
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Table 03. List of the different types of bonds along with their bond distances with their respective 

amino acids, that took part in the interaction between the three best ligands as well as the controls 

and the target receptor, AChE, as well as their ΔGBind scores, XP GScore, IFD scores and glide 

energy.  

10 Myrtenal (PubChem 

CID: 61130) 

-5.873 

 

-4.821 Yes Ile 444, Ser 200, GLy 118, 

Gly 119, Trp 84, Phe 330, 

His 440 

11 Naringenin 

(PubChem CID: 

932) 

-9.266 -9.342 Yes His 440, Phe 330, Tyr 70, 

Trp 84, Pro 86 

12 Protopine 

(PubChem CID: 

4970) 

-6.272 -7.789 Yes Phe 330, His 440, Gly 117, 

Trp 84 

13 Scoulerine 

(PubChem CID: 

22955) 

-6.229 -2.230 Yes Phe 330, His 440, Tyr 130, 

Gly 117, Trp 84, Ser 122 

14 Stylopine 

(PubChem CID: 

6770) 

-7.733 -8.071 Yes  Phe 330, His 440, Trp 84, 

Gly 117 

Control 1 Donepezil 

(PubChem CID: 

3152) 

-5.045                                 -8.434                              Yes Trp 279, Tyr 70, Arg 289 

Control 2 Galantamine 

(PubChem CID: 

9651) 

-7.516 

 

-7.237 Yes Trp 84, Glu 199, His 440, 

Phe 330, Tyr 121, Tyr 70, 

Gly 117 
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Name of the 

ligand (with 

respective 

receptor) 

MM-GBSA 

(ΔGBind 

Score 

Kcal/mol) 

XP GScore 

(Kcal/mol) 

IFD score 

(Kcal/mol) 

Glide energy 

(Kcal/mol) 

Interacting 

amino acids 

Bond 

distance  

in Å 

Interaction 

category 

Type of 

interaction 

Berberine -35.80 -12.889 -1154.880 -23.549 Glutamine 69 2.22 Hydrogen Carbon 

Glycine 123 2.82 Hydrogen Carbon 

2.42 Hydrogen Conventional 

Tryptophan 84 

 

2.22 Hydrogen Carbon 

2.79 Hydrophobic Pi-Sigma 

3.95 Hydrophobic Pi-Pi stacked 

5.43 Hydrophobic Pi-Pi stacked 

3.68 Hydrophobic Pi-Pi stacked 

4.62 Hydrophobic Pi-Pi stacked 

5.92 Hydrophobic Pi-Pi stacked 

5.42 Hydrophobic Pi-Pi stacked 

4.41 Electrostatic Pi-Cation 

4.12 Electrostatic Pi-Cation 

Phenylalanine 

330 

 

3.85 Hydrophobic Pi-Pi stacked 

4.02 Hydrophobic Pi-Pi stacked 

4.64 Electrostatic Pi-Cation 

Coptisine -49.91 14.942 -1158.410 -16.197 

 

Tryptophan 432 2.96 Hydrophobic Pi-Lone pair 

Tryptophan 84 

 

4.48 Hydrophobic Pi-Pi stacked 

3.62 Hydrophobic Pi-Pi stacked 

4.53 Hydrophobic Pi-Pi stacked 

4.33 Hydrophobic Pi-Pi stacked 

4.02 Hydrophobic Pi-Pi stacked 

3.94 Electrostatic Pi-Cation 

4.12 Electrostatic Pi-Cation 

Phenylalanine 

330 

3.84 Hydrophobic Pi-Pi stacked 

3.74 Hydrophobic Pi-Pi stacked 
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4.43 Electrostatic Pi-Cation 

Histidine 440 2.21 Hydrogen Carbon 

2.13 Hydrogen Carbon 

Serine 122 3.01 Hydrogen Carbon 

Glycine 117 2.53 Hydrogen Carbon 

Naringenin 

(PubChem 

CID: 932) 

-23.73 -10.078 -1152.980 -45.657 Histidine 440 1.69 Hydrogen Conventional 

2.38 Hydrogen Carbon 

Phenylalanine 

330 

3.60 Hydrophobic Pi-Pi stacked 

Tyrosine 70 1.66 Hydrogen Conventional 

Tryptophan 84 3.84 Hydrophobic Pi-Pi stacked 

4.78 Hydrophobic Pi-Pi stacked 

Proline 86 2.99 Hydrogen Carbon 

Donepezil 

(PubChem 

CID: 3152) 

-47.06                                          -8.209 -1148.970 -33.756 Tryptophan 279 5.23 Hydrophobic Pi-Alkyl 

Tyrosine 70 5.32 Hydrophobic Pi-Pi stacked 

2.25 Hydrogen Carbon 

Arginine 289 2.21 Hydrogen Carbon 

Galantamine 

(PubChem 

CID: 9651) 

-5.19 -5.748 -1147.050 -33.736 Tryptophan 84 4.78 Hydrophobic Pi-Alkyl 

4.07 Hydrophobic Pi-Alkyl 

5.37 Hydrophobic Pi-Alkyl 

2.21 Hydrophobic Pi-Pi sigma 

2.56 Hydrogen Carbon 

Glutamic acid 

199 

2.57 Hydrogen Carbon 

2.49 Hydrogen Carbon 

Histidine 440 1.96 Hydrogen Conventional  

Phenylalanine 

330 

4.30 Hydrophobic Pi-Alkyl 

Tyrosine 121 2.42 Hydrogen Carbon 

Tyrosine 70 2.87 Hydrogen Carbon 

Glycine 117 4.19 Hydrophobic Amide-Pi stacked 
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Figure 07. Figure showing the various types of bonds and amino acids that take part in the 

interaction between the three best selected ligands and their receptor. Interacting amino acid 

residues of target molecule are labeled in the diagram and dotted lines depict interaction between 

ligand and receptor. Green dotted lines- Conventional bond, Light pink- Alkyl/Pi-Alkyl 

interactions, Yellow- Pi-Sulfur/Sulphur-X interaction, Deep pink- Pi-Pi stacked bond, Orange- 

Charge-Charge interaction, Purple- Pi-Sigma interaction, Red- Donor-Donor interaction. A. 

interaction between epigallocatechin gallate and its receptor cyclin-dependent kinase-2, B. 
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interaction between neocryptolepine and its receptor human topoisomerase II, C. interaction 

between decursinol and its receptor vascular endothelial growth factor receptor-2. The 

representations of the interactions between the ligands and the amino acids of the respective 

receptors were visualized using Discovery Studio Visualizer. 
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Table 04. List of the results of the druglikeness properties of the three best ligands: berberine, 

coptisine and naringenin and the controls. The druglikeness properties were analysed by the online 

server SWISSADME server (http://www.swissadme.ch/) and the OSIRIS Property Explorer 

(https://www.organic-chemistry.org/prog/peo/). 

