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Abstract

According to the guidelines of the European Society of Hypertension International Protocol revision 2010,

the requirements for long time blood pressure measurement (BPM) are: simple handling, robustness against

movements, accuracy of better than ± 5 mmHg, and, above all, that the patient’s motion should not be

restricted during measurement. These requirements are in particular important for a reliable interpretation

of the blood pressure (BP) of hypertensive patients, because such a diagnosis will usually be confirmed by

long-term measurement. Moreover, to be able to correlate the patient’s BP with his normal daily activity,

non-obstructive non-invasive methods are desired to reduce the patient’s load.

The main concern of this paper is to present a novel method for estimating non-invasive continuous

blood pressure (CBP) from a single photoplethysmography (PPG) signal. In contrast to the pulse transit

time (PTT) method, our approach is based on the assumption that the phase-velocities of the fundamental

and higher harmonics depend on the (non-linear) elastic properties of the arteries. Consequently, phase

velocity varies as a function of a vessel’s instantaneous dilation and can be effectively utilised for CBP

estimation.

In addition to its numerous advantages for a simplified measurement setup, we could show that the

method achieves a high degree of correlation for a reliable BP estimation from PPG data. Comparison with

state-of-the-art PTT methods was carried out using a dataset from the PhysioBank Database comprising a

reference invasive blood pressure (IBP) signal measured at the radial artery, a PPG signal measured at the

fingertip and a standard ECG signal.

The correlation values obtained from the long-time estimation of the systolic blood pressure (SBP)

were as high as r = 0.8945, while the value for the diastolic blood pressure (DBP) was found to be r

= 0.9082 and the correlation of the mean blood pressure (MBP) was r = 0.9322. These results were

achieved by analysing the dataset in a beat-to-beat manner and regarding several post-processing procedures

like coherent averaging (CA) and zero padding with quasi-continuous frequency domain estimation and

artificially refined frequency resolution.
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1. Introduction

Blood pressure as a vital sign is regarded as the most important parameter of the cardiovascular system

(CVS), and it is commonly used as an indicator of general health, especially for people of advanced age,

who have a higher risk of developing heart diseases. Furthermore, high BP is known to increase the risk of

cardiovascular disease which is the main cause of death worldwide [1].

To ensure a reliable diagnosis of hypertension, CBP is performed over a period of 24 hours and under

normal conditions. Further, non-invasive non-obstructive methods are preferred that reduce the patient’s

discomfort as much as possible. An overview about the different BPM methods and their advantages and

disadvantages is given in [2–4]. Cuff-based methods usually require at least two minutes of spare time

between subsequent measurements to reduce measurement errors caused by the external compression of

the tissue. While their results are not continuous in time, they put a high burden to the patient. Even

if the number of inflations during a 24h measurement are perceived to be quite frequent, the resulting

BP time series has a very low time resolution. Continuous beat-to-beat measurements of BP obtained by

the computation of the PTT from electrocardiography (ECG) and peripheral PPG signals however, are

disputable for several reasons: (i) the dependency on the location and the distance of measurement points,

(ii) the method used to find and interpret minima, maxima and saddle points within the PPG and ECG

signals [5, 6], (iii) the appearance of undetermined fluctuations in the time between the pressure wave and

the ECG R-peak during blood ejection of the left ventricle [7] and (iv) the influences of auto-regulation

on arterial stiffness that produce undetermined drifts of the PTT over time [8]. Nonetheless, the PTT

method is subject of several publications that aim at a development of wearable continuous BPM devices

[5, 9–13]. As PTT-based methods compute the BP by employing its correlation with the actual pulse wave

velocity (PWV), the particular drawback of this approach is that PWV depends on the elasticity of the

tested artery section, which in turn is considerably affected by a variety of physiological mechanisms of BP

regulation.

The general relationship between BP and PTT was subject of a series of investigations. In [6, 14–22]

different magnitudes for the computation of the PTT are based on the calculation of the time difference

between the ECG R-peak and some reference within the PPG signal and are methodically described and

validated by calculating a correlation to the IBP. In addition to the methodological aspects of the BP

computation using the PTT, [23] also discusses the impact of influencing factors, like changes in individual
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arterial stiffness. It was found that the method could sufficiently satisfy the requirements of BP monitoring

during sleep, according to low regulation activity of the arteries. The method was tested on ten subjects

with errors less than 8% in relation to the reference mean arterial pressure. Furthermore, the correlation of

the PTT and the SBP/DBP was investigated for different patient groups of 10 to 64 subjects with all ages

and health conditions [5, 24–27]. In the framework of these investigations, the correlation coefficient r of

the PTT and the SBP was found to be in the range 0.73 ≤ |r| ≤ 0.95.

