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Abstract

Effective and timely disease surveillance systems have the potential to help public health
officials design interventions to mitigate the effects of disease outbreaks. Currently,
healthcare-based disease monitoring systems in France offer influenza activity information
that lags real-time by 1 to 3 weeks. This temporal data gap introduces uncertainty
that prevents public health officials from having a timely perspective on the population-
level disease activity. Here, we present a machine-learning modeling approach that
produces real-time estimates and short-term forecasts of influenza activity for the 12
continental regions of France by leveraging multiple disparate data sources that include,
Google search activity, real-time and local weather information, flu-related Twitter
micro-blogs, electronic health records data, and historical disease activity synchronicities
across regions. Our results show that all data sources contribute to improving influenza
surveillance and that machine-learning ensembles that combine all data sources lead to
accurate and timely predictions.

Author summary

The role of public health is to protect the health of populations by providing the right
intervention to the right population at the right time. In France and all around the world,
Influenza is a major public health problem. Traditional surveillance systems produce
estimates of influenza-like illness (ILI) incidence rates, but with one- to three-week delay.
Accurate real-time monitoring systems of influenza outbreaks could be useful for public
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health decisions. By combining different data sources and different statistical models,
we propose an accurate and timely forecasting platform to track the flu in France at a
spatial resolution that, to our knowledge, has not been explored before.

Introduction

Influenza is a major public health problem causing up to 5 million severe cases and
500,000 deaths per year worldwide [113]. In France alone, the epidemic of 2018-2019
caused 9,500 deaths. During epidemic peaks, large increases of visits to general prac-
titioners and to emergency departments are observed and often lead to disruptions to
healthcare delivery and thus increase the risk of undesirable outcomes in patients with
influenza infections. To reduce the impact of influenza outbreaks in the population and
to better design timely public health interventions, surveillance systems that produce ac-
curate real-time and short-term forecasts of disease activity may prove to be instrumental.

In France, an important influenza monitoring system was implemented by the Sentinelles
network in 1984 [4,[5]. This system centralizes information obtained from a group of
volunteer (1314 in 2018) general practitioners and (116 in 2018) pediatricians that
each week report the proportion of patients with Influenza-Like-Illness (ILI, any acute
respiratory infection with fever > 38 °C, cough and onset within the last 10 days) seeking
medical attention. Data collection, processing, aggregation and distribution processes of
this information, at the national and regional levels, introduce up to three weeks delays
in the availability of flu activity information. This temporal data gap prevents public
health officials from having the most up-to-date epidemiological information, and thus
leads to the design of interventions that do not take into consideration recent changes in
disease activity [2,/6]. For example, if estimates were available in real-time, information
campaigns and vaccination prevention could be deployed earlier and and could lead to
grater impact. Additionally, healthcare facilities could be better prepared to respond to
unexpected increases in the flux of high-risk patient during time periods of increased
disease activity.

With the motivation to alleviate this time delay, mathematical modeling and machine
learning approaches have been proposed to produce disease estimates in real time and
ahead of healthcare-based surveillance systems in multiple nations around the world.
Most of these studies have been designed and tested in developed nations, such as the
United States and France, where information on disease outbreaks has been collected
historically for decades [2]. Numerous research studies have been conducted on the use
of traditional statistical methods, like temporal series or compartmental methods, as
well as the inclusion of disparate data sources such as meteorological or demographic
data to track flu activity, as discussed in Nsoesie et al. 2014 and Yang and Shamman
2014 [7,8]. And in recent years, multiple more studies have emerged exploring the use
of Internet-based data sources that capture aspects of human behavior and environ-
mental factors to track the spread of diseases. With over 3.2 billion web users, data
flows from the internet are huge and of all types. Some studies have used data from
Google [2l[3L[9H11], Twitter [12H14] or Wikipedia |[15H18] to monitor flu specifically.

One of the first and most prominent studies on the use of internet data for monitoring
influenza epidemics is Google Flu Trends (GFT) [19]. This web-based platform, created
in 2009 and designed and deployed by Google, used the volume of selected Google search
terms to estimate ILI activity in real time. GFT led to multiple prediction errors during
the 2009 HIN1 Flu Pandemic (due to changes in people’s search behaviour as a result
of the exceptional nature of the pandemic) and later produced large overestimations
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during the 2012-2013 US flu season (due to the announcement of a pandemic that
finally did not appear). These events led to eventual discontinuation of this disease 4o
monitoring platform [20]. Since then, multiple research teams have proposed improved s
methodologies that are capable of extracting information more efficiently from flu-related =
Google searches and produce improved flu estimates. Among these methods, the work s
of Shihao Yang et al. [2] explored a penalized regression methodology that combines s
historical flu activity with Google search activity dynamically, called ARGO, to better s
predict flu. 55

56
Additional data sources have been explored to monitor flu activity such as clinicians’ s
searches, electronic health records (EHR), crowd-sourced flu monitoring apps [21H23]. =
Among these, electronic health records have been shown to track flu accurately and s
timely in the US and France [6/24-26]. Specifically, in United States, Santillana et e
al. [6] showed that a model leveraging EHR data and a machine learning algorithms was &
capable to monitor flu activity in multiple spatial resolutions that included the regional e
level. In France, Poirier et al. [24] similarly showed multiple statistical models that 3
incorporate EHR and Internet-search data, can yield accurate ILI incidence rates in real e
time at the national level. 65

66
In early 2019, Fred S. Lu et al. |27] extended the ARGO methodology to accurately track o
flu activity in multiple states of the United States. In their approach, they included s
Google search data, EHRs and historical flu trends. They developed also a spatial e
network approach, called Net, to capture the synchronicity observed historically in flu 7«
activity between each states. Finally, by dynamically combining estimates from ARGO =
and Net, they showed that an ensemble approach, named ARGONet, led to improved =
results. 73

74
Our contribution. In this study, we propose a forecasting platform that combines
multiple data sources and statistical models to track flu activity in France at a spatial 7
resolution that, to our knowledge, has not been explored before. Our forecasting platform
produces accurate region-specific real-time and short-term flu activity forecasts for the
12 continental French regions, by leveraging national-level flu-related Google searches,
electronic health records data, Twitter data, and region-specific climate data. Addi- s
tionally, historical synchronicities across regions are captured with a Network model. A &
machine learning ensemble approach is proposed to improve predictions by dynamically s
combining estimates from these two distinct approaches. Near real-time estimates as s

well as one- and two-week ahead forecasts are presented. 84
Materials and methods "
Data sources 86
Sentinelles network data 87

We obtained weekly ILI incidence rates (per 100000 inhabitants) for the French regions
(12) from the French Sentinelles network (websenti.u707.jussieu.fr/sentiweb). We re- s
trieved these data in August 2018 from 05 January 2004 to 13 March 2017. We considered = «
these data as the gold standard and as our task for our prediction models. o1

Google Data o

We obtained the frequency per week of the 100 most correlated internet queries (if correla- o
tion > 0.60) by French users from Google Correlate (https://www.google.com/trends/correlate).
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Because our prediction period spans 05 January 2015 to 20 February 2017, we utilized
the ILI signal for each French region, from January 2004 to December 2014 to obtain
the most highly correlated search terms using the tool Google Correlate. In this way,
we obtained different search terms for each individual region. The signals obtained
correspond to queries performed by French users at the national level. We retrieved
Google Correlate data in August 2018 for the period going from 05 January 2004 to 13
March 2017.