Drug Likeness Properties Berberine Coptisine Naringenin Donepezil 

(control 1) 

Galantamine 

(control 2) 

Molecular weight 336.36 g/mol 320.32 g/mol 272.25 g/mol 379.49 g/mol 287.35 g/mol 

Concensus Log Po/w 2.53 2.40 1.84 4.00 1.91 

Log S -4.55 -4.52 -3.49 -4.81 -2.93 

Num. H-bond acceptors 4 4 5 4 4 

Num. H-bond donors 0 0 3 0 1 

Molar Refractivity 94.87 87.95 71.57 115.31 84.05 

Lipinski Yes Yes Yes Yes Yes 

Ghose Yes Yes Yes Yes Yes 

Veber Yes Yes Yes Yes Yes 

Egan Yes Yes Yes Yes Yes 

Muegge Yes Yes Yes Yes Yes 

Bioavailability score 0.55 0.55 0.55 0.55 0.55 

Synthetic accessibility (SA) 3.14 2.96 3.01 3.62 4.57 

TPSA (Å²) 40.80 40.80 71.57 38.77 41.93 

No of rotatable bonds 2 0 1 6 1 

Druglikeness score - - 1.9 7.29 6.2 

Drug-Score - - 0.84 0.63 0.91 

Solubility - - -2.64 -4.35 -2.67 
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Reproductive effective - - No No No 

Irritant - - No No No 

Tumorigenic - - No No No 

Mutagenic - - No No No 
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Table 05. The ADME/T test results of the best three ligand molecules and the controls. The tests 

were carried out using ADMETlab server (http://admet.scbdd.com/).  

Class Properties Berberine Coptisine Naringenin Donepezil 

(control 1) 

Galantamine 

(control 2) 

Absorption Caco-2 permeability Optimal Optimal Optimal Optimal Optimal 

Pgp-inhibitor  Non-inhibitor Non-inhibitor Non-inhibitor Inhibitor Non-inhibitor 

Pgp-substrate Substrate Non-substrate Non-substrate Substrate Substrate 

Human Intestinal Absorption 

(HIA) 

HIA negative HIA negative HIA positive HIA 

positive 

HIA positive 

Distribution Plasma Protein Binding Low Low  Good Optimal Low 

BBB (Blood–Brain Barrier) BBB positive BBB positive BBB positive BBB 

positive 

BBB positive 

Metabolism CYP450 1A2 inhibitor Inhibitor Inhibitor  Inhibitor Non-

inhibitor 

Non-inhibitor 

CYP450 1A2 substrate Substrate Substrate Substrate Non-

substrate 

Substrate 

CYP450 3A4 inhibitor Inhibitor Non-inhibitor Inhibitor Non-

inhibitor 

Non-inhibitor 

CYP450 3A4 substrate Substrate Substrate Non-substrate Substrate Substrate 

CYP450 2C9 inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-

inhibitor 

Non-inhibitor 

CYP450 2C9 substrate Non-substrate Non-substrate Non-substrate Non-

substrate 

Non-

substrate 

CYP450 2C19 inhibitor Non-inhibitor Non-inhibitor Non-inhibitor Non-

inhibitor 

Non-inhibitor 

CYP450 2C19 substrate Substrate Substrate Non-substrate Substrate Non-

substrate 

CYP450 2D6 inhibitor Inhibitor Inhibitor Non-inhibitor Inhibitor Inhibitor 
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CYP450 2D6 substrate Substrate Substrate Non-substrate Substrate Substrate 

Excretion T1/2 (h) 1.9 1.8 0.9 1.7 1.7 

Toxicity hERG (hERG Blockers) Blocker Blocker Blocker Blocker Non-blocker 

H-HT (Human Hepatotoxicity) HHT positive HHT negative HHT negative HHT 

positive 

HHT positive 

Ames (Ames Mutagenicity) Ames 

negative 

Ames negative Ames negative Ames 

negative 

Ames 

negative 

DILI (Drug Induced Liver 

Injury) 

DILI positive DILI positive DILI positive DILI 

negative 

DILI 

negative 
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Figure 08. Parmacophore mapping of A. berberine, B. coptisine, C. naringenin. Here, light bule 

color- hydrophobic centre, green color- hydrogen bond donor and pink color- hydrogen bond 

acceptor. 
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Table 06. The PASS prediction results the biological activities of the best three ligand molecules. 

The tests were carried out using PASS-Way2Drug server. 

 

 

 

 

 

 

 

Sl no Biological activities Berberine Coptisine Naringenin 

Predicted LD50: 1000 

mg/kg 

Predicted LD50: 

1000 mg/kg 

Predicted LD50: 2000 mg/kg 

Toxicity class: 4 Toxicity class: 4 Toxicity class: 4 

Pa Pi Pa Pi Pa Pi 

01 Membrane integrity agonist - - - - 0.964 0.003 

02 HMOX1 expression enhancer - - - - 0.956 0.002 

03 Chlordecone reductase inhibitor - - - - 0.918 0.004 

04 HIF1A expression inhibitor - - - - 0.911 0.005 

05 Histidine kinase inhibitor - - - - 0.892 0.002 

06 Aldehyde oxidase inhibitor - - - - 0.868 0.005 

07 Antimutagenic - - - - 0.857 0.003 

08 Mucomembranous protector - - - - 0.844 0.010 

09 TP53 expression enhancer - - - - 0.822 0.009 

10 Chemopreventive - - - - 0.724 0.006 
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Figure 09. 2D representation of the pharmacophore modelling of the three best ligand molecules. 

A. the hypothesis for berberine, B. the hypothesis for coptisine, C. the hypothesis for naringenin. 

The interactions between the ligand and the receptor in the hypothesis were presented by dotted 

dashed lines, yellow colour- hydrogen bonds, blue colour- pi-pi stacking interaction and green 

colour- pi-cation interaction. The bad contacts between the ligands and the pharmacophore are 

respresented. The pharmacophore modelling was carried out by Maestro-Schrödinger Suite 2018-

4.  
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Table 07. The PASS prediction results showing the adverse and toxic effects of the best three 

ligand molecules. The tests were carried out using PASS-Way2Drug server 

(http://www.pharmaexpert.ru/passonline/). 

 

  

Sl no Adverse and toxic effects Berberine Coptisine Naringenin 

Pa Pi Pa Pi Pa Pi 

01 Vascular toxicity - - - - 0.736 0.029 

02 Inflammation - - - - 0.770 0.018 

03 Hematemesis - - - - 0.729 0.023 

04 Nephrotoxic - - - - 0.708 0.027 

05 Shivering - - - - 0.766 0.051 
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Table 08. List of the P450 sites of metabolism prediction study of the three best ligand molecules. 

 

Names of 

P450 

isoenzyme

s 

Berberine Coptisine Naringenin 

1A2 

 
  

2A6 

   

2B6 

   

2C8 

 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 10, 2020. ; https://doi.org/10.1101/2020.01.04.20016535doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.04.20016535
http://creativecommons.org/licenses/by/4.0/


41 
 

2C9 

   

2C19 

  
 

2D6 

   

2E1 

   

3A4 
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Table 09. Results of the pharmacophore mapping experiment of the three best ligands, berberine, 

coptisine and naringenin. The experiment was conducted using the online tool PharmMapper 

(http://www.lilab-ecust.cn/pharmmapper/).  

  

Name of the 

ligand 

compound 

Fit score Normalized fit 

score 

z'-score Pharmacophore features (numbers) 

Hydroph

obic 

centre 

Positively 

charged 

centre 

Negati

vely 

charg

ed 

centre 

Hydro

gen 

bond 

donor 

Hydro

gen 

bond 

accept

or 

Arom

atic 

ring 

Berberine 2.765 0.921 1.088 1 0 0 0 2 0 

Coptisine 2.273 0.757 0.475 1 0 0 0 2 0 

Naringenin 2.637 0.659 0.749 3 0 0 1 0 0 
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Table 10. The results of the DFT calculations of the selected best three ligands. The DFT 

calculations were carried out using Maestro Schrödinger Suite 2018-4. 