However, all currently available methods require the analysis of at least two signals, the ECG and the

PPG, to compute the PTT. Moreover, since the resulting PTT strongly depends on some choice analysis, it

remains unclear how the optimal measurement location and the reference points within the time series are

determined.

In this paper, we present a new method to determine the continuous BP from a single standard PPG

signal measured at the fingertip and its application to a dataset taken from [28] that comprises PPG, ECG

and IBP signals, all measured in-sync and with a sample rate of fs = 125 Hz. In contrast to previously

proposed methods, we analyse the PPG signal in the frequency domain and compute the harmonic phase

shift between the fundamental and the first harmonic frequency. This phase-shift is caused by the non-

linear compliance of the arteries, which has the effect that a wave with a larger amplitude propagates at

a higher phase velocity than a wave with a smaller amplitude. With phase-shift related to compliance

and compliance related to pressure, the correlation of phase-shift and BP can be calculated and exploited.

Finally, the correlation results of the proposed method are compared to the standard PTT procedure.

2. Methods

Non-linear arterial compliance is known to be the physiological basis to predict the BP from changes in

PTT resulting from a change of PWV along some arterial section. The proposed method, however, analyses

phase-shifts in the frequency domain caused by a similar effect. With the fundamental frequency determined

by the heart rate (HR), the increase of PWV at higher pressures also goes along with relative phase-shifts

between the frequencies in the spectrum of the waveform found in the PPG signal.

Physiological regulation processes neglected, any change in BP induces a change in artery stiffness, ex-

pressed as incremental elastic modulus E (ε (p)). Equation 1, known as Moens-Korteweg Equation, describes

the relationship between the PWV and the geometrical and elastic parameters, where ε (p) is the circumfer-

ential elongation of the artery according to changes in transmural pressure p. h and d denote the vessel’s

wall thickness and diameter respectively and ρ the fluid density [24, 29–35].

PWV =

√
E (ε (p))h

ρd
. (1)

Arterial wall stiffness which is expressed by the incremental elastic modulus E (ε(p)) is further known to
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increase exponentially with mean distending pressure [32]. With PWV depending on the BP, the phase

velocities of the components in the pulse wave spectrum are further affected by instantaneous pressure.

The Fourier spectrum of the (continuous) PPG signal particularly includes the fundamental and its

first harmonic, with the amplitude of the fundamental being significantly larger than the amplitude of the

harmonic. Consequently, any change in BP that alters the elastic modulus will affect the fundamental

frequency more than the harmonic, and thus cause a mutual phase-shift that can be quantified by spectrum

analysis and correlated with the BP. Evidently this method can be conducted with any other pair of

frequencies contained in the spectrum that has significantly differing characteristics. For an alternative

approach, Soliton theory would offer itself to describe this relationship in terms of the propagation speed of

weakly non-linear waves in a tube in time domain [36].

In the following, we describe in more detail how the signal is divided into subsequent heartbeats and how

the fundamental frequency and the first harmonic are determined by use of the discrete Fourier transform

(DFT) in order to compute the mutual phase-shift between these two frequencies. Second, we introduce

and evaluate several post-processing methods that optimise the results in terms of time resolution and

correlation.

2.1. Data Basis

The proposed method is applied using a dataset from the ”UCI Machine Learning Repository” of the

University of California, Irvine [37], which is part of the ”PhysioNet” data base [38]. The dataset consists

of three vital signals (PPG, ECG and IBP), all sampled at a rate of 125 Hz over a total time of 8m and 57s.

In order to correct the time shift caused by the measurement setup, the PPG signal is shifted by 296 ms.

During the measurement the SBP varied between 106 mmHg and 180 mmHg, while the DBP and HR ranged

from 54 mmHg to 75 mmHg and 74 bpm to 107 bpm respectively. The MBP is calculated as the arithmetic

mean of systolic and diastolic blood pressure. In total, the signal extends over Np = 843 heartbeats. The

dataset therefore covers reasonable conditions generally observed in hypertensive patients.