Electronic Health Record Data

We retrieved EHR data from the clinical data warehouse (CDW) of Rennes University
Hospital (France),This CDW, called eHOP, integrates structured (laboratory test re-
sults, prescriptions, ICD-10 diagnoses) and unstructured (discharge letter, pathology
reports, operative reports) patients’ data. It includes data from 1.2 million inpatients
and outpatients and 45 million documents that correspond to 510 million structured
elements. eHOP consists of a powerful search engine system that can identify patients
with specific criteria by querying unstructured data with keywords, or structured data
with querying codes based on terminologies.

The first approach to obtain eHOP data connected with ILI was to perform different
manual queries to retrieve patients who had at least one document in their EHR that
matched the following search criteria: (1) Queries directly connected with flu or ILI
with the keywords ”flu” or "ILI"; (2) Queries connected with flu symptoms with the
keywords ”fever”, "pyrexia”, "body aches” or "muscular pain”; (3) Queries connected
with flu drugs with the keyword ” Tamiflu”; (4) Queries with the ICD-10 terminologys;

(5) Queries connected with flu tests, positive or negative results.

In total, we performed 34 manual queries. For each query, the eHOP search engine
returned all documents containing the chosen keywords (often, several documents for
one patient and one stay). For query aggregation, we kept the oldest document for one
patient and one stay and then calculated, for each week, the number of stays with at
least one document mentioning the keyword contained in the query.

From the CDW eHOP, we built a database containing the time series constructed
from the structured data. In all, we have 1 335 347 time series. As Google Correlate,
the Pearson correlation between each signal of each region and the time series from
the database was calculated. In this way, for each region, the second approach was to
retrieve the 100 most correlated signals to ILI signal. Because our test period is from 05
January 2015 to 20 February 2017, we calculated the correlation between January 2004
and December 2014.

As a result, for each region, we obtained 134 variables from the CDW eHOP where
there are at least 34 variables common to all regions (manual queries). We retrieved
retrospective data in August 2018 for the period going from 03 January 2005 to 13 March
2017. This study was approved by the local Ethics Committee of Rennes Academic
Hospital (approval number 16.69).

Weather Data

We obtained region-specific weather data from the French climatological website Info
Climat (https://www.infoclimat.fr). It has been shown in several studies that humidity
is correlated with the spread of influenza. |28]. In the absence of humidity data on
the Climat website, we retrieved precipitation and temperatures data. This choice was
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made knowing that both variables, [291|30] and temperature and precipitation can be
used as a proxy for humidity since they are directly related by the Clausius—Clapeyron
relation. [31] We obtained temperatures and precipitations per day for the largest city of
each region, and calculated the weekly mean for both temperature and precipitation.
We retrieved climatic data in August 2018 for the time period going from 07 January
2008 to 13 March 2017.

Twitter Data

Geotag tweets were extracted as the national scale for France from Boston Children’s
Hospital Geotweet dataset with the following keywords pertaining to influenza (“grippe”,

“grippé”, “syndrome grippal”, “fievre”, “toux”, “congestion”, “malade”, “faiblesse”,
“courbatures”, “tamiflu”, “la creve”). From there, we aggregated tweets to get weekly

counts. In this way, we obtained 11 variables from Twitter. We retrieved Twitter data
in December 2018 for the period going from 30 December 2013 to 13 March 2017.

Statistical models
The ARGO model

The ARGO model is a regularized regression dynamically calibrated weekly using the
LASSO method [32] to combine multiple external data sources with historical flu informa-
tion. We performed the LASSO regression with the R package caret and the associated
function fit with the method glmnet [33}/34]. We optimized the shrinkage parameter
lambda via a 10-fold cross-validation. To test the stationarity and whiteness of residuals,
we used Dickey Fuller’s and Box-Pierce’s tests available from the R packages tseries and
stats [35]. The formulation of our model is :

e Real tlme estlmates
134

Yit = Z NiYit—j Z QkTrit + Z Bz + Z’vapzt + Z ImWmit + €t

e One- week ahead forecast
134

Yit+1 = Z NiYit—j + Z OkTrit + Z ﬂlzht + Z’va;mf + Z 6mwmm‘ + €it+1

o Two- Week ahead forecast L34

Yit+2 = Z NiYit—j + Z QThit + Zﬁlzlzt + Z’vapzt + Z 6mwmzt + €it4+2

where y;; corresponding to the flu incidence rate at time ¢ for the region ¢, Z =1 M5Yit—;
corresponding to the historical flu incidence rates for the region i, Z,lﬁ(fl Q) Tk COTTE-
sponding to Google data for the region 7, lefi Biz1ie corresponding to hospital data for

the region 1, 2;1:1 YpUpit corresponding to Twitter data, 22 Om Wit corresponding

m=1
to climatic data for the region 7, €; corresponding to residuals.

We applied this model for each region. The model was dynamically recalibrated every
week by incorporating all data available. In this way, the size of our training dataset

increases every week. We obtained estimates from January 2011 to March 2017.

The Net model

The Net model is a LASSO model dynamically calibrated weekly and using the relation-
ship between the regions to know how synchronicity could improve forecasts. Indeed,
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Figure S1 (Heatmap of pairwise correlations between all regions) shows that the flu
incidence rates of the different areas are correlated. For each region, we used historical
data of all regions and estimates obtained with ARGO model for all regions expected
the region to be predicted.

The formulation of our model is :

e Real tlme estlmates

Yit = Zzajy]t 1+ Z Bgy]t + €5t

=1 j=1

e One- Week ahead forecast:

Yit+1 = Z Zagy]t 1+ Z Biljt + €it+1

=1 j5=1

e Two- Week ahead forecast:

Yit+2 = Z Zajy]t 1+ Z Bjy]t + €it+2

=1 j=1

184

185

186

187

188

189

190

191

192

193

194

where y;; corresponding to the flu incidence rate at time ¢ for the region 1, 212:1 Z;il 0y j—1195

corresponding to two weeks of historical flu incidence rates for all regions, Z;ilj#i Bt

corresponding to ARGO predictions for all regions excepted the region i to be predicted
and €; corresponding to residuals.

We applied this model for each region. We used a two years’ training dataset. We
obtained estimates from January 2013 to March 2017.

The ARGONet model

The ARGONet model is an ensemble approach combining the predictive power of ARGO
and Net models. For this model we tested three methods :

e The first is, ARGONet’s estimate is the ARGO estimate if ARGO model gives the
lowest mean error in the previous K estimates compared to Net model. Otherwise,
ARGONet’s estimate is the Net estimate. The value of K can be 1, 2, 3 or 4.

e The second is, ARGONet’s estimate is the mean between ARGO’s estimate and
Net’s estimate.

e The third is, ARGONet’s estimate is the result of a linear regression between
ARGO’s estimate and Net’s estimate. We trained the linear regression model on a
period of two years.