 

  

Compound name HOMO 

energy (eV) 

LUMO 

energy (eV) 

Gap (eV) Hardness (η) 

(eV) 

Softness (S) 

(eV) 

Dipole 

moment 

(Debye) 

Berberine -0.145 -0.091 0.054 0.027 37.037 8.050 

Coptisine -0.005 -0.094 0.089 0.045 22.222 2.277 

Naringenin -0.134 -0.087 0.047 0.024 41.667 6.459 
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Figure 10. 3D representation of the pharmacophore modelling of the three best ligand molecules. 

A. the hypothesis for berberine, B. the hypothesis for coptisine, C. the hypothesis for naringenin. 

The pharmacophore modelling was perfomred by Maestro-Schrödinger Suite 2018-4.  
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Figure 11. The results of DFT calculations (HOMO-LUMO structures) of, 1. Berberine, 2. 

Coptisine, 3. Naringenin. The HOMO structures are illustrated in the left column and the LUMO 

structures are illustrated in the right column.  
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Figure 12. Results of molecular dynamics simulation of coptisine-acetylcholinesterase docked 

complex. (a) NMA mobility, (b) deformability, (c) B-factor, (d) eigenvalues, (e) variance (red 

color indicates individual variances and green color indicates cumulative variances), (f) co-

variance map (correlated (red), uncorrelated (white) or anti-correlated (blue) motions) and (g) 

elastic network (darker gray regions indicate more stiffer regions) of the complex.   
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3. Result 

3.1. Molecular docking, MM-GBSA study and Induced Fit Docking: 

All the selected ligand molecules were docked successfully against their target, AChE. The ligand 

molecules that had the lowest binding energy or docking score, were considered the best ligand 

molecules in inhibiting the target receptor as the lower binding energy corresponds to higher 

binding affinity [61, 62]. 

1, 8-cineol generated SP docking score of -4.844 Kcal/mol, XP docking score of -3.109 Kcal/mol, 

when docked against AChE. However, it formed interactions with only 2 amino acids: Trp 84 and 

Phe 330. Berberine generated SP docking score of -9.658 and XP docking score of -13.571 

Kcal/mol, when docked against the target protein. It interacted with Gln 69, Phe 330, Gly 123 and 

Trp 84 amino acids in the binding pocket. Carvacrol showed SP docking score of -6.060 Kcal/mol 

and XP docking score of -6.986 Kcal/mol. It showed interactions with Tyr 334, Phe 330, Trp 432, 

Tyr 442, Trp 84 and His 440 amino acids in the binding pocket of its target. Cheilanthifoline 

showed SP docking score of -6.387 Kcal/mol and XP docking score of -7.398 Kcal/mol as well as 

it interacted with 4 amino acids: Gly 117, Trp 84, Phe 330 and Trp 432. Coptisine gave SP docking 

score of -10.148 Kcal/mol, XP docking score of -15.560 Kcal/mol. The ligand interacted with 6 

amino acids: Trp 432, Trp 84, Phe 330, His 440, Ser 122 and Gly 117, in the binding pocket of the 

receptor. Estragole generated SP docking score of -5.035 Kcal/mol, XP docking score of -5.992 

Kcal/mol. It interacted with Tyr 334, Phe 330, Ile 439, Trp 432 and Trp 84. Harmaline generated 

SP docking score of -8.053 Kcal/mol, XP docking score of -9.154 Kcal/mol and the ligand 

interacted with Tyr 334, Trp 432, Trp 84, Glu 199, Tyr 442, His 440, Ile 439 and Phe 330 amino 

acids in the binding pocket. Harmine showed SP docking score of -8.385 Kcal/mol as well as XP 

docking score of -8.363 Kcal/mol. However, harmine formed interactions with Phe 330, His 440 
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and Trp 84 amino acids. Liriodenine showed SP docking score of -7.754 Kcal/mol and XP docking 

score of -7.775 Kcal/mol. The ligand interacted with 4 amino acids of the receptor: Phe 330, Tyr 

334, Tyr 121, Trp 84. Myrtenal showed SP docking score of -5.873 Kcal/mol, XP docking score 

of -4.821 Kcal/mol. It interacted with Ile 444, Ser 200, GLy 118, Gly 119, Trp 84, Phe 330 and 

His 440 amino acids in the binding pocket of the receptor. Naringenin showed SP docking score 

of -9.266 Kcal/mol, XP docking score of -9.342 Kcal/mol. It interacted with 5 amino acids: His 

440, Phe 330, Tyr 70, Pro 86 and Trp 84. Protopine and stylopine gave SP docking scores of -

6.272 Kcal/mol and -7.733 Kcal/mol, respectively, and XP docking scores of -7.789 Kcal/mol and 

-8.071 Kcal/mol, respectively. However, both of them interacted with Phe 330, His 440, Gly 117 

and Trp 84 amino acids of the receptor. On the other hand, scoulerine showed SP docking score 

of -6.229 Kcal/mol, XP docking dcore of -2.230 Kcal/mol. And it interacted with 6 amino acids: 

Phe 330, His 440, Tyr 130, Gly 117, Trp 84 and Ser 122.The control 1, donepezil generated SP 

docking score of -5.015 Kcal/mol and XP docking score of -8.434 Kcal/mol and interacted with 

Trp 279, Tyr 70, Arg 289. The control 2, galantamine generated SP docking score -7.516 Kcal/mol 

and XP docking score of -7.237 Kcal/mol. In interacted with Trp 84, Glu 199, His 440, Phe 330, 

Tyr 121, Tyr 70, Gly 117. All the 14 selected ligands as well as the controls followed the Lipinski’s 

rule of five. The results of docking study are listed in Table 02. 

From 14 selected ligand molecules, 3 ligands were selected as the best ligands based on the lowest 

SP and XP docking scores or binding energies. Coptisine gave the lowest SP and XP docking 

scores, the second lowest SP and XP docking scores were showed by berberine and the third lowest 

scores were given by naringenin. For this reason, these three ligands were selected as the best 

ligands for further analysis. In the MM-GBSA study, coptisine generated the lowest ΔGBind score 

of -49.91 Kcal/mol. The second lowest score was generated by berberine (-35.80 Kcal/mol). The 
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highest ΔGBind score of showed by naringenin was -23.73 Kcal/mol. Berberine, coptisine and 

naringenin gave glide energies of -23.549 Kcal/mol, -16.197 Kcal/mol and -45.657 Kcal/mol, 

respectively. Furthermore, coptisine also generated the lowest XP GScore of -14.942 Kcal/mol as 

well as the lowest IFD score of -1158.410 Kcal/mol. Donepezil and galantamine had ΔGBind scores 

of -47.06 and -5.19 Kcal/mol, respectively, XP GScore of -8.209 and -5.748 Kcal/mol, respectively 

and IFD scores of -1148.970 and -1147.050 Kcal/mol, respectively. Berberine with XP GScore of -

12.889 Kcal/mol and IFD score of -1154.880 Kcal/mol, was the second lowest score generator and 

the highest XP GScore and IFD score were showed by naringenin of -10.078 Kcal/mol and -

1152.980 Kcal/mol, respectively.  Berberine formed 1 carbon bond with glutamine 69, 1 carbon 

bond and 1 conventional bond with glycine 123, 1 carbon, 1 pi-sigma, 6 pi-pi stacked and 2 pi-

cation bonds with tryptophan 84 and 2 pi-pi stacked bonds and 1 pi-cation with phenylalanine 330. 