2.2. Determination of Beat-specific Parameters for Further Analysis

Due to the quasi-periodic nature of the vital signals, the method is constructed to work with single

periods in a beat-to-beat manner only. It therefore requires the segmentation of the signal into a sequence

of pulse waves that allows for a further phase-shift analysis for every single heartbeat. The ECG signal is

particularly suitable for this, because the R-peak is supposed to indicate the starting point of the blood

ejection into the aorta reliably. Furthermore, R-peak detection is quite simple and precise from a numerical

point of view [39, 40]. The method we used for segmentation simply determined the maxima above a certain

level and was sufficient with respect to the pre-processing, smoothness and characteristics of the regarded

data. In contrast to available PTT methods, the R-peak merely serves us as a time marker for separating
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Figure 1: Use of the ECG signal with a constant delay of 37 samples to split the IBP (a. radialis) and PPG (fingertip) signals

for further beat-to-beat analysis. For simple and accurate period determination, consecutive R-peaks within the ECG signal

were used as detection criterion. The marker N indicates the splits.

consecutive heartbeats within the PPG signal. The R-peak serves as an exact specification of the period

length, the actual dissection of the periods is done 37 samples after the R-peak as shown in Figure 1. In

order to compare the actual results with the PTT method, the PTT is calculated for every beat. In this

case, the PTT are calculated from the R-peak to the minimum of the PPG signal, as well as the inflexion

point and to the maximum of the PPG and then correlated with the BP.

In order to compare the results of the novel method with the state-of-the-art PTT method, the PTT

is calculated and correlated with the BP. Therefore three different PTT are calculated beginning from

the R-peak to the i) minimum , ii) inflexion point and iii) maximum of the PPG signal. The correlation

coefficients of the three PTT methods with the SBP, MBP and DBP are shown in table 1.

Furthermore, the following instantaneous parameters were calculated and analysed:

1. Pulse transit time (PTT)

2. Instantaneous heart rate (IHR)

3. Instantaneous systolic blood pressure (ISBP)

4. Instantaneous diastolic blood pressure (IDBP)

5. Instantaneous phase-shifts between the fundamental and the first harmonic frequency of the PPG

signal (IHPS)
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2.3. Correlation of the IHPS to BP

Suspected linear interdependence between two signals can be quantified by calculating the empirical

linear correlation coefficient r. Given by

r (x, y) =

Np∑
pi=1

(xpi − x) · (ypi − y)√
Np∑
pi=1

(xpi − x)
2 ·

Np∑
pi=1

(ypi − y)
2

, (2)

this correlation coefficient is a measure for the similarity of two signals x and y, where xpi and ypi are

the instantaneous values, x and y are the mean values, pi is the period index and Np is the total number of

periods.

According to equation 2, the correlation coefficient of two signals is always in the range −1 ≤ r ≤ 1,

whereby a value |r| > 0.8 is considered to indicate a strong correlation between two variables [41].

Apparently, the beat-oriented analysis of the signal has the disadvantage that the individual heartbeats

differ in time length. Therefore, the frequency resolution ∆fi of the DFT can fluctuate from beat to beat

and influence the detection of the harmonics. The length variation can be seen in Figure 3 showing the

instantaneous heart rate (IHR) in beats per minute and in context with the IHPS and the SBP. It calculates

as

IHRpi =
fs · 60s

Nspi
(3)

from the sampling frequency fs and the number Nspi of sampled values attributed to the ith period pi. With

r (IHR,DBP ) = 0.8774, r (IHR,MBP ) = 0.9305 and r (IHR, SBP ) = 0.8936, the empirical correlations

between these variables were reasonably strong, which also becomes evident by the similarities of the graphs

in Figure 3.

