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Key Points 18 

● Video based deep learning evaluation of cardiac ultrasound accurately identifies 19 

cardiomyopathy and predict ejection fraction, the most common metric of cardiac function.  20 

● Using human tracings obtained during standard clinical workflow, deep learning semantic 21 

segmentation accurately labels the left ventricle frame-by-frame, including in frames 22 

without prior human annotation.  23 

● Computational cardiac function analysis allows for beat-by-beat assessment of ejection 24 

fraction, which more accurately assesses cardiac function in patients with atrial fibrillation, 25 

arrhythmias, and heart rate variability.  26 
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 34 

Abstract 35 

Accurate assessment of cardiac function is crucial for diagnosing cardiovascular disease1, 36 

screening for cardiotoxicity2,3, and deciding clinical management in patients with critical illness4. 37 

However human assessment of cardiac function focuses on a limited sampling of cardiac cycles 38 

and has significant interobserver variability despite years of training2,5,6. To overcome this 39 

challenge, we present the first beat-to-beat deep learning algorithm that surpasses human expert 40 

performance in the critical tasks of segmenting the left ventricle, estimating ejection fraction, and 41 

assessing cardiomyopathy. Trained on echocardiogram videos, our model accurately segments the 42 

left ventricle with a Dice Similarity Coefficient of 0.92, predicts ejection fraction with mean 43 

absolute error of 4.1%, and reliably classifies heart failure with reduced ejection fraction (AUC of 44 

0.97). Prospective evaluation with repeated human measurements confirms that our model has less 45 

variance than experts. By leveraging information across multiple cardiac cycles, our model can 46 

identify subtle changes in ejection fraction, is more reproducible than human evaluation, and lays 47 

the foundation for precise diagnosis of cardiovascular disease. As a new resource to promote 48 

further innovation, we also make publicly available one of the largest medical video dataset of 49 

over 10,000 annotated echocardiograms. 50 

 51 

 52 

Introduction 53 

Cardiac function is essential for maintaining normal systemic tissue perfusion with cardiac 54 

dysfunction manifesting as dyspnea, fatigue, exercise intolerance, fluid retention and 55 

mortality1,3,4,6–9. Impairment of cardiac function is labeled as “cardiomyopathy” or “heart failure” 56 

and is a leading cause of hospitalization in the United States and a growing global health issue1,10,11. 57 

A variety of methodologies have been used to quantify cardiac function and diagnose dysfunction. 58 

In particular, left ventricular ejection fraction (EF), the ratio of left ventricular end systolic and 59 

end diastolic volume, is one of the most important metrics of cardiac function, as it identifies 60 

patients who are eligible for life prolonging therapies8,12. However, there can be significant 61 

interobserver variability as well as inter-modality discordance based on methodology and 62 

modality2,5,6,12–15. 63 
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Human assessment of ejection fraction has variance in part due to common irregularity in the heart 65 

rate and the laborious nature of calculation limiting every beat quantification5,6.  While the 66 

American Society of Echocardiography and the European Association of Cardiovascular Imaging 67 

guidelines recommend tracing and averaging up to 5 consecutive cardiac cycles if variation is 68 

identified, EF is often evaluated from tracings of only one representative beat or visually 69 

approximated if a tracing is deemed inaccurate6. This results in high variance and limited 70 

precision6,16 with interobserver variation ranging from 7.6% to 13.9%5,13–16. This variation is 71 

observed despite substantial training by those reading the EF. More precise evaluation of cardiac 72 

function is necessary, as even patients with borderline reduction in EF have been shown to have 73 

significantly increased morbidity and mortality17–19.  74 

 75 

With rapid image acquisition, relatively low cost, and without ionizing radiation, 76 

echocardiography is the most widely used modality for cardiovascular imaging20,21. Being the most 77 

common first-line cardiovascular imaging modality, there is great interest in using deep learning 78 

techniques to determine ejection fraction22–24. Limitations in human interpretation, including 79 

laborious manual segmentation and inability to perform beat-to-beat quantification may be 80 

overcome by sophisticated automated approaches6,25,26.  Recent advances in deep learning suggest 81 

that it can accurately and reproducibly identify human-identifiable phenotypes as well as 82 