Coptisine generated 1 pi-lone pair bond with tryptophan 432, 5 pi-pi stacked and 2 pi-cation bonds 

with tryptophan 84, 2 pi-pi stacked bonds and 1 pi-cation bond phenylalanine 330, 2 carbon bonds 

with histidine 440, 1 carbon bond with serine 122 and 1 carbon bond with glycine 117. Moreover, 

naringenin formed 1 conventional bond and 1 carbon bond with histidine 440, 1 pi-pi stacked bond 

with phenylalanine 330, 1 conventional bond with tyrosine 70, 1 carbon bond with proline 86 and 

2 pi-pi stacked bonds with tryptophan 84. The three best ligands with their respective docking 

score, glide energy, interacted amino acids, types of bonds and bond distances, are listed in Table 

03. 

 

 3.2. Druglikeness properties 

Druglikeness property experiments were conducted only for the best three ligand molecules: 

berberine, coptisine and naringenin (Table 03). Lipinski’s rule of five demonstrates that the 
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acceptable ranges of the best drug molecule for all the five parameters are: molecular weight: ≤500, 

number of hydrogen bond donors: ≤5, number of hydrogen bond acceptors: ≤10, lipophilicity 

(expressed as LogP): ≤5 and molar refractivity from 40 to 130 [63]. All the three ligands followed 

the Lipinski’s rule of five. Berberine, coptisine and naringenin have molecular weights less than 

500 (336.36 g/mol, 320.32 g/mol and 272.25 g/mol, repectively), only naringenin had 3 hydrogen 

bond donors and the other two ligands didn’t have any hydrogen bond donor and both berberine 

and coptisine has 4 hydrogen bond acceptors, each and naringenin had 5 hydrogen bond acceptors. 

The logP values of berberine, coptisine and naringenin were 2.53, 2.40 and 1.84, respectively, that 

were also well within the accepted range of the Lipinski’s rule of five. Moreover, the molar 

refractivity of berberine, coptisine and naringenin were 94.87, 87.95 and 71.57, respectively. The 

LogS values showed by berberine, coptisine and naringenin were -4.55, -4.52 and -3.49, 

respectively. However, all of the ligand molecules followed the Ghose, Veber, Egan and Muegge 

rules and all of them showed the similar bioavailability score of 0.55. Berberine gave synthetic 

accessibility (SA) score of 3.14, coptisine gave SA score of 2.96 and naringenin gave SA score of 

3.01. Moreover, both berberine and coptisine gave topological polar surface are (TPSA) score of 

40.80 Å², however, naringenin showed TPSA score of 71.57 Å². Coptisine didn’t have any 

rotatable bond, berberine had 2 rotatable bonds and naringenin had 1 rotatable bond. However, the 

druglikeness score, drug score, solubility, reproductive effectiveness, irritant properties, 

tumorigenic and mutagenic properties were not available for both berberine and coptisine. Only 

naringenin generated results in these experiments. It gave druglikeness score of 1.9, drug score of 

0.84, solubility score of -2.64 and it is not reproductive effective, irritant, tumorigenic and 

mutagenic. Naringenin generated quite good scores in the druglikeness property experiments. 

Donepezil and galantamine also showed quite good results with no violation of the Lipinski’s rule 
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of five, Ghose, Veber, Egan and Muegge rules. They had molecular weights of 379.49 g/mol and 

287.35 g/mol, respectively and druglikeness score of 7.29 and 6.2, respectively. None of them 

were reproductive effective, irritant, tumorigenic and mutagenic. The druglikeness properties of 

the three ligands and the controls are listed in Table 04. 

 

3.3. ADME/T tests 

The ADME/T tests were done only for the three best selected ligands. All the ligands showed 

optimal Caco-2 permeability and all of them were p-glycoprotein non-inhibitor. However, only 

berberine was the p-glycoprotein substrate. Both berberine and coptisine were HIA negative, 

which means that all of them were not absorbed by human intestine. Only naringenin was HIA 

positive. All the three ligands had low plasma protein binding ability and all of them showed blood-

brain-barrier crossing ability. All the three ligands were inhibitors as well as substrates for CYP450 

1A2. However, only coptisine was non-inhibitor for CYP450 3A4 and both berberine and coptisine 

were substrates for CYP450 3A4. Moreover, all the three ligands were non-inhibitors and non-

substrates for CYP450 2C9. Although, all of them were non-inhibitors for CYP450 2C19 and only 

naringenin was non-substrate for CYP450 2C19. Furthermore, only naringenin was non-inhibitor 

and non-substrate for CYP450 2D6. The half-life (T1/2) values of berberine, coptisine and 

naringenin were 1.9, 1.8 and 0.9 hours, respectively. All the three ligands showed hERG blocking 

capability and berberine had human hepatotoxic ability. However, all of them were not Ames 

mutagenic, although all of them showed the capability to do drug induced liver injury (DILI 

positive). Both the controls showed inhibitory activities to CYP450 2D6 as well as substrate 

activities to CYP450 2D6. Both of them were also substrate to CYP450 3A4. Both of them were 
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human hepatotoxic as well as Ames negative and DILI negative. Only donepezil was hERG 

blocker among the two controls. The results of ADME/T tests are listed in Table 05.  

 

3.4. PASS prediction and P450 site of metabolism (SOM) prediction 

Berberine and coptisine had the same predicted LD50 value of 1000 mg/kg and naringenin had the 

predicted LD50 value of 2000 mg/kg. However, all the three ligands were in toxicity class 4. The 

prediction of activity spectra for substances (PASS prediction) study for all the three ligands were 

done to predict 10 intended biological activities and 5 intended adverse and toxic effects. To carry 

out the PASS prediction experiment, Pa > 0.7 was kept, since this threshold give highly reliable 

prediction [46]. The PASS prediction results of all the three selected ligands are listed in Table 06 

and Table 07. However, at Pa > 0.7, the intended biological activities and the adverse and toxic 

effects for berberine and coptisine were not generated by the PASS-Way2Drug server. Only 

naringenin showed the biological activities: membrane integrity agonist, HMOX1 expression 

enhancer, chlordecone reductase inhibitor, HIF1A expression inhibitor, histidine kinase inhibitor, 

aldehyde oxidase inhibitor, antimutagenicity, mucomembranous protector, TP53 expression 

enhancer and chemopreventive activities. Moreover, adverse and toxic effects showed by 

naringenin were: vascular toxicity, inflammation, hematemesis, nephrotoxicity and shivering 

actions. 

The possible sites of metabolism by CYPs 1A2, 2A6, 2B6, 2C19, 2C8, 2C9, 2D6, 2E1 and 3A4 

of berberine, coptisine and naringenin were determined. The possible sites of a chemical 

compound, where the metabolism by the isoforms of CYP450 enzymes may be taken place, are 

indicated by circles on the chemical structure of the molecule [47]. The P450 SOM predictions 
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showed that both berberine and coptisine had 3 sites of metabolism (SOMs) for all the CYP450 

enzymes or isoforms. However, naringenin had 4 SOMs for all the CYP450 enzymes, except the 

CYP450 2C9. Naringenin had 5 SOMs for CYP450 2C9. The possible sites of P450 metabolism 

are illustrated in Table 08. 