2.4. Calculation of the IHPS per Heartbeat

According to [42], the frequency domain analysis of each heartbeat in the PPG signal using the DFT is

given by

Xpi [k] =

Nspi
−1∑

n=0

xpi (n) e
−j2π kn

Nspi . (4)

In this equation, Xpi [k] are the complex coefficients resulting from the DFT, xpi (n) is the discrete signal

being analysed, Nspi is the number of samples attributed to period pi, n is an index to enumerate the

samples, k is the index of the discrete frequency, and j is the imaginary number. The frequency resolution

of the DFT is given by ∆fi = fs
Nspi

, where fs is the sampling frequency, and Nspi is the number of samples

of the ith period. The amplitudes (equation 5) and phases (equation 6) can be calculated from the complex
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numbers Xpi,o = api,o + jbpi,o, where o is the index of the particular harmonic. The amplitude |Xpi,o| of

the oth harmonic is obtained by

|Xpi,o| =
√
a2pi,o + b2pi,o, (5)

while the phases ϕpi,1, ϕpi,2 and the relative phase shift ∆ϕpi,2,1 of the fundamental and the first

harmonic for a period pi, 1 ≤ pi ≤ Np = 843 are computed as:

ϕpi,1 = ] (Xpi,1 = api,1 + jbpi,1)

ϕpi,2 = ] (Xpi,2 = api,2 + jbpi,2)

∆ϕpi,2,1 = ϕpi,2 − ϕpi,1. (6)

The relative phase-shift is a quantity that describes the difference in phase velocity of the fundamental and

the first harmonic at the certain state of arterial dilation. The absolute values of the phase-shifts (and thus

also any constant synchronisation delays) play a minor role in the interpretation. Furthermore, we note that

the phase-shifts were found to be independent from the IHR that can significantly vary from beat to beat.

While this allows for a consistent interpretation of the phase shift throughout the time series, it also paves

the way to the application of coherent averaging techniques.

The amplitudes |Xpi | and the phases ϕpi in the typical spectrum of a pulse wave extracted from the

PPG signal are shown as double-sided spectrum with the values for the fundamental frequency and the

first harmonic highlighted by solid lines in Figure 2. For further calculations, only the phase of the positive

frequency spectrum is used. Figure 3 shows the SBP, the IHPS and the IHR that resulted from single beat

analysis of the full dataset.

Introducing a quasi-constant frequency resolution allows for a more accurate determination of the har-

monics and thus creates better preconditions for correlation. The most prominent options to improve

comparability are:

1. Multi-period correlation of IHPS and BP to increase ∆f

2. Coherent averaging (CA) without overlap

3. Zero padding and computation of the quasi-continuous spectrum ∆f

The main assumption for our method is that any change in the amplitude and offset of the BP is encoded

in the frequency domain, where it manifests as phase shift. Altering the time base of the signal in such a

way that every single period in a batch of periods has the same period length, as it is done in the case of

CA, results to a common fundamental. Since all harmonics are equally stretched, the relative phase-shifts

between the fundamental and the harmonics within the periods are preserved.
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Figure 2: Amplitudes |Xpi | (upper diagram) and phases ϕpi (lower diagram) of a single pulse wave within the PPG signal

plotted as a double-sided frequency spectrum. The amplitudes and phases of the fundamental ϕpi,1 and the first harmonic

ϕpi,2 of the signal are highlighted by solid lines.
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Figure 3: The SBP, the IHPS within the PPG signal and the IHR plotted over Np = 843 periods. The graph indicates a strong

correlation of the signals.

2.4.1. Multi-Period Correlation of IHPS and BP to Increase ∆f

For multi-period analysis, DFT is applied to several successive periods. The filtering done by the multi-

period analysis method smooths the signal in the time domain. By regarding signal sections that span
8
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several periods of the PPG signal, the frequency resolution is increased by approximately the number of

batched periods, and the relative phase-shift can be determined more precisely compared with single-period

analysis. Further, the sizes of the singles batches can by chosen individually and in such a way that the

correlation coefficient is maximized. As this analysis can be done with respect to the systole and the diastole,

the number of periods being aggregated can largely differ.

2.4.2. Coherent Averaging

Coherent averaging (CA) has been successfully used in similar settings [43, 44]. The idea behind this

method is to unify the lengths of a given number of pulse waves in the time domain by stretching the time

base of each pulse wave to a common duration, e.g. to the maximal duration found within the whole set.