characteristics unrecognized by human experts25,27–29.  83 

 84 

To overcome current limitations of human assessment of the left ventricular ejection fraction, we 85 

propose EchoNet-Dynamic, an end-to-end deep learning approach for left ventricular labeling and 86 

ejection fraction estimation from input echocardiogram videos alone. We first perform frame-level 87 

semantic segmentation of the left ventricle with weak supervision from prior clinical expert 88 

labeling. The segmentations are then combined with the native echocardiogram videos as input for 89 

a 3-dimensional (3D) convolutional neural network (CNN) with residual connections. This 90 

approach provides interpretable tracings of the ventricle, which facilitate human assessment and 91 

downstream analysis, while leveraging the 3D CNN to fully capture spatiotemporal patterns in the 92 

video6,30,31.  93 

 94 
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Results 96 

EchoNet-Dynamic has three key components (Figure 1). First, we constructed a CNN model with 97 

atrous convolutions for frame-level semantic segmentation of the left ventricle. Atrous 98 

convolutions has been previously shown to perform well on non-medical imaging datasets30. The 99 

standard human clinical workflow for estimating ejection fraction requires manual segmentation 100 

of the left ventricle during end-systole and end-diastole. We generalize these labels in a weak 101 

supervision approach with atrous convolutions to generate frame-level semantic segmentation 102 

throughout the cardiac cycle in a 1:1 pairing with the original video. This automatic segmentation 103 

improves the robustness of our model and make it more interpretable to clinicians.  104 

 105 

Second, we trained a CNN model with residual connections and 3D spatiotemporal convolutions 106 

across frames to predict ejection fraction. Unlike prior 3D CNN architectures for medical imaging 107 

machine learning, our approach integrates spatial as well as temporal information with temporal 108 

variation across frames as the third dimension in our network convolutions25,31,32. Spatiotemporal 109 

convolutions, which incorporate spatial information in two dimensions as well as temporal 110 

information in the third dimension has been previously used in non-medical video classification 111 

tasks31,32, however has not been previously attempted on medical imaging given the relative 112 

scarcity of video medical imaging datasets nor used for regression tasks instead of classification 113 

tasks.  114 

 115 

Finally, we make video-level predictions of ejection fraction for beat-to-beat estimation of cardiac 116 

function. Each echocardiogram video typically includes multiple cardiac cycles, or beats, with 117 

each cycle being sufficient to produce a point estimate for ejection fraction. Given variance in 118 

cardiac function caused by changes in loading conditions as well as heart rate in a variety of cardiac 119 

conditions, it is recommended to perform ejection fraction estimation in up to 5 cardiac cycles, 120 

however this is not always done in clinical practice given the tedious and laborious nature of the 121 

calculation6,16. Our model identifies each cardiac cycle, generates a subsampled video-clip of 32 122 

frames, and averages clip-level estimates of EF as a form of test-time augmentation. Details of the 123 

model and hyperparameter search is further described in Methods, Supplementary Table 1, and 124 

Supplementary Figure 1. 125 
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EchoNet-Dynamic was developed using 10,030 apical-4-chamber echocardiograms obtained 127 

through the course of routine clinical practice at Stanford hospital.  Each echocardiogram video 128 

corresponds to a unique patient during a unique visit and is representative of the variation in patient 129 

characteristics and image acquisition at the hospital. Table 1 contains the summary statistics of the 130 

patient population. These randomly selected patients have a range of ejection fractions 131 

representative of the patient population going through the echocardiography lab and the 132 

echocardiogram videos were split 7,465, 1,277, and 1,288 patients respectively for the training, 133 

validation, and test sets.   134 

 135 

We worked with Stanford University and Hospitals to release our full dataset of 10,030 de-136 

identified echocardiogram videos as a resource for the medical machine learning community for 137 

future comparison and validation of deep learning models. To the best of our knowledge, this is 138 

the largest labeled medical video dataset to be made publicly available and first large release of 139 

echocardiogram data with matched labels of human expert tracings, volume estimates, and left 140 

ventricular ejection fraction calculation. We expect this dataset to greatly facilitate new 141 

echocardiogram and medical video based machine learning work.  142 

 143 

In a test dataset not previously seen during model training, model performance on individual 144 

subsampled video clips of approximately 1 second had a mean absolute error of 4.2% (95% CI 145 