The Baseline Autoregressive model

To assess the importance of external data sources, we built an autoregressive model of
order 52 (AR(52)). We used the LASSO regression with the previous 52 weeks of ILI
incidence rates to predict the current week and the two weeks after.

e Real tiggle estimates:
Yit = Z@jyit—j + €t
=1

° One—weel§2ahead forecast:

Yit+1 = Z QYit—j + €41
=1
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e Two-week ahead forecast: 220
52

Yit+2 = E QjYit—j + €it+2 21
=1

where y;; corresponding to the flu incidence rate at time ¢ for the region i, Z?il OYit—j 222

corresponding to the previous 52 weeks, €; corresponding to residuals. 23
We applied this model for each region. We used a six years’ training dataset. The model 2
was dynamically recalibrated every week. 25
Evaluation 2
Our test period consists on 115 weeks starting from January 2015 to March 2017. 27
Metrics 228

To assess the performance of the models, we compared estimates to the official incidence 22
rates from the Sentinelles network by calculating two metrics : the mean squared error 2%

(MSE) and the Pearson correlation coefficient (PCC). 231
o MSE = %Z:L:l(yl - yi)2 232
e PCC = i1 (i—9) (i—9) 253

Vi wi—9)2 2, (4i—9)2

where j; is the predicted value for the week i, g; is the mean of predicted values, y; the 2
real value for the week i, g; is the mean of real values. 235

236
We also estimated the relative efficiency of ARGONet model compared to the au- 23

toregressive model with 95% confidence interval (CI) by using a Bootstrap method. A 23

. . 1 52 |Yi—Yar(s2) |
relative efficiency, calculated by =5 > 7~ Prr———
predictive power of ARGONet compared to the autoregressive model. The CI and 20
relative efficiency have been computed based on 100 Bootstrap samples of length 52. 2a

The 52 weeks were randomly selected from estimates from January 2015 to February o«

bigger than 1, suggests increased 23

2017. 23
Comparisons 244
First, we assessed the importance of adding external data sources by comparing : 25

e MSE and PCC of the autoregressive model and the ARGO model including 2
historical data plus the 10 most correlated variables from hospital data and Google 2
data. The individual contribution of hospital data and Google data has already been  2s
shown in a previous study [24]. But, we added in appendices, two comparisons: 2
A comparison with the 10 most correlated variables from hospital data and a  2s
comparison with the 10 most correlated variables from Google data. 251

e MSE and PCC of the autoregressive model and the ARGO model including 2
historical data plus climatic data. 253

e MSE and PCC of the autoregressive model and the ARGO model including 2s
historical data plus Twitter data. 255

Second, we compared the autoregressive model, ARGO model (including all the data 2
sources), Net model and ARGONet model. 257
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Results

Evaluation of Data Sources as Predictors

In order to assess the predictive value of each and all external data source, we compared
ARGO models that incrementally included external data sources with a baseline au-
toregressive model, AR(52), model that only uses historical information as input. As
shown in the next sections, we found that all external data sources improve flu estimates,
specially in the one- and two-week ahead forecasts.

EHR Data and Google Data. Our first modeling experiment involved comparing
ARGO models that use Google search and EHR data simultaneously with the baseline
AR(52) in all French regions. A detailed analysis on the individual contribution of
Google data and EHR data into predictions, separately, is provided for completeness
in the supplementary materials. Our findings suggest that each of these data sources
individually improves predictions in all time-horizons. This is consistent with the findings
of a previous study conducted at the national-level and the French region of Brittany [24],
where both Google and EHR information were found meaningful, but EHR data was
shown to possess a stronger predictive power.

The join contribution of both EHR and Google data on predictions is presented below. In
real time (Table 1), in terms of correlation and error metrics, estimates produced using
EHR data and Google data improve the accuracy for all the regions. The combination
of both sources lead to correlation improvements of up to 5% and decreases in error of
up to 30% for the region Bretagne.

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 0.169 0.129 0.241 | 0.161 | 0.108 | 0.368 | 0.141

ARGO | 0.058 | 0.143 | 0.098 | 0.080 | 0.067 0.128 0.101 0.174 | 0.120 | 0.041 | 0.305 | 0.074
PCC

AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 | 0.919 | 0.946 | 0.815 | 0.929
ARGO | 0.971 | 0.928 | 0.950 | 0.960 | 0.966 0.935 0.949 0.912 | 0.939 | 0.980 | 0.846 | 0.963

Table 1. Real time estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and the 10 most

correlated variables from hospital and Google data, for the period starting from January 2015 to March 2017

For One-week ahead estimate (Table 2), estimates obtained with EHR and Google data
are more accurate or comparable for 11 of the 12 regions. The combination of both
sources lead to correlation improvements of up to 15% and decreases in error of up to

45% for the region Bourgogne.

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 | 0.433 | 0.372 | 0.580 | 0.480 | 0.278 | 0.704 | 0.389

ARGO | 0.207 | 0.342 | 0.236 | 0.193 | 0.180 0.248 0.303 0.371 | 0.330 | 0.153 | 0.794 | 0.170
PCC

AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.896 | 0.827 | 0.881 | 0.903 | 0.909 0.875 0.847 | 0.813 | 0.834 | 0.923 | 0.600 | 0.914

Table 2. One-week ahead estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and the 10

most correlated variables from hospital and Google data, for the period starting from January 2015 to March 2017

For two-week ahead predictions (Table 3), estimates obtained with EHR and Google
data are more accurate for all the regions. The combination of both sources lead to
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correlation improvements of up to 30% and decreases in error of up to 60% for the region

Centre.
‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 0.679 0.618 0.914 | 0.775 | 0.533 | 0.935 | 0.596
ARGO | 0.357 | 0.580 | 0.439 | 0.332 | 0.330 | 0.351 0.446 | 0.568 | 0.555 | 0.299 | 0.666 | 0.282
PCC
AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.820 | 0.708 | 0.779 | 0.832 | 0.834 0.823 0.775 0.714 | 0.720 | 0.849 | 0.664 | 0.858

Table 3. Two-week ahead estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and the 10

287

288

most correlated variables from hospital and Google data, for the period starting from January 2015 to March 2017

Climatic Data. When combining climatic data with historical activity via ARGO was
shown to consistently improve prediction results across all regions (Table 4). However,
this improvement is lower than the one observed with EHR and Google data. Indeed,
climatic data lead to correlation improvements of 2% and decreases in error of 7% for
the region Pays de la Loire.