Resampling with a common sample rate will lead to a homogeneous representation that describes every

pulse wave with the same number of samples, so that is straightforward to compute the pointwise mean

and standard deviation of a batch of pulse waves (see Figure 4). With respect to averaging, the method

can easily be varied to evaluate a moving average of pulse wave sequences of some fixed length without any

overlapping.
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Figure 4: The CA signal calculated as pointwise average from n = 5 subsequent pulse waves of the PPG signal stretched to

a uniform duration. The pointwise standard deviation can be used to define a band around the averaged signal for outlier

treatment.

The advantages of CA lies in a uniform frequency resolution ∆fCA and an easy outlier treatment.
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2.4.3. Zero Padding and Computation of a Quasi-continuous Spectrum

Another common method to improve the frequency resolution is a unification by zero padding each

pulse wave to a given length, which also unifies the frequency resolution ∆f to a common value. Here, the

challenge is to determine the fundamental frequency exactly, since the detection is more difficult due to the

leakage effect that comes along with zero padding.
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Figure 5: The unilateral amplitude and phase spectra of a PPG signal after unifying the pulse wave lengths by zero padding

(with discrete bins) in overlay with the quasi-continuous spectrum (envelope) up to a frequency of 10 Hz. The fundamental

frequency marked with  and the first harmonic marked with � can be determined with high precision by detecting the

associated local maxima of the amplitude in the quasi-continuous spectrum.

To find the exact harmonics, a quasi-continuous spectrum is computed using interpolation. The resolution

of the frequency domain is artificially increased to any desired refinement by computing the quasi-continuous

signal

Xpi [k] =

Nqc−1∑
k=0

xpi (n) e
−j2πn k

Nqc , (7)

in a refined frequency domain, where xpi (n) is the sampled signal for a period pi, n is the sample index,

k is the summation index, and Nqc is the number of values of the quasi-continuous signal. As shown in

Figure 5, the fundamental frequency marked with  and the first harmonic frequency marked with � can

be determined via the indices of the associated local amplitude maxima in the quasi-continuous spectrum.
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2.5. Determination of the Linear Regression Function between the IHPS and the SBP

To describe the statistical relationship between the SBP and the IHPS it is required to choose a regression

function. A scatter plot of the relation, as shown in Figure 6, can help to find out, whether it is promising

to conclude a linear regression function

y (x) = β0 + β1 · x+ ei, (8)

where β0 is the intercept, β1 is the slope of the function and ei the residual of a particular pair with respect

to these two parameters. The regression function we used for our regression analysis is given by

SBP (∆ϕ) = 404.4571 + 39.5549 ·∆ϕ (9)

and displayed in Figure 6 together with the confidence interval and the prediction interval for further data

with respect to a statistical significance of α = 0.05. Note that these results relate to the IHPS obtained by

the multi period analysis.
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Figure 6: Scatter plot of the relation between the SBP and IHPS obtained by CA with OL with linear regression function,

confidence interval and prediction interval determined by linear regression analysis.

To ensure that the assumptions of linear regression hold for our analysis, it is necessary to check whether

the residuals ei are normally distributed with ei ∼ N〈0, σ2〉. This holds if (i) the expectation value E〈ei〉 = 0,

(ii) the standard deviation std〈ei〉 =
√
var〈ei〉 = σ and (iii) the probability plot indicates normality [41]. The

requirements (i) and (ii) can be checked by calculating the expectation value and the standard deviation
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Figure 7: Plot of the residual noise ei of the regression analysis against the period number with expectation value E〈ei〉 = 0

and standard deviation std〈ei〉 = σ.
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Figure 8: Testing the residuals ei of our regression analysis for normality to meet the requirements of the regression analysis.

Normally distributed data show some dominant linear arrangement and symmetry with respect to the expectation value.
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and plotting them together with the residuals against the period index Np, as shown in Figure 7. The

probability plot according to requirement (iii) is shown in Figure 8. It indicates normal distribution if the

data points spread in a linear fashion around the expectation value and approximate a straight line – and

comes out well for our dataset.

2.6. Method Verification by Synthetic PPG Signals from Regression Analysis

The correlation between the BP and the IHPS can in turn also be utilized to simulate the effect of a

pressure change on a given PPG signal. Taking some SBP (or DBP) value as argument, the generator

function can compute the corresponding modulation of the PPG signal by exploiting the correlation given

by the linear regression function (see equations 8 and 9).