4.0% - 4.3%), root mean squared error of 5.6% (5.7% - 5.8%) and R2 of 0.79 (95% CI 0.77 - 0.81) 146 

compared with the clinician report (Figure 2). Given that the model is agnostic to cardiac rhythm 147 

disturbances, including premature atrial contractions, premature ventricular contractions, and atrial 148 

fibrillation, we perform test time augmentation with beat-to-beat evaluation of ejection fraction. 149 

The final model with augmentation has improved performance with mean absolute error of 4.1%, 150 

root mean squared error of 5.3% and R2 of 0.81 (95% CI 0.78 - 0.82), which are within the range 151 

of typical measurement variation between different clinicians. We compared EchoNet-Dynamic’s 152 

performance with that of several additional deep learning models that we trained on this dataset, 153 

and EchoNet-Dynamic is consistently more accurate, suggesting the power of its specific 154 

architecture (Supplementary Table 1).  155 

 156 
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EchoNet-Dynamic was compared against human measurements on 55 patients prospectively 157 

evaluated by two different sonographers on the same day. Each patient was independently 158 

evaluated for global longitudinal strain (GLS) and ejection fraction by multiple methods as well 159 

as our model for comparison (Figure 2D). EchoNet-Dynamic assessment of cardiac function had 160 

the least variance on repeat testing (median difference of 2.6%, SD=6.4) compared to EF obtained 161 

by Simpson’s biplane method (median difference of 5.2%, SD=6.9, p < 0.001 for non-inferiority), 162 

EF from Simspon’s monoplane method (median difference of 4.6%, SD=7.3 p < 0.001 for non-163 

inferiority), or GLS (median difference of 8.1%, SD=7.4% p < 0.001 for non-inferiority). Of the 164 

initial 55 patients, 49 patients were also assessed with a different ultrasound system never seen 165 

during model training and EchoNet-Dynamic assessment had similar variance (median difference 166 

of 4.5%, SD=7.0, p < 0.001 for non-inferiority for all comparisons with human measurements).  167 

 168 

EchoNet-Dynamic automatically generates segmentations of the left ventricle, which enables 169 

clinicians to better understand how it makes predictions. The segmentation is also useful because 170 

this provides a relevant point for human interjection in the workflow and physician oversight of 171 

the model in clinical practice. For the semantic segmentation task, the labels were 20,060 frame-172 

level labels of the left ventricle obtained during the course of standard human clinical workflow 173 

during which expert human sonographers and echocardiographers manually label of the left 174 

ventricle during end-systole and end-diastole. Given the average video contains 2 labeled frames 175 

but 176 total frames, these weak labels were used to generate frame-level segmentations for the 176 

entire video (Figure 3). On the test dataset, the Dice Similarity Coefficient (DSC) for the end 177 

systolic tracing was 0.903 (95% CI 0.901 – 0.906) and the DSC for the end diastolic tracing was 178 

0.927 (95% CI 0.925 – 0.928). Despite being a frame-level, there was significant concordance in 179 

performance of end-systolic and end-diastolic semantic segmentation (Supplementary Figure 2). 180 

Example videos with semantic segmentation can be found in the Online Supplement. 181 

 182 

Variation in frame-to-frame model interpretation was seen in echocardiogram videos with 183 

arrhythmias and ectopy (Figure 4). In addition to correlation with irregularity in intervals between 184 

ventricular contractions, these videos were independently reviewed by clinical cardiologists and 185 

found to have atrial fibrillation, premature atrial contractions, and premature ventricular 186 

contractions. This highlights why it is important that EchoNet-Dynamic segments the ventricle 187 
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and estimates the EF for each every beat in the video and then aggregates across the beats. In 188 

particular, by aggregating across multiple beats, EchoNet-Dynamic significantly reduces variation 189 

compared to the common clinical practice of estimating EF from a single beat (Figure 4d).  190 