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 0.169 0.129 0.241 | 0.161 | 0.108 | 0.368 | 0.141
ARGO | 0.076 | 0.196 | 0.154 | 0.160 | 0.091 0.156 0.122 0.230 | 0.149 | 0.096 | 0.342 | 0.131
PCC
AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 | 0.919 | 0.946 | 0.815 | 0.929
ARGO | 0.962 | 0.901 | 0.922 | 0.919 | 0.954 | 0.921 0.939 | 0.884 | 0.925 | 0.951 | 0.828 | 0.934

Table 4. Real time estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and only climatic

289

290

291

292

293

data, for the period starting from January 2015 to March 2017

For one-week ahead estimate (Table 5), in term of correlation and error, results obtained
with Climatic data are better or comparable for 11 of the 12 regions. Climatic data lead
to correlation improvements of up to 5% and decreases in error of up to 12% for the
region Bourgogne-Franche-Comté.

294

295

296

297

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 0.433 0.372 0.580 | 0.480 | 0.278 | 0.704 | 0.389
ARGO | 0.264 | 0.542 | 0.379 | 0.421 | 0.264 | 0.381 0.346 | 0.516 | 0.422 | 0.294 | 0.657 | 0.357
PCC
AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.867 | 0.726 | 0.809 | 0.788 | 0.867 | 0.808 0.825 0.740 | 0.787 | 0.852 | 0.669 | 0.820

Table 5. One-week ahead estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and only
climatic data, for the period starting from January 2015 to March 2017

For two-week ahead estimate (Table 6), results obtained with Climatic data are better
for all the regions. Climatic data lead to correlation improvements of up to 20% and
decreases in error of up to 30% for the region Bourgogne-Franche-Comté.
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‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 | 0.679 0.618 | 0914 | 0.775 | 0.533 | 0.935 | 0.596

ARGO | 0.510 | 0.691 | 0.577 | 0.700 | 0.477 | 0.557 0.593 0.773 | 0.685 | 0.481 | 0.913 | 0.543
PCC

AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.743 | 0.651 | 0.709 | 0.647 | 0.759 0.719 0.701 0.610 | 0.655 | 0.758 | 0.590 | 0.726

Table 6. Two-week ahead estimates - MSE and PCC for ARGO models including only historical data (AR(52)) and only
climatic data, for the period starting from January 2015 to March 2017

Twitter Data. Overall, we found that national-level flu-related Twitter data improves s
prediction results for all regions. 302

303
In real time (Table 7), we see that Twitter data improves results for 8 out of the s
12 regions. Twitter data lead to correlation improvements of 2% and decreases in error — sos
of 30% for the regions Occitanie and Pays de la Loire. 306

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 0.169 | 0.129 0.241 | 0.161 | 0.108 | 0.368 | 0.141

ARGO | 0.078 | 0.212 | 0.170 | 0.137 | 0.091 0.170 0.109 0.257 | 0.160 | 0.078 | 0.337 | 0.133
PCC

AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 | 0.919 | 0.946 | 0.815 | 0.929
ARGO | 0.960 | 0.893 | 0.914 | 0.931 | 0.954 | 0.914 0.945 0.871 | 0.919 | 0.961 | 0.830 | 0.933

Table 7. Real time estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and only Twitter
data, for the period starting from January 2015 to March 2017

For one-week ahead estimate (Table 8), estimates obtained with Twitter data are more o
accurate for all the regions. Twitter data lead to correlation improvements of 10% and s
decreases in error of 20% for the region Pays de la Loire. 309

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.

MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 0.433 0.372 0.580 | 0.480 | 0.278 | 0.704 | 0.389
ARGO | 0.236 | 0.570 | 0.355 | 0.331 | 0.251 0.422 0.305 0.548 | 0.376 | 0.232 | 0.589 | 0.330
PCC
AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.881 | 0.712 | 0.821 | 0.833 | 0.873 | 0.787 0.846 | 0.723 | 0.811 | 0.883 | 0.703 | 0.834

Table 8. One-week ahead estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and only
Twitter data, for the period starting from January 2015 to March 2017

For two-week ahead estimate (Table 9), results obtained with Twitter data are more s
accurate for all the regions. Twitter data lead to correlation improvements of 15% and s
decreases in error of 20% for the region Bourgogne-Franche-Comté. 312
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‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 | 0.679 0.618 | 0914 | 0.775 | 0.533 | 0.935 | 0.596

ARGO | 0.503 | 0.764 | 0.490 | 0.603 | 0.466 0.624 0.571 0.874 | 0.624 | 0.417 | 0.866 | 0.507
PCC

AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.746 | 0.615 | 0.753 | 0.696 | 0.765 0.685 0.712 0.559 | 0.685 | 0.790 | 0.563 | 0.744

Table 9. Two-week ahead estimate - MSE and PCC for ARGO models including only historical data (AR(52)) and only

Twitter data, for the period starting from January 2015 to March 2017

Evaluation of Statistical Models

Here, we compare the predictive performance of four different modeling approaches
AR(52), ARGO, Net, and ARGONet for three time horizons: real-time, one-week and
two-week ahead estimates. Figure 1 displays the ranking of each model for each time
horizon of prediction across regions during the out-of-sample evaluation time period
(January 2015 to March 2017). If a model is ranked in the 1st position, it means that it
led to the best prediction results in terms of error (MSE) and in most cases this was
also the case in terms of correlation. As displayed in Figure 1, ARGONet is the most
accurate model, ranking either 1st or 2nd in all regions for real-time estimates, and
ranking 1st in both the one- and two-week prediction horizons. Further details about

each model’s performance are shown in Figures S2 to S13.

[l ArGONet [l ARGO [l Net [] AR(S2)

Real-time estimate One-week estimate Two-week estimate
N _ N _ N _
o | (=Ml o |
Q0 A Q0 A Q0 A
[)] [)] [)]
5 5 5
o901 o901 o901
[0] [0] [0]
i i i
1 ¥ ¥
Bl o o~
o o o
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th
Rank Rank Rank

Fig 1. Ranks obtained by each model over the 12 French regions for PCC and MSE
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Real-time estimates. Figure 2 and Table 10 summarize results obtained with AR(52),

ARGO, Net and ARGONet models for the period starting from January 2015 to March

2017, for the 12 regions. Over this time period, the 90% confidence interval (CI) of

the best correlation is [0.915;0.971] with a median value equal to 0.950. The 90% CI
of the relative error is [0.057;0.169] with a median value equal to 0.096 which implies a
reduction of the error from 5% to 17% thanks to our models.
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Fig 2. Real-time estimate obtained with ARGO, Net and ARGONet models from January 2015 to March 2017
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‘ Auv.
MSE
AR(52) | 0.083
Argo 0.059
Net 0.071
K=1 0.057
K=2 0.057
K=3 0.059
K=4 0.066
Mean 0.057
Lm 0.068
PCC
AR(52) | 0.958
Argo 0.970
Net 0.964
K=1 0.971
K=2 0.971
K=3 0.970
K=4 0.967
Mean 0.971
Lm 0.966

‘ Bour. ‘ Bre.