Figure 9 shows the results of such a synthetic modulation conducted with a series of systolic pressures

given by sbp [k] = 110mmHg + k · 3.5mmHg, for {k ∈ N | 0 ≤ k ≤ 20}. Varying the SBP between 110 and

180 mmHg complied well with the value range found in the previously analysed dataset. The superposed

graphs indicate how the PPG signal morphs in response to an increase of the SBP in discrete steps of 3.5

mmHg.

To validate the phase-shift analysis function of our method, the output of the generator function can

be analysed in the same way as a measured PPG signal (with known segmentation). Proper operation is

indicated if the phase-shift analysis function exactly finds the IHPS and SBP used for sample generation,

provided the parameters of the regression function are known.

3. Results

DFT evaluation of a single PPG signal in a beat-to-beat manner with subsequent phase analysis revealed

a strong correlation between the IHPS and the IBP. The essential ingredient for the calculation of the IHPS

is a precise segmentation of the PPG signal into single pulse waves, which can be accomplished by finding

the time indices of the R-peak maxima in the ECG signal, if available. Regarding each pulse wave as full

period of a signal, it is straightforward to decompose the signal into a fundamental and its harmonics by

DFT. With this pre-processing, specific regression analysis was done by relating the relative phase-shifts

between the fundamental and the first harmonic of the single pulse waves to the SBP and the DBP provided

by the corresponding IBP signal. Additionally, different post-processing methods were studied that further

increased the correlation values. Table 1 shows the obtained results in a concise way and with the strongest

correlations highlighted, for comparison the state-of-the-art the correlation coefficients resulting from the

PTT method are given side by side. However strongest correlation PTT to BP was observed for the PTTmax

which has a mean correlation of approximately 0.63.

Good correlation values with an average of ≈ 0.85 for SBP and DBP over the total signal duration

of Np = 843 periods were determined for single-period analysis without any post-processing. Multi-period
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Figure 9: Single period of a measured PPG signal in superposition with 20 simulated PPG signals derived by synthetic

modulation of fhe measured PPG signal with a uniform sequence of 20 SBP values ranging between 110 and 180 mmHg for a

given regression function.

analysis in contrast, achieved increased values, and it turned out that the stop criterion used by the procedure

to optimize the number of periods combined for multi-period analysis, lead to an average of five periods for

the SBP correlation, in contrast to an average of eight periods for the DBP correlation.

The highest correlation values were achieved by regarding batches of subsequent pulse waves, with each

pulse wave stretched (and resampled) to the maximum length found in the batch, and then applying CA.

For the correlation with SBP the best result (r = 0.8945) of all post-processing methods was achieved by

CA without overlapping using a batch size of 15 periods, while the correlation with DBP climbed up to

r = 0.9082 were a batch size of 11 periods was used.

Zero padding with subsequent quasi-continuous spectrum calculation contributed to the lowest correlation

values, while demanding the highest calculation effort due to the necessary calculation of the quasi-continuous

spectrum.

To support the hypothesis of a linear correlation between IHPS and BP further, the preconditions of

linear regression analysis were checked for violation. The analysis of the residuals with respect to the

determined regression function unveiled no further functional relation, and the probability plot showed all

signs of a normal distribution as well. This confirms that a correct relation was deduced.

Finally, to crosscheck also the algorithm used for phase-shift determination, a synthesised PPG signal
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Table 1: Overview of the linear correlation coefficients for the relation of the IHPS and the SBP, MBP and DBP achieved with

the different post processing methods.

Method

Correlation

coefficient rmax

with SBP

Correlation

coefficient rmax

with MBP

Correlation

coefficient rmax

with DBP

PTTmin -0.3805 (1 period) -0.4177 (1 period) -0.4341 (1 period)

PTTTP -0.5558 (1 period) -0.5931 (1 period) -0.6119 (1 period)

PTTmax -0.5984 (1 period) -0.6296 (1 period) -0.6471 (1 period)

Single-period 0.8600 (1 period) 0.9002 (1 period) 0.8391 (1 period)

Multi-period 0.8837 (5 periods) 0.9146 (5 periods) 0.8742 (8 periods)

Coherent averaging without overlapping 0.8945 (15 periods) 0.9322 (15 periods) 0.9082 (11 periods)

Zero padding with quasi continuous spectrum 0.5778 (1 period) 0.5828 (1 period) 0.4849 (1 period)

gained through modulating a measured PPG pulse wave by means of the previously determined regression

function for a wide range of SBP was processed. The analysis reproduced the synthetic input as expected.