3.5. Pharmacophore mapping and modelling 

Berberine, coptisine and naringenin gave almost similar fit scores of 2.765, 2.273 and 2.637, 

respectively, in the pharmacophore mapping experiment. Berberine had the normalized fit score 

of 0.928 and z'-score of 1.088. Coptisine showed normalized fit score of 0.757 and z'-score 0.475. 

And naringenin had the normalized fit score of 0.659 and z'-score of 0.749. Furthermore, 

hydrophobic centres generated by berberine, coptisine and naringenin were 1, 1 and 3 respectively. 

Both berberine and coptisine had 2 hydrogen bond acceptors each, whereas, naringenin didn’t 

generate any hydrogen bond acceptor. Moreover, only naringenin had 1 hydrogen bond donor. 

However, none of the molecules showed positively charged centre, negatively charged centre and 

aromatic ring (Figure 08 and Table 09). 

The three best ligands were used to generate pharmacophore hypotheses. Berberine generated 6 

point hypothesis and both coptisine and naringenin showed 4 point hypothesis each. Berberine 

generated 2 pi-cation bonds, 4 pi-pi stacked interactions and 2 hydrogen bonds with its 

pharmacophore. Although it generated several good contacts (not shown here), however, it also 

generated 13 bad contacts with its pharmacophore. Coptisine showed 2 hydrogen bonds, 6 pi-pi 

stacked interactions and 2 pi-cation bonds. Like berberine, coptisine also generated several good 

contacts, however, it also showed 12 bad contacts with its pharmacophore. Naringenin showed 2 

pi-pi stacked interactions, 2 hydrogen bonds and 2 bad contacts with the pharmacophore. 
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Moreover, it also generated a good number of good contacts with the pharmacophore of AChE. 

None of the ligands generated ugly contact with AChE (Figure 09 and Figure 10). 

3.6. DFT Calculation 

In the DFT calculations, berberine showed HOMO energy of -0.145 eV, LUMO energy of -0.091 

eV and gap energy of 0.054 eV as well as the dipole moment of 8.050 debye. Coptisine generated 

HOMO and LUMO energies of -0.005 eV and -0.094 eV, respectively and gap energy of 0.089 

eV. On the other hand, naringenin gave HOMO energy of -0.134 eV, LUMO energy of -0.087 eV, 

gap energy of 0.047 eV and the dipole moment of 6.459 debye (Table 10 and Figure 11). 

3.7. Molecular Dynamics Simulation 

Fig. 12a illustrates the normal mode analysis (NMA) of coptisine-acetylcholinesterase complex. 

The deformability graphs of the three complexes illustrate the peaks in the graphs correspond to 

the regions in the protein with deformability (Fig. 12b). The B-factor graph of the complex gives 

easy visualisation and understanding of the comparison between the NMA and the PDB field of 

the complexes (Fig. 12c). The eigenvalue of the complex is illustrated in Fig. 12d. The docked 

complex generated eigenvalue of 3.004013e-04. The variance graph indicates the individual 

variance by red colored bars and cumulative variance by green colored bars (Fig. 12e). Fig. 12f 

illustrate the co-variance map of the complexes where the correlated motion between a pair of 

residues are indicated by red color, uncorrelated motion is indicated by white color and anti-

correlated motion is indicated by blue color. The elastic map of the complex shows the connection 

between the atoms and darker gray regions indicate stiffer regions (Fig. 12g) [58, 59, 60]. 

 

4. Discussion 
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The aim of docking experiment is to determine the best possible pose of a ligand molecule within 

the constraint of binding pocket of a receptor and the calculation of a binding energy. The lower 

the binding energy (docking score), the higher the affinity of binding and vice versa. In the 

experiment, total 14 ligand molecules were selected to act against the AChE, that is responsible 

for AD development. Each of the 14 ligands were docked against the target receptor to evaluate 

their anti-AChE activity and from the experiment, three best ligands were selected for further 

analysis. The best possible ligand molecules were selected based on their binding energy, where 

the lower bind energy was preferred. The SP binding energies given by 1,8-cineol, berberine, 

carvacrol, cheilanthifoline, coptisine, estragole, harmaline, harmine, liriodenine, myrtenal, 

naringenin, protopine, scoulerine and stylopine were -4.844 Kcal/mol, -9.658 Kcal/mol, -6.060 

Kcal/mol, -6.387 Kcal/mol, -10.148 Kcal/mol, -5.035 Kcal/mol, -8.053 Kcal/mol, -8.385 

Kcal/mol, -7.754 Kcal/mol, -5.873 Kcal/mol, -9.266 Kcal/mol, -6.272 Kcal/mol, -6.229 Kcal/mol 

and -7.733 Kcal/mol, respectively (Table 02). Coptisine gave the lowest SP binding energy or 

docking score of -10.148 Kcal/mol, for this reason, coptisine should be the best molecule to inhibit 

AChE. Furthermore, coptisine also generated the lowest XP docking score or binding energy of -

15.560 Kcal/mol Moreover, the second lowest and the third lowest SP and XP docking scores were 

given by berberine (-9.658 Kcal/mol and -13.571 Kcal/mol, respectively) and naringenin (-9.266 

Kcal/mol and -9.342 Kcal/mol, respectively), respectively. For this reason, these three molecules 

was selected as the best three ligand molecules among the 14 ligands for further analysis. The 

MM-GBSA study was carried out for only the three best ligands that showed the best results in the 

docking study. In the MM-GBSA study, the most negative ΔGBind score (the lowest score) is 

considered as the best ΔGBind score [64]. IFD study is done to understand the accurate binding 

mode and to ensure the accuracy of active site geometry. XP GScore is generated in the IFD 
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experiment, which is an empirical scoring function that estimates the ligand binding free energy. 

The lowest value of XP GScore is considered as the best value and is always appreciable [65, 66, 67, 

68]. In the MM-GBSA study, coptisine generated the lowest ΔGBind score of -49.91 Kcal/mol and 

the highest ΔGBind score of showed by naringenin was -23.73 Kcal/mol. Moreover, coptisine also 

generated the lowest XP GScore value of -14.942 Kcal/mol and naringenin had the highest XP GScore 

value of -10.078 Kcal/mol. Furthermore, coptisine also generated the lowest IFD score of -

1158.410 Kcal/mol. For this reason, based on the ΔGBind score, XP GScore value and IFD score, 

coptisine can be considered as the best ligand molecule among the selected three ligands. Further 

analysis showed that berberine interacted with 4 amino acids (Gln 69, Phe 330, Gly 123 and Trp 

84), whereas, coptisine interacted with 6 amino acids (Trp 432, Trp 84, Phe 330, His 440, Ser 122 

and Gly 117) and naringenin interacted with 5 amino acids (His 440, Phe 330, Tyr 70, Pro 86 and 

Trp 84). When the three best ligands were compared with the positive controls, it was observed 

that both donepezil and galantamine had SP socking score and XP docking score that were much 

higher than the three best ligands. Moreover, both donepezil and galantamine generated XP GScore 

and IFD scores that were also much higher than the three best selected ligands and only naringenin 

had the ΔGBind score higher than the scores of the two controls. For this reason, it can be concluded 

that the three best selected ligand molecules showed superior performance in the molecular 

docking study compared with the two positive controls (Table 02, Table 03, Figure 07). 