0.203
0.138
0.215
0.154
0.155
0.159
0.160
0.153
0.147

0.898
0.930
0.892
0.922
0.922
0.920
0.919
0.923
0.926

0.167
0.098
0.186
0.134
0.131
0.126
0.141
0.125
0.102

0.916
0.951
0.906
0.932
0.934
0.936
0.929
0.937
0.948
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‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘

0.161 | 0.096 0.169 0.129 0.241 0.161 | 0.108
0.083 | 0.067 | 0.121 0.098 0.169 | 0.118 | 0.042
0.115 | 0.074 0.132 0.142 0.237 | 0.126 | 0.087
0.095 | 0.064 0.128 0.120 0.180 | 0.094 | 0.057
0.107 | 0.062 0.137 0.118 0.176 | 0.096 | 0.058
0.108 | 0.060 0.133 0.118 0.224 | 0.108 | 0.058
0.103 | 0.071 0.174 0.108 0.188 | 0.110 | 0.049
0.088 | 0.061 0.108 0.110 0.180 | 0.112 | 0.052
0.096 | 0.062 0.118 0.103 0.243 | 0.124 | 0.042

0.919 | 0.952 0.915 0.935 0.879 | 0.919 | 0.946
0.958 | 0.966 | 0.939 0.951 0.915 | 0.941 | 0.979
0.942 | 0.963 0.933 0.928 0.881 | 0.936 | 0.956
0.952 | 0.968 0.935 0.939 0.909 | 0.952 | 0.971
0.946 | 0.969 0.931 0.941 0.911 | 0.952 | 0.971
0.946 | 0.970 | 0.933 0.940 0.887 | 0.946 | 0.971
0.948 | 0.964 0.912 0.945 0.905 | 0.944 | 0.975
0.955 | 0.969 | 0.946 0.944 0.909 | 0.943 | 0.974
0.952 | 0.969 0.940 0.948 | 0.878 | 0.938 | 0.979

Loi.

0.368
0.284
0.337
0.309
0.308
0.250
0.260
0.258
0.316

0.815
0.857
0.830
0.844
0.845
0.874
0.869
0.870
0.841

‘ Pro.

0.141
0.072
0.085
0.078
0.068
0.077
0.086
0.060
0.069

0.929
0.964
0.957
0.961
0.966
0.961
0.956
0.970
0.965

Table 10. PCC and MSE for real-time estimate for all french regions for the period starting from January 2015 to March

2017

Figure 3 confirms, region by region, that the best PCC and MSE are mostly obtained
with ARGONet for real-time predictions. In this time-horizon, ARGO shows good

performance.

For 5 regions the best model is ARGO with the highest PCC and the lowest MSE.

For the other 7 regions, the best model is ARGONet. For the one- and two-week time

horizons, Figures 7, 11, 14 and 15 confirm that ARGONet outperforms all other models.

[ ARGONet [l ARGO [Hl Net [] AR(52)

i il s

MSE
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AwergneRho. Bourgogne-Fra.  Bretagne Centre-Valdelore GrandEst HautdeFrance lledeFrance  Normandie Nouvelle Aquitaine Occitanie  Pays dela Loire
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mi ml
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i
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Fig 3. PCC and MSE obtained for real-time estimate with ARGO, Net and ARGONet

models
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To assess the statistical significance of the improved prediction power of ARGONet, we
constructed a 95% confidence interval for the relative efficiency of ARGONet compared to
the autoregressive model (the error of ARGONet is in the denominator). Table 11 shows
that in real-time, the improvement obtained thanks to the ARGONet model compared
to the autoregressive model is statistically significant for all regions. Depending on the
region, ARGONet allows to reduce the error by 15% to 60%.

Region | Relative efficiency | 95% CI

Auv. 1.43 [1.35;1.52]
Bour. | 1.38 [1.29;1.48]
Bre. | 1.62 [1.52;1.72]
Cen. 1.75 [1.65;1.86]
Gd Est | 1.78 [1.67;1.89]
Ht Fra. | 1.89 [1.71;2.07]
lle Fra. | 1.18 [1.13;1.24]
Norm. | 1.47 [1.38;1.57]
Aqui. | 1.63 [1.56;1.71]
Occi. | 2.43 [2.27:2.59]
Loi. 1.38 [1.29;1.48]
Pro. | 2.41 [2.14:2.69]

Table 11. Real-time estimate - Relative efficiency being bigger than 1 suggests
increased predictive power of ARGONet compared to the autoregressive model

Figure 4 and Figure 5 show a typical example of plot and heatmap obtained for estimates
in real time. The heatmap allows to visualize coefficients used for ARGO model. On
these plots, we can see that all models have estimates close to the gold standard. However,
for the autoregressive model, there is a time lag more important. On the heatmap, we
can see that ARGO model uses mostly 5 variables including 2 variables from Google
Data, 2 variables from Hospital Data and 1 variable from Historical Data.
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Fig 4. Nouvelle-Aquitaine Real time estimate
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One-week ahead estimates. Figure 6 and Table 12 show results for one-week ahead
forecasts for the time period January 2015-March 2017. Over this time period, the 90%
CI of the best correlation is [0.852;0.970] with a median value equal to 0.936. The 90%
CI of the relative error is [0.060;0.294] with a median value equal to 0.127 which implies
a reduction of the error from 6% to 30% thanks to our models.
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Fig 6. One-week ahead estimate obtained with ARGO, Net and ARGONet models from January 2015 to March 2017
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‘ Auv.
MSE
AR(52) | 0.262
Argo 0.235
Net 0.269
K=1 0.160
K=2 0.182
K=3 0.180
K=4 0.188
Mean 0.104
Lm 0.111
PCC
AR(52) | 0.868
Argo 0.881
Net 0.864
K=1 0.919
K=2 0.908
K=3 0.909
K=4 0.905
Mean 0.947
Lm 0.944

‘ Bour.

0.611
0.391
0.275
0.261
0.290
0.274
0.222
0.234
0.210

0.692
0.803
0.861
0.868
0.854
0.862
0.888
0.882
0.894

‘ Bre.

0.433
0.243
0.341
0.200
0.194
0.196
0.144
0.154
0.168

0.782
0.877
0.828
0.899
0.902
0.901
0.927
0.922
0.915

All rights reserved. No reuse allowed without permission.

‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.

