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Abstract 

Background 

Despite recent efforts, a single factor underlying the gut microbiota dysbiosis in intestinal 

diseases is not identified. We hypothesized that compromised intestinal barrier (CIB) could lead 

to increased host-derived contents including human cells in the gut, change its physio-metabolic 

properties, and globally alter gut microbiota and their metabolic capacities.  

Results 

Consistently, we found human DNA contents (HDCs), calculated as the percentage of 

metagenomic sequencing reads mapped to the human genome, were significantly elevated in 

colorectal cancer (CRC) patients; HDC correlated with microbial- and 

metabolic-pathway-biomarkers of CRC, and was the most important contributor to patient 

stratification. We found similar results in Crohn’s disease (CD); additionally, patients treated with 

diet and drug intervention showed reduced HDC levels over time, and were accompanied by 

reversing changes of many CD-signature species.  

Conclusions 

Our results suggested that host-derived contents may have greater impact on gut microbiota than 

previously anticipated, and CIB could be an ideal treatment target that could reverse dysbiosis 

globally and precisely. 

 

Background 

Colorectal cancer (CRC) is the 3rd most common cancer worldwide and the 2nd leading cause of 

cancer-related death in the United States [1, 2]; in recent years, the incidence of CRC has been 
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increasing in young adults in major western countries [3, 4]. Similarly, Crohn’s disease (CD) is 

also increasing worldwide and can be attributed largely to industrial urbanization and Western 

life-styles [5]. As genetics could only explain limited proportions of the CRC [6, 7] and CD [8] 

incidences, researchers have recently linked it to environmental factors, life styles and gut 

microbiota dysbiosis [8-13]. By contrasting gut microbiome profiles of CRC and CD patients to 

that of the healthy controls, researchers have identified bacterial species that were specifically 

enriched in CRC [10-12, 14] and CD [13] respectively; many of the CRC-enriched species were 

recently found to be consistent across populations, according to two meta-analysis studies [15, 

16]. In addition, microbial genes involved in various biological pathways were also enriched in the 

gut microbiota of CRC [10, 15, 16] and CD [13] patients. Both the differential species and 

pathways can be used as non-invasive markers for patient stratification [10, 11, 13, 15, 16]. These 

findings greatly improved our understanding on the potential roles of gut microbiota in the 

pathogenesis and/or development of these intestinal diseases, and implied a global alteration of 

the local gut environment in the patients. However, a single dominant factor that underlies (e.g. 

globally correlates with biomarkers of) the gut microbiota dysbiosis associated with these 

diseases has not been identified. 

Compromised intestinal barrier (CIB) has been shown to associate with many intestinal 

diseases, including inflammatory bowel diseases (IBD) [17] and CRC [18, 19]. CIB could increase 

the amount of host-derived contents, including epithelial cells and blood to be shed into feces [20], 

alters the physio-metabolic properties of the gut environment [21] and consequently leads to 

global alterations in gut microbiota composition (dysbiosis). We thus hypothesized that CIB could 
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be a major factor underlying the gut microbiota dysbiosis in CRC and CD: the severity of which 

may correlate with the extent of the dysbiosis. 

Previous researches have detected increased human DNAs in feces from patients of various 

diseases using real-time polymerase chain reaction (RT-PCR) technique. For example, patients 

with inflammatory or pathogenic agents such as Clostridium difficile infection were found with 

higher human DNA content in feces and lower microbial diversity [22, 23]. Since fecal 

metagenomics are obtained using whole-genome shotgun sequencing and contain unbiased 

survey on bacterial, viral and host DNA contents, we could directly calculate the human DNA 

content (HDC) as the percentage of the gut metagenomics sequencing reads mapped to the 

human genome (see Methods) for each fecal sample and use it as a proxy of CIB. 

In this study, we collected eight metagenomic datasets from two most common intestinal 

diseases. We confirmed our hypothesis that not only HDC was significantly elevated in the 

patients, but also they were significantly correlated with disease-signature species and metabolic 

pathways. HDC could improve the performance of patient stratification models, and ranked as the 

most important contributing factor. More importantly, we found that HDC can be used as a better 

biomarker for effective treatment, because it signified the global recovery of altered species in 

Crohn’s disease. Together, our results suggested that host derived contents, as proxied by HDC, 

had greater impact on gut microbiota than we previously expected; treatment targeting the source 

of increased host contents, i.e. CIB, can reverse gut dysbiosis in a global and precise manner. 