The aim of estimating the drug likeness properties facilitates the drug discovery and development 

processes. The molecular weight and topological polar surface area (TPSA) influence the drug 

permeability through the biological barrier. The higher the molecular weight and TPSA values, the 

lower the permeability of the drug molecule is and vice versa. Lipophilicity is expressed as the 

logarithm of partition coefficient of a drug molecule in organic and aqueous phase (LogP). 
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Lipophilicity affects the absorption of the drug molecules in the body and higher LogP corresponds 

to lower absorption and vice versa. LogS value influences the solubility of a drug molecule and 

the lowest value is always appreciable. The number of hydrogen bond donors and acceptors above 

the acceptable range also affects the capability of a drug molecule to cross the cell membrane. The 

number of rotatable bonds affects the druglikeness properties and the acceptable range is <10. 

Moreover, the Lipinski’s rule of five demonstrates that a successful drug molecule should have 

properties within the acceptable range of the five Lipinski’s rules: molecular weight: ≤500, number 

of hydrogen bond donors: ≤5, number of hydrogen bond acceptors: ≤10, lipophilicity (expressed 

as LogP): ≤5 and molar refractivity from 40 to 130 [63, 69, 70]. The druglikeness property 

experiment was conducted for the three best ligand molecules. Moreover, according to the Ghose 

filter, a candidate drug molecule should have LogP value of -0.4 to 5.6, molecular weight between 

160 and 480, the total number of atoms 20 to 70, molar refractivity 40 to 130, to qualify as a 

successful drug [71]. Veber rule describes that the oral bioavailability of a possible drug molecule 

depends on two factors: the polar surface are which should be equal to or less than 140 Å2 and 10 

or fewer numbers of rotatable bonds [72]. Furthermore, according to the Egan rule, the absorption 

of a candidate drug molecule also depends on two factors: the Polar Surface Area (PSA) and 

AlogP98 (the logarithm of partition co-efficient between n-octanol and water) [73]. And according 

to the Muegge rule, for a drug like chemical compound to become a successful drug molecule, it 

has to pass a pharmacophore point filter, which was developed by the scientists [74]. Moreover, 

how easily a target compound can be synthesized is determined by the synthetic accessibility (SA) 

score. The score 1 represents very easy to synthesize, whereas, the score 10 represents very hard 

to synthesize [75]. The bioavailability score describes the permeability and bioavailability 

properties of a possible drug molecule [76].  
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Berberine, coptisine and naringenin had molecular weights of 336.36 g/mol, 320.32 g/mol and 

272.25 g/mol, respectively. As the lower molecular weight is always appreciable, naringenin 

should be the best among the three ligands. However, the other two ligands also had good enough 

molecular weights to be permeable thought he biological barrier. Both berberine and coptisine 

showed the TPSA value of 40.80 and naringenin had TPSA of 71.57. Since, the lower TPSA value 

always gives the good result, both berberine and coptisine performed better than naringenin. In the 

case of lipophilicity (expressed as LogP), the lower value is always required. Since naringenin had 

the lowest logP value among the three ligands (1.84), its performance was very good in the 

lipophilicity experiment. The other two ligands, berberine and coptisine, with their logP values of 

2.53 and 2.40, respectively, also showed quite good performance in the study. Berberine and 

coptisine showed almost similar LogS values of -4.55 and -4.52, respectively. Naringenin showed 

logS value of -3.49. The number of rotatable bonds showed by berberine (2), coptisine (0) and 

naringenin (1) were well within the acceptable range. All the three ligands followed the Lipinski’s 

rule of five. Berberine, coptisine and naringenin have molecular weights of 336.36 g/mol, 320.32 

g/mol and 272.25 g/mol, respectively, which are less than 500 g/mol of acceptable range. Only 

naringenin had 3 hydrogen bond donors and the other two ligands didn’t have any hydrogen bond 

donor and both berberine and coptisine has 4 hydrogen bond acceptors each and naringenin has 5 

hydrogen bond acceptors, which followed the Lipinski’s rule. Furthermore, the logP values of 

berberine, coptisine and naringenin were 2.53, 2.40 and 1.84, respectively and the molar 

refractivity of berberine, coptisine and naringenin were 94.87, 87.95 and 71.57, respectively, 

which also followed the Lipinski’s rule. All the three ligands followed the Ghose filter, Veber, 

Egan and Muegge rules. All the ligands also showed the similar bioavailability score of 0.55. Since 

coptisine gave the lowest synthetic accessibility (SA) of 2.96, it can be synthesized very easily. 
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However, naringenin gave SA score of 3.01 and berberine gave SA score of 3.14, for this reason, 

naringenin should be easier to synthesize than berberine. Naringenin gave good druglikeness score 

of 1.9, drug score of 0.84, solubility score of -2.64 and no reproductive effectiveness, irritant, 

tumorigenic and mutagenic property. However, due to the unavailability of data in the OSIRIS 

Property Explorer tool, the druglikeness score, drug score, solubility score, reproductive 

effectiveness, irritant, tumorigenic and mutagenic properties of berberine and coptisine were not 

determined. Considering all the aspects of druglikeness property experiment, it can be concluded 

that, all the three best ligand molecules performed quite similarly in the druglikeness property 

experiment. When compared with the controls, it was observed that all the three ligands showed 

quite well performance in the druglikeness property experiment. 

ADME/T tests are carried out to determine the pharmacological and pharmacodynamic properties 

of a candidate drug within a biological system. For this reason, it is a crucial determinant of the 

success of a drug research and development. Blood brain barrier (BBB) is the most important 

factor for the drugs that primarily target the brain cells. Moreover, since most of the drugs are 

administered through the oral route, it is required that the drug is highly absorbed in intestinal 

tissue. P-glycoprotein (p-gp) in the cell membrane aids in transporting many drugs inside the cell, 

for this reason, the inhibition of p-gp affects the drug transport. Caco-2 cell line is widely used in 

in vitro study of drug permeability tests. Its permeability decides that whether the drug will be 

easily absorbed in the intestine or not. Orally absorbed drugs travel through the blood circulation 

and deposit back to liver. In the liver, a group of enzymes of Cytochrome P450 family metabolize 

the drugs and excrete the metabolized drugs through bile or urine. Therefore, inhibition of any one 

of these enzymes affect the biodegradation of the drug molecule [77, 78]. Moreover, if a compound 

is found to be substrate for one or more isoforms of CYP450 enzymes, that compound is 
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metabolized by the respective CYP450 enzyme or enzymes [79]. The binding of drugs to plasma 

proteins is also a crucial pharmacological parameter that affects the pharmacodynamics, excretion 

and circulation of drugs. A drug’s proficiency is depended on the degree of its binding with the 

plasma protein. A drug can cross the cell layers or diffuse easily if it binds to the plasma proteins 

less efficiently and vice versa [80]. Human intestinal absorption (HIA) is a very important process 

for the orally administered drugs. It depicts the absorption of orally administered drugs from the 

intestine into the bloodstream [81, 82, 83]. Drug half-life describes the time it takes for the amount 

of a drug in the body to be reduced by half or 50%. The greater the half-life of a drug, the longer 

the drug would stay in the body and the greater its potentiality and vice versa. For this reason, half-

life determines the doses of drugs [84, 85, 86]. HERG is a K+ channel found in the heart muscle 

which mediates the correct rhythm of the heart. HERG can be blocked by certain drugs. This may 

lead to the cardiac arrhythmia and death [87, 88]. Being the main site of metabolism, human liver 

is extremely vulnerable to the harmful effects of various drugs and xenobiotic agents. Human 

hepatotoxicity (H-HT) indicates any type of injury to the liver that may lead to organ failure and 

even death. Human hepatotoxicity, sometimes, is also responsible for the withdrawal of approved 

drugs from the market [89, 90]. Ames test is a mutagenicity test that is used to detect the potential 

mutagenic chemicals. The mutagenic chemicals can cause mutations and cancer [91]. Drug 

induced liver injury (DILI) is the injury to the liver that are caused by administration of drugs. 