 191 

Discussion 192 

EchoNet-Dynamic is a new video deep learning technique that achieves state-of-the-art assessment 193 

of cardiac function. It uses expert human tracings for weak supervision of left ventricular 194 

segmentation, 3D spatiotemporal convolutions on video data, and beat-to-beat cumulative 195 

evaluation of EF across the entire video. EchoNet-Dynamic’s performance in assessing EF is 196 

substantially better than prior deep learning attempts to assess EF22, and our model’s variance is 197 

less than human expert measurements of cardiac function. EchoNet-Dynamic could potentially aid 198 

clinicians with more precise and reproducible assessment of cardiac function and detect subclinical 199 

change in ejection fraction beyond the precision of human readers. Furthermore, we release the 200 

largest annotated medical video dataset, which will stimulate future work on machine learning for 201 

cardiology.  202 

 203 

EchoNet-Dynamic diverged the most from human estimation of EF in videos with arrhythmias 204 

and variation in heart rate. This variation is a feature of comparing EchoNet-Dynamic’s beat-to-205 

beat evaluation of EF across the video with our human evaluations of only one ‘representative’ 206 

beat. Choosing the representative beat can be subjective, contribute to human intra-observer 207 

variability, and less optimal compared to the guideline recommendation of averaging 5 consecutive 208 

beats. This workflow, is rarely done, in part due to the laborious and time intensive nature of the 209 

human tracing task. EchoNet-Dynamic greatly decreases the labor for cardiac function assessment 210 

with automating of the segmentation task and provide the opportunity for more frequent, rapid 211 

evaluation of cardiac function. Our end-to-end approach generates beat and clip level predictions 212 

of ejection fraction as well as segmentation of the left ventricle throughout the cardiac cycle for 213 

visual interpretation of the modeling results. In settings such as between chemotherapy sessions, 214 

after a heart transplant, and with the initiation of heart failure therapy, early detection of change in 215 

cardiac function significantly affect clinical care 2,3. 216 

 217 
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Future studies will be required to ensure clinical applicability as well as generalizability in 218 

different clinical scenarios and health systems. With rapid expansion in the use of point of care 219 

ultrasound for evaluation of cardiac function by non-cardiologists, we aim to explore the feasibility 220 

and generalizability of our model with input videos are variable quality and acquisition expertise. 221 

Correlating the model performance with improved clinical outcomes and health system costs will 222 

also be required to determine potential impact. In addition to its application assessing left 223 

ventricular ejection fraction, the deep learning techniques applied in this study have considerable 224 

relevance to other types of medical video imaging data with temporal information, including 225 

cardiac magnetic resonance imaging, as well as other functional assessments using 226 

echocardiogram videos.  227 

 228 

These results represent an important step towards automated evaluation of cardiac function from 229 

echocardiogram videos through deep learning. EchoNet-Dynamic could augment current methods 230 

with improved precision, accuracy, and allow earlier detection of subclinical cardiac dysfunction, 231 

and the underlying dataset can be used to advance future work in deep learning for medical video 232 

imaging datasets and lay the groundwork for further applications of medical deep learning.  233 
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 250 

Online Methods 251 

 252 

Data Curation 253 

A standard full resting echocardiogram study consists of a series of 50-100 videos and still images 254 

visualizing the heart from different angles, locations, and image acquisition techniques (2D 255 

images, tissue Doppler images, color Doppler images, and others). In this dataset, one apical-4-256 

chamber 2D gray-scale video is extracted from each study. Each video represents a unique 257 

individual as the dataset contains 10,025 echocardiography videos from 10,025 unique individuals 258 

who underwent echocardiography between 2016 and 2018 as part of clinical care at Stanford 259 

University Hospital. Images were acquired by skilled sonographers using iE33, Sonos, Acuson 260 

SC2000, Epiq 5G, or Epiq 7C ultrasound machines and processed images were stored in Philips 261 

Xcelera picture archiving and communication system. Video views were identified through 262 

implicit knowledge of view classification in the clinical database by identifying images and videos 263 

labeled with measurements done in the corresponding view. 264 

  265 

The apical-4-chamber view video was identified by extracting the Digital Imaging and 266 