 

Results 

Increased human DNA contents (HDCs) in CRC patients.  
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We first focused on CRC. As expected, we found that HDCs were significantly higher in feces of 

CRC patients than that of the healthy controls in all seven datasets (Fig. 1a, Tables S1 and 

Tables S2). We identified in total 21 species that were significantly correlated with HDCs in more 

than two datasets (Spearman Rank Correlation, Fig. 1b; see Methods and Table S3). Among 

which, eleven overlapped with the CRC microbial signatures identified by the two recent 

meta-analysis (referred to as CRC-signature species below) [15, 16], including ten CRC-enriched 

and one CRC-depleted species (Fig. 1b). We also identified sixteen metabolic pathways that were 

significantly correlated with HDCs (Table S4); among which, five were previously identified 

metabolic-pathway-biomarkers for CRC (referred to as CRC-signature pathways below). These 

results validated our hypotheses that CIB, as indicated by HDCs that can be directly quantified 

from gut metagenomics data, underlies the dysbiosis in CRC patients.  

 

Increased HDC underlie altered species and metabolic pathways in CRC and contributed 

significantly to patient stratification.  

We next tested if HDC and correlated species and pathways (referred as to HDC-species and 

HDC-pathways respectively) could contribute to patient stratification in CRC. Similar to Wirbel et 

al [15] and Thomas et al [16], we performed a leave-one-dataset-out (LODO) analysis [24] in 

which Random forest classifiers were trained on the combined datasets of all but one, and tested 

on the one that was left-out; we did this for each dataset in turn. As shown in Fig. 2a and 2c, for 

models trained using species and pathways abundances, including HDCs could improve 

prediction performance. More importantly, HDC was ranked as the most important feature in 

models trained with HDCs (Fig. 2b and 2d). In addition, in the taxonomic-based models, all of the 
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top ten features were HDC-species (excluding HDC itself if it was used in model training); by 

contrast, only six were CRC-signature species described by the previous meta-analyses (Fig. 2b, 

see also ref [15, 16]). Similarly, in the pathway-based models, nine out of the top ten features 

were HDC-pathways, while six of them were CRC-signature pathways. These results indicated 

the HDC-correlated features could contribute substantially to patient stratification and diagnosis. 

It’s worth to note that models trained on HDC-species and differential-species identified using 

Wilcoxon Rank Sum Test (see Methods) did not differ significantly in their predictive performance 

(Fig 2a), implying redundant roles of some species in model training; similar results were found in 

HDC-pathways (Fig 2c). 

 

Similar results were found in CD.  

We then checked if similar results could be found in CD. A previous study reported elevated fecal 

HDCs in pediatric CD as compared with healthy controls [13]; the authors used quantitative 

polymerase chain reaction (QPCR) method to quantify HDCs by targeting human beta-tubulin 

coding-sequences. The authors also calculated HDCs from the metagenomics data and reported 

that the QPCR results were positively correlated with metagenomics-data-derived HDC values (r 

= 0.81 Pearson’s correlation, p = 9.3 x 10-11; see ref [13]). We re-calculated the HDCs using our 

methods and found they were highly correlated with theirs (r = 0.977 Pearson’s correlation, p = 

4.16 x 10-109; Table S5). These results further validated the reliability and accuracy of 

metagenomics-derived HDCs.  

We identified 40 HDC-correlated species, most of which were also differential-species 

(CD-signature species) that showed significant abundance changes between healthy controls and 
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untreated patients (Control+Baseline group, Fig 3a, Table S6 and Table S7). We also built 

Random forest classifiers using species abundances for CD and did 20 times repeated 10-fold 

cross-validation. Similar to CRC, we found that adding HDC to the input data could improve 

prediction performance (AUC increased from 0.938 to 0.953); also similar to CRC, we found that 

HDC was ranked as the most important feature, and top ten features were all HDC-correlated (Fig 

3b). Interestingly, although overlapped significantly, these species are quite different from those in 

CRC (Table S8) in terms of their changes and importance in patient stratification (Fig. 3b), likely 

due to the fact that CD occurred at the small intestine (ileum) and colon, while CRC occurred at 

more downstream of the intestinal tract. Nonetheless, it appears that elevated HDC is a common 

feature of intestinal diseases, while different diseases can be distinguished by their different gut 

dysbiosis profiles. 