DILI is one of the causes that causes the acute liver failure [92]. The results of ADME/T test are 

listed in Table 05. 

In the absorption section, all the three ligands performed quite similarly. All the ligands showed 

optimal Caco-2 permeability and all of them were non-inhibitors of p-gp. For this reason, none of 

them inhibited the actions carried out by p-gp. However, only berberine was the p-gp substarte, 
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for this reason, berberine should be taken up by the cell more easily than the other two ligands. 

However, since only naringenin showed HIA capability, it should be absorbed well by the human 

intestine. In the absorption section, all the ligands performed quite similarly. In the distribution 

section, berberine and coptisine showed low plasma protein binding capability and naringenin 

showed good plasma protein binding capacity. However, all of them were capable of crossing the 

blood brain barrier. In the metabolism section, naringenin showed the weakest performance. 

Berberine was the inhibitor of CYP450 1A2, CYP450 3A4 and CYP450 2D6. For this reason, 

berberine inhibited the activities of CYP450 1A2, 3A4 and 2D6 isoenzymes. Moreover, the ligand 

was substrate for CYP450 1A2, CYP450 3A4, CYP450 2C19 and CYP450 2D6. Since berberine 

was substrate of these enzymes, these enzymes can metabolize the ligand very efficiently. 

Coptisine was inhibitor for CYP450 1A2 and CYP450 2D6. However, since it was the substrate 

of CYP450 1A2, CYP450 3A4, CYP450 2C19 and CYP450 2D6 enzymes like berberine, these 

enzymes can also metabolize coptisine efficiently. Naringenin was the inhibitor of CYP450 1A2 

and CYP450 3A4. On the other hand, it was the substrate for only CYP450 1A2, for this reason, 

naringenin would be metabolized only by CYP450 1A2. In the metabolism section, berberine and 

coptisine showed quite good as well as almost similar results. However, naringenin showed 

unsatisfactory performance in the metabolism section. In the excretion section, berberine showed 

half-life of 1.9 hours, coptisine showed half-life of 1.8 hours and naringenin showed half-life of 

0.9 hours. For this reason, it can be declared that, naringenin’s performance were not satisfactory 

in the excretion section. In the toxicity section, all the three ligands were hERG blockers, however, 

all of them proved to be safe in the Ames mutagenicity test. On the other hand, since all of them 

were DILI positive, they could cause liver injuries. Moreover, since coptisine and naringenin were 

not human hepatotoxic, they were proved to be safe for the liver, whereas, berberine was 
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hepatotoxic agent. Their performances were quite good when compared with the two controls used 

in the experiment. Furthermore, coptisine showed even better performances in some aspects of the 

experiment. 

Comparing with the two controls, it can be declared that, the three best ligands performed well in 

the docking study, druglikeness property experiment and ADME/T test. All the three best ligands 

showed satisfactory results in these experiments. Moreover, coptisine generated even superior 

results than the controls in some aspects of the experiment. 

Prediction of Activity Spectra for Substances or PASS prediction is carried out to estimate the 

possible biological activities associated with drug-like molecules. The PASS method estimates the 

probabilities based on the structures of the compounds and their molecular mass. Two parameters 

are used for the PASS prediction: Pa and Pi. The Pa is the probability of a compound “to be active” 

and Pi is the probability of a compound “to be inactive”. The values of both Pa and Pi can range 

from zero to one [45]. If the value of Pa is greater than 0.7, the probability of exhibiting the activity 

of a substance in an experiment is higher. On the other hand, if the Pa is greater than 0.5, less than 

0.7, the probability of exhibiting a particular activity in an experiment is good, although less than 

the activity determined when Pa > 0.7 threshold is used. Moreover, if Pa is less than 0.5, the 

probability of exhibiting the activity is the least [93]. However, the chance of finding any given 

activity in an experiment increases with the increasing value of Pa as well as decreasing value of 

Pi [45]. The PASS prediction was carried out to determine 10 biological activities and 5 adverse 

and toxic effects of the three selected ligands. Since the intended activities were not generated by 

PASS-Way2Drug server (http://www.pharmaexpert.ru/passonline/) at Pa > 0.7, the PASS 

prediction were not done for berberine and coptisine. However, naringenin gave all the ten 

biological activities at Pa > 0.7. The PASS test showed the membrane integrity agonisting, 
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HMOX1 expression enhancing, chlordecone reductase inhibitory, HIF1A expression inhibitory, 

histidine kinase inhibitory, aldehyde oxidase inhibitory, antimutagenicity, mucomembranous 

protecting ability, TP53 expression enhancing ability and chemopreventive activities of 

naringenin. The 5 toxic effects shown by naringenin were vascular toxicity, inflammation, 

hematemesis, nephrotoxicity and shivering. 

ProTox-II server measures the toxicity of a chemical compound and classifies the compound into 

a toxicity class ranging from 1 to 6. The server classifies the compound according to the Globally 

Harmonized System of Classification and Labelling of Chemicals (GHS) [48]. According to the 

Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Class 1: fatal 

if swallowed (LD50 ≤ 5), class 2: fatal if swallowed (5 < LD50 ≤ 50), class 3: toxic if swallowed 

(50 < LD50 ≤ 300), class 4: harmful if swallowed (300 < LD50 ≤ 2000), class 5: may be harmful 

if swallowed (2000 < LD50 ≤ 5000) [94]. However, ProTox-II server adds one more class to the 

5 classes, making them 6 classes in total, class VI: non-toxic (LD50 > 5000) 

(http://tox.charite.de/protox_II/index.php?site=home) [48]. All the selected three ligands were in 

toxicity class 4, meaning that, they would be harmful, if swallowed. 

The possible sites where the metabolism on a chemical structure may be carried out by the isoforms 

of CYP450 enzymes, are indicated by circles on the chemical structure of the molecule [47]. In 

the P450 SOM experiment, naringenin gave the best result since it gave 4 SOMs for all the CYP450 

enzymes, except CYP450 2C9 (5 SOMs). However, berberine and coptisine gave the similar 

results because they showed 3 SOMs for all of the CYP450 enzymes. In the PASS prediction 

study, naringenin performed very well, however, since information about the other two ligands 

were not determined, any further comment on the performances shown by those two ligands could 

not be given. 
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The pharmacophore mapping study of the three best ligand molecules were carried out by an online 

server PharmMapper (http://www.lilab-ecust.cn/pharmmapper/). PharmMapper generates three 

types of scores: fit score, normalized fit score and z'-score. The target proteins with the highest fit 

scores and normalized fit scores between the query compound and its corresponding 

pharmacophore models reflect that the target proteins should be the potential targets for the query 

compound to bind.  Moreover, z'-score is generated form the fit score and high z'-score corresponds 

to high significance of the target to a query compound and vice versa [95, 96, 97, 98]. 