0.438 | 0.276 0.433 0.372 0.580 | 0.480 | 0.278 | 0.704 | 0.389
0.193 | 0.190 0.219 0.286 0.365 | 0.319 | 0.165 | 0.502 | 0.173
0.226 | 0.185 0.279 0.348 0.564 | 0.263 | 0.167 | 0.687 | 0.142
0.200 | 0.161 0.248 0.185 0.525 | 0.147 | 0.142 | 0.294 | 0.157
0.206 | 0.178 0.280 0.267 0.541 0.157 | 0.086 | 0.423 | 0.139
0.216 | 0.170 0.272 0.245 0.552 | 0.192 | 0.074 | 0.394 | 0.181
0.229 | 0.166 0.270 0.231 0.536 | 0.160 | 0.090 | 0.427 | 0.208
0.093 | 0.066 0.173 0.155 0.364 | 0.109 | 0.060 | 0.431 | 0.058
0.127 | 0.070 0.190 0.181 0.492 | 0.113 | 0.067 | 0.539 | 0.069

0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
0.903 | 0.904 0.890 0.856 0.816 | 0.839 | 0.917 | 0.747 | 0.913
0.886 | 0.906 0.859 0.824 0.716 | 0.867 | 0.916 | 0.654 | 0.928
0.899 | 0.919 0.875 0.907 0.735 | 0.926 | 0.928 | 0.852 | 0.921
0.896 | 0.910 0.859 0.865 0.727 1 0.921 | 0.957 | 0.787 | 0.930
0.891 | 0.914 0.863 0.876 0.727 | 0.903 | 0.963 | 0.801 | 0.909
0.885 | 0.916 0.864 0.884 0.730 | 0.919 | 0.955 | 0.785 | 0.895
0.953 | 0.966 | 0.913 0.922 0.816 | 0.945 | 0.970 | 0.783 | 0.971
0.936 | 0.965 | 0.904 0.909 | 0.752 | 0.943 | 0.966 | 0.728 | 0.965

Table 12. PCC and MSE for one-week ahead estimate for all french regions for the period starting from January 2015 to

March 2017

For one-week ahead forecasts the best model is ARGONet. AR(52) is the model giving
the worst results, but, in contrast to real-time results, ARGO and Net models are
comparable. Indeed, for 4 regions, Net model allows to have better results than ARGO
model. We can also observe these results on barplots (Figure 7) and on the distribution
of correlation and error (Figures 14 and 15).

B ArGONet [l ARGO [ Net [] AR(2)
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Fig 7. PCC and MSE obtained for one-week ahead estimate with ARGO, Net and
ARGONet models
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Table 12 shows that the improvement obtained thanks to the ARGONet model compared s
to the autoregressive model is statistically significant for all regions for one-week ahead 350
estimate. Depending on the region, ARGONet allows to reduce the error by 55% to s

87% 361
Region | Relative efficiency | 95% CI
Auv. | 2.56 [2.40;2.73]
Bour. 3.56 [3.04;3.68]
Bre. | 3.14 [2.88:3.39]
Cen. 4.95 [4.36;5.54]
Gd Est | 4.24 [3.83:4.64]
Ht Fra. | 2.90 [2.65;3.16]
lle Fra. | 2.39 [2.17:2.61]
Norm. | 2.20 [1.98;2.42]
Aqui. 5.06 [4.55;5.58]
Occi. | 4.60 [4.13;5.07]
Loi. 2.83 [2.45:3.21]
Pro. 7.79 [6.85;8.73]

Table 13. One-week ahead estimate - Relative efficiency being bigger than 1 suggests
increased predictive power of ARGONet compared to the autoregressive model

Figure 8 shows one-week ahead estimate obtained for the french region Nouvelle-Aquitaine. 32
On this plot, we can see that AR(52) and ARGO models still have a lag of one or two 36
weeks. It is not the case for Net and ARGONet models. On this plot, estimates obtained s
with Net and ARGONet models are comparable. Figure 9, the heatmap shows that
ARGO model uses mostly 9 variables including 2 variables from Google Data, 2 variables s
from Hospital Data, one variable from Climatic data and one variable from Historical s
data. 368
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Two-week ahead estimate. Figure 10 and Table 14 show results for two-week ahead
forecasts for the time period January 2015-March 2017. Over this time period, the 90%
CI of the best correlation is [0.825;0.935] with a median value equal to 0.885. The 90%
CI of the relative error is [0.129;0.347] with a median value equal to 0.229 which implies
a reduction of the error from 13% to 35% thanks to our models. Like for real-time and
one-week ahead forecasts, AR(52) is the model giving the worst estimates. For all french
regions, the best model is ARGONet with the method using the mean between estimates

obtained from ARGO and Net models.
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Fig 10. Two-week ahead estimate obtained with ARGO, Net and ARGONet models from January 2015 to March 2017
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‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.

AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 0.679 0.618 0.914 | 0.775 | 0.533 | 0.935 | 0.596
Argo 0.350 | 0.490 | 0.464 | 0.339 | 0.327 0.318 0.437 0.541 | 0.525 | 0.339 | 0.570 | 0.277
Net 0.479 | 0.334 | 0.424 | 0.369 | 0.434 0.446 0.446 0.640 | 0.594 | 0.188 | 0.732 | 0.304
K=1 0.259 | 0.309 | 0.335 | 0.321 | 0.268 0.321 0.296 0.514 | 0.345 | 0.205 | 0.619 | 0.262
K=2 0.286 | 0.275 | 0.339 | 0.305 | 0.274 0.285 0.284 0.551 0.369 | 0.190 | 0.497 | 0.217
K=3 0.278 | 0.307 | 0.341 | 0.303 | 0.291 0.302 0.284 0.549 | 0.356 | 0.239 | 0.466 | 0.288
K=4 0.283 | 0.368 | 0.344 | 0.333 | 0.297 0.292 0.282 0.514 | 0.461 | 0.197 | 0.496 | 0.278
Mean 0.197 | 0.284 | 0.246 | 0.209 | 0.180 0.251 0.211 0.347 | 0.281 | 0.123 | 0.393 | 0.129
Lm 0.227 | 0.246 | 0.408 | 0.293 | 0.330 0.268 0.298 0.506 | 0.488 | 0.186 | 0.508 | 0.165

AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
Argo 0.823 | 0.753 | 0.766 | 0.829 | 0.835 0.840 0.779 0.727 | 0.735 | 0.829 | 0.712 | 0.860
Net 0.759 | 0.832 | 0.786 | 0.814 | 0.781 0.775 0.775 0.677 | 0.700 | 0.905 | 0.631 | 0.847
K=1 0.869 | 0.844 | 0.831 | 0.838 | 0.865 | 0.838 0.850 0.740 | 0.826 | 0.897 | 0.688 | 0.868

K=2 0.856 | 0.861 | 0.829 | 0.846 | 0.862 0.856 0.857 0.722 | 0.814 | 0.904 | 0.749 | 0.891

K=3 0.860 | 0.845 | 0.828 | 0.847 | 0.853 0.848 0.857 0.723 | 0.820 | 0.879 | 0.765 | 0.855

K=4 0.857 | 0.814 | 0.826 | 0.832 | 0.850 0.853 0.858 | 0.741 | 0.767 | 0.901 | 0.750 | 0.860

Mean 0.901 | 0.857 | 0.876 | 0.895 | 0.909 | 0.873 0.893 | 0.825 | 0.858 | 0.938 | 0.802 | 0.935
Lm 0.886 | 0.876 | 0.795 | 0.852 | 0.833 0.865 0.850 0.745 | 0.754 | 0.906 | 0.744 | 0.917
Table 14. PCC and MSE for two-week ahead estimate for all french regions for the period starting from January 2015 to
March 2017

On Figure 11, barplots confirm that ARGONet is the best model for all regions in term
of correlation and error. On the same way, for the distribution of PCC and MSE (Figure
14 and 15), ARGONet is the best model.