 

HDC signified clinical treatment outcomes and recovery of disease-altered species.  

The CD patients were treated with diet intervention and anti-TNF antibodies; the outcomes were 

evaluated with fecal metagenomics sequencing at week 1, 4 and 8 after the interventions [13]. We 

found that the HDCs were significantly decreased over time (Fig 4a). Strikingly, we found majority 

of the HDC-correlated species showed coordinated changes with HDC, i.e. species that were 

positively (negatively) correlated with HDC in the Control+Baseline group decreased (increased) 

with the decreasing HDCs (Fig. 4b-f, Figure S1), suggesting that the intervention that reduced 

fecal HDCs could globally reverse the gut dysbiosis in a species-specific manner. Such a 

conclusion was further supported by the observation that the correlations between HDC and 

many of the species were consistent in the Control+Baseline, Week1, Week4 and Week8 groups 
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(Fig 3b). As expected, HDC correlates significantly with fecal calprotectin (FCP; Pearson’s 

correlation = 0.518, p = 1.4�10-23, Figure S2), a clinical indicator of intestinal inflammation. 

However, the correlations between CD-signature species and FCP were much lower than that of 

the HDC (Figure S3). These results indicated that HDC is a better biomarker for the disease and 

effective treatment. 

 

Discussion 

Together, our hypothesis driven method identified compromised intestinal barrier (CIB), indicated 

by elevated human DNA contents (HDCs) in feces, as a major factor underlying the gut microbiota 

dysbiosis in patients with intestinal diseases. CIB can increase the host-derived contents 

including epithelial cells and/or blood to be shed into feces, alter the local gut environment and 

lead to gut microbiota dysbiosis. Due to the reciprocal relationship between gut microbiota and 

the host [25, 26], the latter may lead to more severe CIB conditions. So far researchers have 

mostly focused on the impact of CIB on the host [27-30], much less on the other way round; our 

results demonstrated that the increased host-derived contents in the gut due to CIB may have 

greater impact on gut microbiota that we previously anticipated. Our results suggested that CIB 

could be an ideal target for treatment and intervention: by targeting the molecular processes that 

might cause the elevated HDC, and/or reversing the physiological and metabolic changes that 

CIB brought to the feces, we should be able to first improve the gut local environments and then 

reverse the gut microbiota dysbiosis in a global and precise manner. Of course, more 

experiments should be performed on CRC and other intestinal diseases in order to further 

validate our results. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 29, 2019. ; https://doi.org/10.1101/19011833doi: medRxiv preprint 

https://doi.org/10.1101/19011833
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10

We are the first to take advantage of metagenomics-data-derived HDCs and used it as a 

valid indicator of patient stratification via meta-analysis. In silico removal of host DNAs from 

metagenomics data is a recommended procedure [31], however, a quantitative definition of a 

contaminated sample is still illusive. Our results indicate that the metagenomics data can validate 

itself by looking at the correlated changes in HDC and related gut microbial species: a sudden 

increase in HDC without matching alterations in related bacteria is a strong indication of 

contamination. This line of reasoning can be applied to any host-produced molecules identified 

from feces, such as DNA, RNAs, proteins, metabolites and even cells, and would pave the way 

for extracting more host related information directly from fecal samples using multi-omics 

techniques and making use of them without worrying too much about contamination. As we have 

shown in this study, host related information directly extracted from fecal samples is reliable and 

useful. 

 

Conclusions 

In summary, we found that compromised intestinal barrier, as indicated by elevated human DNA 

contents (HDCs) in feces, is a common feature of intestinal diseases; HDC could be a promising 

biomarker for intestinal diseases because it signified the abundances changes of most of 

disease-related species, ranked as the top contributor to machine learning models for patient 

stratification, and was a better biomarker for effective treatment than fecal calprotectin (FCP). 

These results suggested that host derived contents may have greater impact on gut microbiota, 

and called for more attentions to be paid to possible impacts of host derived contents to the gut, 
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the underlying mechanisms, and their possible roles in intestinal diseases, as most of current 

research focused on the impacts of gut contents to the host.   