Communications In Medicine (DICOM) file linked to measurements of ventricular volume used 267 

to calculate the ejection fraction. Videos were spot checked for quality control, confirm view 268 

classification, and exclude videos with color Doppler. Each subsequent video was cropped and 269 

masked to remove text, ECG and respirometer information, and other information outside of the 270 

scanning sector. The resulting square images were either 600x600 or 768x768 pixels depending 271 

on the ultrasound machine and downsampled by cubic interpolation using OpenCV into 272 

standardized 112x112 pixel videos. 273 

  274 

This research was approved by the Stanford University Institutional Review Board and data 275 

privacy review through a standardized workflow by the Center for Artificial Intelligence in 276 

Medicine and Imaging (AIMI) and the University Privacy Office. In addition to masking of text, 277 

ECG information, and extra data outside of the scanning sector in the video files as described 278 
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below, each DICOM file's pixel data was parsed out and saved as an AVI file to prevent any 279 

leakage of identifying information through public or private DICOM tags. Each video was 280 

subsequently manually reviewed by an employee of the Stanford Hospital with familiarity with 281 

imaging data to confirm the absence of any identifying information. 282 

  283 

Prospective Clinical Validation  284 

Prospective validation was performed by two senior sonographers with advanced cardiac 285 

certification and greater than 15 years experience each. For each patient, measurements of cardiac 286 

function was independently acquired, measured, and assessed by each sonographer on the same 287 

day. Every patient was scanned using Epiq 7C ultrasound machines, the standard instrument in the 288 

Stanford Echocardiography Lab, and a subset of patients were also rescanned by the same two 289 

sonographers using a GE Vivid 95E ultrasound machine. Tracing and measurement was done on 290 

a dedicated workstation after image acquisition. For comparison, the independently acquired 291 

apical-4-chamber videos were fed into the model and the variance in measurements assessed.  292 

 293 

EchoNet-Dynamic development and training 294 

Model building and training was done in Python on the PyTorch deep learning library. Semantic 295 

segmentation was performed using the Deeplabv3 architecture30. The segmentation model had a 296 

base architecture of 50-layer residual net and minimized a pixel level binary cross entropy loss. 297 

The model was initialized with random weights, and was trained using a stochastic gradient 298 

descent optimizer with a learning rate of 0.00001, momentum of 0.9, and batch size of 20 for 50 299 

epochs. Our model with spatiotemporal convolutions was initialized with pretrained weights from 300 

the Kinetics-400 dataset33. We tested three model architectures with variable integration of 301 

temporal convolutions and ultimately chose decomposed R2+1D spatiotemporal convolutions as 302 

the model with the best performance31,32. The models were trained to minimize the squared loss 303 

between the prediction and true ejection fraction using a stochastic gradient descent optimizer with 304 

an initial learning rate of 0.0001, momentum of 0.9, and batch size of 16 for 45 epochs. The 305 

learning rate was decayed by a factor of 0.1 every 15 epochs was used during model training. 306 

During training, clips of 32 frames were generated by sampled every other frame. To augment the 307 

clips, all frames were padded with 12 pixels, and a random crop of the 112x112 pixel size was 308 
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taken. For all models, the weights from the epoch with the lowest validation loss was selected for 309 

final testing. 310 

  311 

Test Time Augmentation with Beat-by-Beat Assessment 312 

There can be variation in the ejection fraction, end systolic volume, and end diastolic volumes 313 

during atrial fibrillation, and in the setting of premature atrial contractions, premature ventricular 314 

contractions, and other sources of ectopy. The clinical convention is to identify at least one 315 

representative cardiac cycle and use this representative cardiac cycle to perform measurements, 316 

although an average of the measurements of up to five cardiac cycles is recommended when there 317 

is significant ectopy or variation. For this reason, our final model used test time augmentation by 318 

providing individual estimates for each ventricular beat throughout the entire video and outputs 319 

the average prediction as the final model prediction. We use the segmentation model to identify 320 

the area of the left ventricle and threshold-based processing to identify ventricular contractions 321 

during each cardiac cycle. For beat, a subsampled clip centered around the ventricular contraction 322 

was obtained and used to produce a beat-by-beat estimate of EF. The mean ejection fraction of all 323 

ventricular contractions in the video was used as the final model prediction.  324 

 325 

Statistical Analysis 326 

Confidence intervals were computed using 10,000 bootstrapped samples and obtaining 95 327 

percentile ranges for each prediction. Chi-squared test and Student’s t-test were used for statistical 328 

comparisons.  329 

  330 

Data Availability 331 

This data introduces the EchoNet-Dynamic Dataset, a publicly available dataset of deidentified 332 

echocardiogram videos, publicly available at: https://douyang.github.io/EchoNetDynamic/ 333 