B ArRGONet [l ARGO [l Net [] AR(S2)
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Fig 11. PCC and MSE obtained for two-week ahead estimate with ARGO, Net and
ARGONet models
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Table 15 shows that the improvement obtained thanks to the ARGONet model compared
to the autoregressive model is statistically significant for all regions for two-week ahead
estimate. Depending on the region, ARGONet allows to reduce the error by 60% to
82%.

Region | Relative efficiency | 95% CI

Auv. | 2.56 2.39:2.73]
Bour. | 5.49 [4.81;6.19]
Bre. 3.30 [2.99;3.62]
Cen. 3.33 [3.07;3.59]
Gd Est | 4.00 [3.55;4.45]
Ht Fra. | 3.00 [2.79;3.22]
lle Fra. | 2.84 [2.57;3.11]
Norm. | 2.74 [2.50;2.98]
Aqui. 3.29 [2.95;3.64]
Occi. | 4.34 [4.02:4.66]
Loi. 2.48 [2.19:2.77]
Pro. 5.22 [4.57;5.86]

Table 15. Two-week ahead estimate - Relative efficiency being bigger than 1 suggests
increased predictive power of ARGONet compared to the autoregressive model

Figure 12 shows two-week ahead estimates for the region Nouvelle-Aquitaine. As for
one-week ahead estimate, we can see that estimates obtained with AR(52) and ARGO
models are still delayed. It is not the case for Net and ARGONet models. Nevertheless,
unlike ARGONet model, Net model tends to overestimate the peaks. On the heatmap
Figure 13, we can see that ARGO model uses mostly 9 variables, including 6 variables

from Google Data, one variable from Climatic Data, two variables from Historical data.
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Fig 12. Nouvelle-Aquitaine Two-week ahead estimate
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Discussion

We have introduced a machine learning ensemble methodology that combines multiple
data sources and multiple statistical approaches to accurately track flu activity in the 12
continental regions of France. To the best of our knowledge, this is a spatial resolution for
which no forecasting approaches have been explored before in France. Our methodology
provides real-time estimates as well as one- and two-week ahead forecasts.

The success of our approach comes from the ability to dynamically identify the appropri-
ate method and data sources to produce the best disease activity estimates for a given
location and time horizon in a prospective way (out-of-sample). Specifically, we show
that the ARGO model alone (one that does not incorporate flu activity from neighboring
regions) yields accurate results for real-time estimates but fails to produce optimal pre-
dictions for longer-term time-horizons. We find that the Net model (one that leverages
information from neighboring regions alone) leads to reasonable flu predictions but tends
to overestimate epidemic peaks. The proposed ensemble approach, named ARGONet
(that combines information from both ARGO and the Net model), an extension of a
model proposed in the USA [27], produces forecasts with the lowest errors and highest
correlation as captured by Figure 1. This machine-learning ensemble approach displays
both accuracy and robustness to estimate ILI activity up to two-weeks ahead of time at
the french regional level.

Prediction error reductions are observed when using ARGONet over its autoregressive
counterpart (up to 50% across regions) in real-time predictions. Whereas the prediction
performance of ARGONet and ARGO are comparable (Table 10) in this same task.
As the time-horizon of prediction increases, the improvements of predictions are more
evident, leading to up to 80% error reductions when comparing ARGONet with AR, and
up to 60% error reduction of ARGONet over ARGO for one-week ahead predictions; and
up to 80% (ARGONet vs AR) and 30% (ARGONet vs ARGO) respectively in two-week
ahead predictions (Tables 11 and 12). Figures S2 through S13 show these results graph-
ically. As expected, autoregressive approaches show ”within-range” prediction values
that consistently lag behind the observed disease activity and lead to under-predictions
close to peak activity.

We find that all external data sources contribute to improving local flu estimates,
when compared to the baseline autoregressive model, specially for longer-term forecasts.
Indeed, for the two-week ahead estimates, the combination of EHR data and Google
data lead to correlation improvements of up to 25% and decreases in error of up to 60%.
For Climatic data, this improvement reaches 20% for correlation and 25% for the error.
For Twitter data, it reaches 20% for both correlation and error. By analyzing heatmaps
(Figures 5, 9 and 13 and in the Supplementary materials) obtained for ARGO models,
we can see that the contributions of different predictors (data sources) change over time
and time-horizon of prediction, but all data sources appear to posses predictive power.
Indeed, the most important data sources are EHR data and Google data in real-time
and for longer-term forecasts. Historical data is consistently used in real-time, but less
used for longer-term forecasting. Conversely, Climatic data and Twitter data are used
more prominently for longer-term forecasts than for real-time estimate.

The fact that we could only access EHR data from Rennes University Hospital, and thus
from the Brittany region, prevented us from being able to quantify the added valued
of region-specific EHR information on flu predictions in their respective region. This
should be evaluated in future research efforts. On the other hand, we find interesting
the fact that data from a hospital in Rennes can improve flu forecasting in other regions.
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Indeed, tables S4 to S6 show that forecasts that include Rennes’ EHR information,
up to two weeks, are more accurate for all the regions when compared to the baseline
autoregressive model. Rennes’ EHR data appears to be more relevant for some regions
than others. For example, it appears to be an important predictor in the Brittany
region (which contains Rennes) as expected, as well as in Normandy, which shares a
border with Brittany. For Occitanie, Rennes’ EHR data improves predictions, which is
in alignment with the fact that historical information shows that flu activity tends to
occur synchronously (with a correlation of 0.93) as seen in Figure S1. We hypothesize
that having access to region-specific EHR data, from all the french regions, will lead to
prediction improvements across the board.

Twitter data was collected at the National level given the sparsity of relevant flu-related
Tweets at the regional level. This was the case as we only had access to the publicly
available data shared by Twitter’s API that only allows users to view up to 5% of all
Geo-coded Tweets (themselves a small fraction of about 5% of the total corpus of all
Tweets). We also suspect that gaining access to higher volumes of Tweets at the regional
level could improve our forecasts.

For climatic data, we only had a access to weekly local temperature and precipitation.
Future studies may explore incorporating other climatic indicators known to be more
directly related to the transmission of the virus, such as humidity [28].

To conclude, we have shown that Internet-based data sources can yield accurate influenza
estimates in the 12 continental regions in France. Operational implementations of these
methods may prove to be useful for public health officials in the face of public health
threats. Our regional-level flu estimates may contribute to better management of patients’
flow in general practitioners’ offices and in hospitals, particularly emergency departments.

Acknowledgments

We would like to thank the French National Research Agency for partially funding this
work inside the Integrating and Sharing Health Data for Research Project (Grant No.
ANR-15-CE19-0024). We also thank the French Sentinelles network and Google and
Twitter services for making their data publicly available. MS and CP were partially
funded by the National Institute of General Medical Sciences of the National Institutes of
Health under Award Number RO1GM130668. The content is solely the responsibility of
the authors and does not necessarily represent the official views of the National Institutes
of Health

Authors Contribution

C.P. and M.S. conceived the research. C.P. wrote the manuscript with support from
M.S.. G.B extracted hospital data. Y.H and T.B. extracted Twitter data. All authors
discussed the results and contributed to the final manuscript.