 

Methods 

Metagenomics data analysis 

A total of 354 CRC patients, 87 CD patients and 382 controls from eight fecal metagenomics 

datasets were included in this study. More details, including the nationality and age of these 

subjects, can be found in Table S1. To remove adapters and low quality of bases, raw reads were 

filtered and trimmed by Trimmomatic [32] v3.6, using the Truseq3 adapter files and option with 

MINLEN cutoff 50. To estimate the human DNA contents (HDC) in metagenomics sequencing 

reads, the remaining reads (clean reads) were aligned to the human reference genome (hg19) 

using bowtie2 [33] (version 2.3.4.3); the HDC of a sample was calculated as the percentage of 

mapped reads out of total clean reads in the sample. The human DNA contents measured by 

quantitative PCR (QPCR) results in CD dataset were obtained from the corresponding publication 

by Lewis and colleagues [13]. 

Reads mapped to the human genome were removed before subsequent analyses. 

Taxonomic abundances of all metagenomic samples were quantified using MetaPhlAn2 [34]. 

HUMAnN2 [35] was used to calculate relative pathway abundances via mapping reads to 

ChocoPhlAn database and full UniRef90 database.  

In each project, species with max abundance <1% in all samples as well as species whose 

average abundance across all samples below 0.01% were removed from further analyses. 
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Similarly, pathways with maximum relative abundances less than 1× 10-6 in all samples of a 

project were also removed. 

Statistics and modeling 

All processed data were loaded into R (https://www.r-project.org) and analyzed. Wilcoxon Rank 

Sum Test was used to detect significant between-group differences in relative abundances of 

taxonomic- and pathway- features; features with P-value < 0.05 were deemed significant. 

Spearman correlation was used to find HDC correlated species and pathways, features with 

P-value < 0.05 were selected as significantly correlated features.  

The SIAMCAT package (https://bioconductor.org/packages/SIAMCAT/) in R was used to 

build mathematic classification models (classifiers) that are capable of distinguishing patients and 

tumor-free participants, extract features that can be used to discriminate different phenotype 

groups and calculate feature importance scores. Random forest algorithm implemented in 

SIAMCAT was used for model training and classification. 

For the CD data, 20 times repeated ten-fold cross-validation (200 models would be obtained) 

implemented in the SIAMCAT package was used to assess the within-dataset accuracy of the 

resulting classifiers. For the CRC data, a so-called leave-one-dataset-out (LODO) analysis was 

also performed in order to evaluation cross-study performance of the obtained classifiers. In 

LODO analyses, all datasets except the one used for model testing were pooled as a training 

dataset which would be implemented the within-dataset ten-fold cross-validation; LODO was 

performed for each dataset in turn and were repeated 10 times, for all the seven CRC datasets. 

The LODO training dataset prediction accuracy was measured through ten times repeated 

ten-fold cross-validation. 
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Fig. 1 | Human DNA contents (HDCs) were significantly elevated in feces of CRC patients, and 

correlated with microbial- and metabolic-pathway-biomarkers. a, HDCs, calculated as the 

percentage of gut metagenomics sequencing reads mapped to the human genome, were 

significantly higher in CRC (dark red box) than healthy controls (grey box) in seven recently 

published datasets (Wilcoxon Rank Sum Test, see Methods). b, Species that were significantly 

correlated with HDCs in two and more CRC datasets (Spearman Rank Correlation, see Methods). 

Correlations were calculated using both CRC patients and healthy controls. Red: previously 

identified microbial- biomarkers of CRC [15, 16]. c, Metabolic pathways that were significantly 

correlated with HDCs in three and more CRC datasets. Correlations were calculated using both 

CRC patients and healthy controls. Red: previously identified pathway- biomarkers of CRC [15, 

16]. 

 

Fig. 2 | HDC and correlated species and metabolic-pathways contribute significantly to patient 

stratification in LODO analysis in CRC. a, Predictive performances as AUC values obtained using 

leave-one-dataset-out (LODO) analysis by training the models on the species abundances. The 

AUC values were averaged from repeated results of 10-fold validation analysis. Dif-species: 

species whose abundances are significantly different between CRC and controls in at least one 

dataset (Wilcoxon Rank Sum Test, see Methods); HDC-species: HDC-correlated species; see 

Methods for details. All-species: models build on all species. b, Ranking of feature importance in 

the HDC + All-species model. The models were trained by using HDC values and relative 

abundances of all species as input. The importance scores were reported by the LODO models. 