  334 

Code Availability 335 

The code is available at: https://github.com/douyang/EchoNetDynamic/ 336 

 337 
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All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/19012419doi: medRxiv preprint 

https://doi.org/10.1101/19012419


 339 

 340 

Figure 1. EchoNet-Dynamic workflow. For each patient, EchoNet-Dynamic uses standard apical-341 

4-chamber view echocardiogram video as input. The model first predicts ejection fraction for each 342 

cardiac cycle using 3D spatiotemporal convolutions with residual connections and generates 343 

frame-level semantic segmentations of the left ventricle using weak supervision from expert 344 

human tracings. These outputs are combined to create beat-by-beat predictions of ejection fraction 345 

and to predict the presence of heart failure with reduced ejection fraction.  346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 
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 358 

Table 1. Summary statistics of patients in the dataset. Data obtained from visits to Stanford 359 

Hospital between 2016 and 2018.  360 

 361 

 362 

 363 
 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 

All rights reserved. No reuse allowed without permission. 
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (whichthis version posted November 27, 2019. ; https://doi.org/10.1101/19012419doi: medRxiv preprint 

https://doi.org/10.1101/19012419


 380 

 381 

 382 

Figure 2. Model Performance. (a) EchoNet-Dynamic’s predicted ejection fraction vs. reported 383 

ejection fraction. (b) Receiver operating characteristic curve for diagnosis of heart failure with 384 

reduced ejection fraction. (c) Variance of metrics of cardiac function on repeat measurement. The 385 

first four boxplots corresponds to variation by clinicians using different techniques, and the last 386 

two boxplots corresponds EchoNet-Dynamic’s variance on input images from standard ultrasound 387 

machines and an ultrasound machine not previously seen by the model.  388 

 389 

 390 

  391 

 392 
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 401 

 402 

 403 

Figure 3. Semantic Segmentation Performance. (a) Weak supervision with human expert tracings 404 

of the left ventricle at end-systole and end-diastole is used to train a semantic segmentation model 405 

with input video frames throughout the cardiac cycle. (b) Dice Similarity Coefficient (DSC) was 406 

calculated for each ESV/EDV frame. (c) The area of the left ventricle segmentation was used to 407 

identify heart rate and bin clips for beat-to-beat evaluation of ejection fraction.  408 

  409 

 410 

 411 

 412 

 413 

 414 
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 419 
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 425 
Figure 4. Beat-to-beat evaluation of ejection fraction. (a) Atrial fibrillation and arrhythmias can be 426 

identified by significant variation in intervals between ventricular contractions. (b) Significant 427 

variation in left ventricle segmentation area was associated with higher variance in EF prediction. 428 

(c) Histogram of standard deviation of beat-to-beat evaluation of EF across all the test videos. (d) 429 

Assessing the effect of beat-to-beat based on the number of sampled beats averaged for prediction. 430 

Each boxplot represents 100 random samples of a certain number of beats and comparison with 431 

reported ejection fraction. 432 
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 435 

 436 
Supplementary Figure 1: Hyperparameter search for 3D Spatiotemporal Convolutions on video 437 

dataset to predict ejection fraction. Model architecture (R2+1D, R3D, and MC3), initialization 438 

(Kinetics-400 pretrained weights with solid line and random initial weights with dotted line), clip 439 

length (1, 8, 16, 32, 64, and 96), and sampling period (1, 2, 4, 8) were considered. (a) When varying 440 

clip lengths, performance is best at 64 frames (corresponding to 1.28 seconds), and starting from 441 

pretrained weights improves performance slightly across all models. (b) Varying sampling period 442 

with a length to approximately correspond to 64 frames prior to subsampling. Performance is best 443 

at a sampling period of 2. 444 
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 457 

 458 
Supplementary Figure 2: Relationship between end systolic tracing Dice Similarity Coefficient 459 

and end diastolic tracing Dice Similarity Coefficient. 460 
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Supplementary Table 1: Model performance compared to three alternative deep learning models 463 

in assessing cardiac function. 464 
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