The pharmacophore mapping experiment of berberine and naringenin gave almost similar fit 

scores of 2.765 and 2.637, respectively. Coptisine had the fit score of 2.273. However, berberine 

showed the highest normalized fit score of 0.928. Coptisine and naringenin had the normalized fit 

scores of 0.757 and 0.659. For this reason, with the highest fit score and normalized fit score, the 

target protein AChE should be the most potential target for berberine, among the three ligands. 

Moreover, since berberine also generated the highest z'-score of 1.088, the binding between 

berberine and AChE is the most significant among the three ligands. Naringenin had the z'-score 

of 0.749. However, with the lowest z'-score of coptisine (0.475), the binding between coptisine 

and AChE is less significant than the other two ligands. Berberine and coptisine had 1 hydrophobic 

centre each and naringenin had 3 hydrophobic centres. Moreover, both berberine and coptisine had 

2 hydrogen bond acceptors each and naringenin didn’t generate any hydrogen bond acceptor. 

However, only naringenin generated 1 hydrogen bond donor. None of the ligands showed any 

positively charged centre, negatively charged centre and aromatic ring. In the pharmacophore 

modelling experiment, berberine showed the best result, however, the other two ligands also 

showed good results in the study (Figure 08 and Table 09). 
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The Phase pharmacophore perception engine is a tool of Maestro-Schrödinger Suite 2018-4 which 

is used for pharmacophore modelling, QSAR model development and screening of 3D database. 

The engine provides 6 types of built-in features and the pharmacophore modelling is mainly done 

based on these 6 types of features: hydrogen bond acceptor (A), hydrogen bond donor (D), negative 

ionizable (N), positive ionizable (P), hydrophobe (H), and aromatic ring (R). However, the number 

of features can be increased by customization. The pharmacophore modelling generates a 

hypothesis which can be used successfully in biological screening for further experiments [99]. 

All the three best ligand molecules successfully generated the pharmacophore modelling 

hypothesis with AChE. In generating the hypothesis, 6 features were selected for berberine, 4 

features were selected for coptisine and 4 features were selected for naringenin. For this reason, 

berberine showed 6 point hypothesis and both coptisine and naringenin generated 4 point 

hypothesis. All the three best ligands showed quite good results in their pharmacophore modelling 

hypotheses. All the three ligands formed 2 hydrogen bonds within the binding pocket of the 

receptor. Berberine, coptisine and naringenin formed 4, 6 and 2 pi-pi stacked interactions, 

respectively. Furthermore, both berberine and coptisine generated 2 pi-cation bonds, whereas, 

naringenin didn’t. However, only naringenin didn’t have any bad contact with the pharamcophore. 

Since, all the ligands formed quite good hypotheses with the pharmacophore, all of the hypotheses 

can be used in screening effectively (Figure 09 and Fig. 10). 

Frontier orbitals study or DFT calculation is one of the essential methods determining the 

pharmacological properties of various small molecules [100]. HOMO and LUMO help to study 

and understand the chemical reactivity and kinetic stability of small molecules. The term ‘HOMO’ 

describes the regions on a small molecule which donate electrons during a complex formation and 

the term ‘LUMO’ indicates the regions on a small molecule that receive electrons from the electron 
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donor(s). The difference in HOMO and LUMO energy is called gap energy and gap energy 

corresponds to the electronic excitation energy. The compound that has the greater orbital gap 

energy, tends to be energetically unfavourable to undergo a chemical reaction and vice versa [53, 

101, 102]. Moreover, gap energy also has correlation with the hardness and softness properties of 

a molecule [103]. The DFT calculations were carried out for all the three best ligand molecules. 

Naringenin showed the lowest gap score of 0.047 eV, for this reason, naringenin is energetically 

more favourable to undergo chemical reactions than the other two ligands. Moreover, the lowest 

gap scores also corresponds to lowest hardness score and the highest softness score of naringenin, 

0.024 eV and 41.667 eV, respectively. However, berberine generated the highest dipole moment 

score of 8.050 debye and coptisine showed the dipole moment score of 2.277 debye (Table 10 and 

Figure 11). 

Taking all the aspects into account, all the three best ligand molecules showed almost similar 

results in all the experiments, except the PASS prediction experiment and solubility tests. Due to 

the unavailability of data, the PASS prediction and solubility tests for berberine and coptisine could 

not be determined. However, naringenin showed quite good results in PASS prediction and 

solubility experiments. Comparing with the two positive controls, it can be concluded that, the best 

ligands performed very well in the experiments. Coptisine could be regarded as the best ligand 

molecule among the three selected ligands based on the docking studies (molecular docking, MM-

GBSA and IFD studies) and many other aspects of the conducted experiment, although berberine 

and naringenin also showed quite satisfactory results. In some fields, coptisine generated far better 

results than the positive controls, that are already approved drugs for inhibiting AChE. From the 

molecular dynamics study of coptisine-acetylcholinesterase docked complex, it it clear that the 

complex had very low amount of deformability (Fig. 12b) as well as it had quite high eigenvalue 
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of 3.004013e-03, for this reason, the deformability would be quite difficult for the complex (Fig. 

12d). However, the variance map showed high degree of cumulative variances than individual 

variances (Fig. 12e). The co-variance and elastic network map also produced quite satisfactory 

results (Fig. 12f and Fig. 12g). The three selected ligand molecules can be used as potential agents 

to treat AD. Berberine showed potent AChE inhibitory activity when ethanolic extract from B. 

vulgaris were tested for anti-AChE activity. The ethanolic extract contained berberine and its 

amount was more than 60% in the extract [104]. Studies have also confirmed the anti-AChE 

activity of coptisine in a dose-dependent manner [105]. The anti-AChE activity of naringenin form 

C. junos was investigated where naringenin showed potent anti-dementia activity by inhibiting 

AChE [33]. In our study, coptisine emerged as the most potent anti-AChE agent. However, more 

researches should be done on the three best ligands to confirm their activities. Moreover, 

researches should be done on the other ligands, since most of them showed good docking results. 

 

5. Conclusion 

14 compounds that have AChE inhibiting activity, were selected for our study to determine the 

three best agents among them and their potential effects, safety and efficacy by conducting various 

experiments: molecular docking, druglikeness property experiments, ADME/T tests, PASS 

prediction studies and P450 site of metabolism prediction. From the experiment, three ligands: 

berberine, coptisine and naringenin were determined to be the best three ligands to inhibit AchE. 

All the three ligands showed quite similar and very good results in all the aspects into account. 

Berberine can be found in Berberis vulgaris, coptisine can be extracted from plants like Coptis 

chinensis, Berberis bealei and Phellodendron chinense and naringenin can found in Citrus junos. 

Since these plants contain anti-AChE agents, these plants can be used to treat the Alzheimer’s 
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disease, naturally, by targeting the AChE pathway. However, more laboratory research should be 

conducted on the other ligands as they also showed quite good results in the molecular docking 

study. Hopefully, this study will raise interest among the researchers.  
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