The features were ranked according to the median importance scores from 100 repeated results 
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of 10-fold validation analysis, see Methods. Blue: HDC, Green: HDC-species; Red: Dif-species 

that correlated with HDC, Grey: other species. c, AUC values obtained using LODO analysis by 

training the models on the metabolic pathway abundances. Dif-pathways: pathways whose 

abundances are significantly different between CRC and controls (Wilcoxon Rank Sum Test, see 

Methods); HDC-pathways: HDC-correlated pathways; see Methods for details. All-pathways: 

models build on all pathways. d, Ranking of feature importance in the HDC + All-pathway model. 

The models were trained by using HDC values and relative abundances of all pathways as input. 

The importance scores were reported by the LODO models. Blue: HDC, Green: HDC-correlated 

pathways; Red: Dif-pathways that correlated with HDC, Grey: other pathways. 

 

Fig. 3 | HDC was also elevated in CD, correlated with differential species and contributed 

significantly to patient stratification. a, Species that were correlated with HDCs in the group of 

healthy controls and untreated patients (Baseline + Control). Also plotted are the correlation 

coefficients between HDCs and species abundances in patients at three time-points after they 

were treated (Week1, Week4 and Week8). Correlation coefficients were color-coded according to 

their significance levels. b, Ranking of feature importance in the HDC + All-species model. The 

models were trained by using HDC values and relative abundances of all species as input; only 

the data of the healthy controls and untreated patients were used. The importance scores were 

reported by the Random forest models. The features were ranked according to the median 

importance scores from 200 repeated results of 10-fold validation analysis, see Methods. Blue: 

HDC, Green: HDC-species; Red: species whose abundances are correlated with HDC and 
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significantly different between healthy controls and the untreated CD patients, Grey: other 

species. 

 

Fig. 4 | Treatment that reduced fecal HDCs could globally and precisely reverse the changes of 

HDC-correlated species in CD. a, HDCs were significantly reduced along the course of treatment. 

b, The abundance changes of Escherichia coli along the course of treatment; p-values were 

calculated by comparing the abundances between groups (Kruskal-Wallis test). Other exemplary 

species include: c, Subdoligranulum spp. d. Roseburia intestinalis. e, Ruminococcus obeum. f, 

Roseburia hominis. 

 

Additional files 

Table S1. A list of CRC and CD projects used in this study and the numbers of controls and 

cases. 

Table S2. Metadata of participants in CRC projects and their HDC%. HDC means the human 

DNA content.  

Table S3. Species that correlated with HDC in more than two CRC datasets statistically. Species 

whose Spearman p-value <0.05 in any project were deemed as HDC correlated species. The 

column overlap = "1" means that the specie is a diagnostic feature in other meta-analyses (pmid:  

30936548 and 30936547).  

Table S4. Pathways that correlated with HDCs in more than three CRC datasets. Pathways 

whose Spearman p-value <0.05 in any project were deemed as HDC correlated pathways. The 
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column overlap ="1" means the pathway is a diagnostic feature in other meta-analysis (pmid: 

30936548). 

Table S5. A list of samples of the CD project and their HDC% produced by two ways. Our HDC% 

were generated using Bowtie2, while Lewis's HDC% were generated using BMtagger 

(pmid :26468751). 

Table S6. Species that correlated with HDCs in CD. We calculated Spearman correlation between 

HDC and species relative abundance in each stage of patients and controls. 

Table S7. Differential species in the Control+Baseline group of CD. 

Table S8. Overlapped features of the top 20 important features between CD and CRC. The 

columns "Importance_in_CRC" and "Importance_in_CD" mean the median importance scores of 

the top 20 features in the CRC models and CD models, respectively. The columns 

"ranking_in_CRC" and "ranking_in_CD" mean the importance degrees of the shared features in 

the CRC models and CD models separately. 

Figure S1. Log10-transformed relative abundance distribution of all HDC-correlated species after 

diet and antibodies intervention in CD dataset. 

Figure S2. Correlation between HDC and fecal calprotectin in CD dataset 

Figure S3. Correlations between fecal calprotectin and species in CD dataset. 
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