4. Discussion

In this research, we have proposed and evaluated a novel method for correlating the CBP from harmonic

phase-shifts derived from non-invasive peripheral PPG signals. Our comparative study further identified the

post-processing method of CA as best method for correlating the IHPS with the SBP, the MBP and also

the DBP.

4.1. Restrictions of the Investigation

The main limitation for this investigation was the scope of the data regarded. The available dataset

(i) had a length of 8m 57s, equivalent to Np = 843 heartbeats, and a low sample rate of only 125 Hz,

(ii) contained measurements of only one subject, (iii) originated from an intensive care unit (ICU) patient

with no in-depth information available about the state of health, the reason for the stay or any external

factors like the conditions of movement or medication. Further limitations of the presented method relate

to the algorithms used for analysis: (iv) the phase-shift was only calculated with respect to the fundamental

frequency and the first harmonic and (v) an additional ECG signal was used for exact period detection. As

the results obtained by the method are very sensitive to the period lengths, period determination had to be

done with great care. A segmentation based on the R-peak of the ECG signal proved to be a reliable and

robust method.

Despite our very promising results, with regard to the mentioned limitations, the method needs further

validation by investigation that is more extensive. Further studies should focus on a refinement of the cor-

relation between the IHPS and the BP. In additon, a linear correlation coefficient might be too restrictive
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to express a relationship that traces back to arterial stiffness known to have some exponential characteristic

with respect to pressure. We are convinced that the presented novel method contains further space for im-

provement that will increase the correlation coefficient. To harness this potential, it is important to evaluate

the phase-shift more quantitatively, under different conditions and with access to suitable measurements

that extend over longer time periods and originate from different subjects. Additionally, further research

should focus on a method that allows for a reliable period segmentation based on the PPG signal only.

4.2. Advantages of the Novel Method

A main advantage of this novel method is the prospect that one standard PPG sensor providing raw

data could be sufficient for long time measurement of the BP. In this case the benefit for patients would not

only be a simple and reliable measurement method, but also an easy handling that would notably reduce

patient load in comparison to the state-of-the-art cuff based or PTT methods, especially for long time

measurements. Both, the stress and the restriction of the patients during long-term measurements will be

significantly lower than with the standard methods. We expect that by use of this novel method the IBP can

be finally estimated from any pulse oximeter providing raw data, which nowadays serves as standard sensor

in health monitoring. Furthermore, the analysis of the signal in frequency domain avoids the drawbacks

that emerge from time domain analysis, characteristic for the state-of-the-art PTT method. The calculation

effort required for the novel method is quite low, so that the algorithms can be easily implemented at the

level of common embedded systems. In combination with a small sensor, the entire measurement equipment

can be kept very compact.

4.3. Uniqueness of the Solutions

The analysis of only one PPG signal for the determination of the BP in the frequency domain is an

essential feature of the novel method and thereby significantly improves the measuring conditions by the

simple measurement setup using only one sensor at the fingertip. Furthermore, the analysis of the signal

in frequency domain is not dependent on the afore said drawbacks presented in the state-of-the-art PTT

method emerging in time domain analysis, which is also due to the fact that the determination of the phase-

shift is a relative quantity in comparison to the absolute time measurement of the PTT method. Beside the

simplicity of the measurement setup and the analysis algorithms, the correlation of the single signal analysis

is as high as the state-of-the-art PTT correlation values. According to its simplicity, we assume that the

novel method will improve the measurement setup and interpretation of BP data of hypertensive patients in

near feature significantly. Analysing other datasets with the phase-shift algorithm have further supported

this method and provide similar results. In comparison to the results obtained by means of PTT in the

correlation between either PTT and the SBP/DBP, the method presented here is at least as good as most

other results [5, 24–27, 45].
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4.4. Outlook to Further Investigations

The quasi-continuous analysis of the PPG signal in frequency domain and its good results in correlation

with the BP shows the potential of the novel method for non-invasive CBP determination by means of a

PPG signal in the frequency domain. By further improving the method through the use of better analytical

methods and other transformations or relations, it should be possible to obtain continuous results using this

novel method.
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