Conflicts of Interest

None declared.

November 19, 2019

29/109

443

444

445

446

447

448

449

450

451

452

453

455

456

457

458

459

460

461

462

463

465

466

467

468

470

471

472

473

474

475

477

478

479

480

482

483


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

References

1.

10.

11.

12.

13.

14.

15.

Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke
DS.  Strategies for mitigating an influenza pandemic;442(7101):448-452.
doi:10.1038 /nature04795.

Yang S, Santillana M, Kou SC. Accurate estimation of influenza epidemics using
Google search data via ARGO;112:14473-14478. doi:10.1038 /srep25732.

Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza
transmission dynamics;112(9):2723-2728. doi:10.1073 /pnas.1415012112.

. Kalimeri K, Delfino M, Cattuto C, Perrotta D, Colizza V, Guerrisi C, et al. Unsu-

pervised extraction of epidemic syndromes from participatory influenza surveillance
self-reported symptoms;15(4):e1006173. doi:10.1371/journal.pcbi.1006173.

D M Fleming WJP J van der Velden. The evolution of influenza surveillance in
Europe and prospects for the next 10 years;21:1749-1753.

Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I, et al. Cloud-based Elec-
tronic Health Records for Real-time, Region-specific Influenza Surveillance;6:25732.
doi:10.1038/srep25732.

Nsoesie EO, Brownstein JS, Ramakrishnan N, Marathe MV. A systematic review
of studies on forecasting the dynamics of influenza outbreaks;8:309-316.

Yang W, Karspeck A, Shaman J. Comparison of Filtering Methods for the
Modeling and Retrospective Forecasting of Influenza Epidemics;10(4):e1003583.
doi:10.1371 /journal.pchi.1003583.

Chretien JP, George D, Shaman J, Chitale RA, McKenzie FE. In-
fluenza Forecasting in Human Populations: A Scoping Review;9:€94130.
doi:10.1371/journal.pone.0094130.

Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing
Google Flu Trends Data for Detection of Seasonal and Pandemic Influenza:
A Comparative Epidemiological Study at Three Geographic Scales;9:e1003256.
doi:10.1371 /journal.pchi.1003256.

Zhang Y, Bambrick H, Mengersen K, Tong S, Hu W. Using Google Trends
and ambient temperature to predict seasonal influenza outbreaks;117:284-291.
doi:10.1016/j.envint.2018.05.016.

Paul MJ, Dredze M, Broniatowski D. Twitter Improves Influenza Forecasting;6.
doi:10.1371/currents.outbreaks.90b9ed0f59bacdccaat83a39865d9117.

Santillana M, Nguyen AT, Dredze M, Paul MJ, Nsoesie EO, Brownstein JS. Com-
bining Search, Social Media, and Traditional Data Sources to Improve Influenza
Surveillance;11(10). doi:10.1371/journal.pcbi.1004513.

Mowery J. Twitter Influenza Surveillance: Quantifying Seasonal Misdiagnosis Pat-
terns and their Impact on Surveillance Estimates;8. doi:10.5210/0jphi.v8i3.7011.

Sharpe JD, Hopkins RS, Cook RL, Striley CW. Evaluating Google, Twitter,
and Wikipedia as Tools for Influenza Surveillance Using Bayesian Change Point
Analysis: A Comparative Analysis;2(2). doi:10.2196/publichealth.5901.

November 19, 2019

30/109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Mclver DJ, Brownstein JS.  Wikipedia Usage Estimates Prevalence of
Influenza-Like Illness in the United States in Near Real-Time;10(4):e1003581.
doi:10.1371/journal.pchi.1003581.

Global  Disease = Monitoring and  Forecasting with  Wikipedia;10.
doi:10.1371/journal. pcbi.1003892.

Hickmann KS, Fairchild G, Priedhorsky R, Generous N, Hyman JM, Deshpande A,
et al. Forecasting the 2013-2014 Influenza Season Using Wikipedia;11(5):e1004239.
doi:10.1371/journal.pchi.1004239.

Carneiro HA, Mylonakis E. Google Trends: A Web-Based Tool for Real-Time
Surveillance of Disease Outbreaks;49(10):1557-1564. doi:10.1086/630200.

Butler D. When Google got flu wrong;494(7436):155-156. doi:10.1038/494155a.

Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS. Using Clin-
icians’ Search Query Data to Monitor Influenza Epidemics;59(10):1446-1450.
doi:10.1093/cid /ciu647.

Smolinski MS, Crawley AW, Baltrusaitis K, Chunara R, Olsen JM, Wdjcik O,
et al. Flu Near You: Crowdsourced Symptom Reporting Spanning 2 Influenza
Seasons;105(10):2124-2130. doi:10.2105/AJPH.2015.302696.

Biggerstaff M, Johansson M, Alper D, Brooks LC, Chakraborty P, Farrow DC,
et al. Results from the second year of a collaborative effort to forecast influenza
seasons in the United States;24:26-33. doi:10.1016/j.epidem.2018.02.003.

Poirier C, Lavenu A, Bertaud V, Campillo-Gimenez B, Chazard E, Cuggia M, et al.
Real Time Influenza Monitoring Using Hospital Big Data in Combination with
Machine Learning Methods: Comparison Study;4(4):e11361. doi:10.2196/11361.

Bouzillé G, Poirier C, Campillo-Gimenez B, Aubert ML, Chabot M, Chazard
E, et al. Leveraging hospital big data to monitor flu epidemics;154:153-160.
do0i:10.1016/j.cmpb.2017.11.012.

Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating
the use of high-volume electronic medical claims data to monitor local and regional
influenza activity in the US. PloS one. 2014;9(7):€102429.

Lu FS, Hattab MW, Clemente L, Santillana M. Improved state-level influenza
activity nowcasting in the United States leveraging Internet-based data sources
and network approaches via ARGONet; p. 344580. doi:10.1101/344580.

Lowen AC, Steel J. Roles of Humidity and Temperature in Shaping Influenza
Seasonality;88(14):7692-7695. doi:10.1128/JVI.03544-13.

Lowen AC, Mubareka S, Steel J, Palese P. Influenza Virus Trans-
mission Is Dependent on Relative Humidity and Temperature;3(10):el51.
d0i:10.1371 /journal.ppat.0030151.

Tamerius JD, Shaman J, Alonso WJ, Bloom-Feshbach K, Uejio CK, Comrie A,
et al. Environmental Predictors of Seasonal Influenza Epidemics across Temperate
and Tropical Climates;9(3):¢1003194. doi:10.1371/journal.ppat.1003194.

Lawrence. The Relationship between Relative Humidity and the Dewpoint Tem-
perature in Moist Air;doi:10.1175/BAMS-86-2-225.

November 19, 2019

31109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

32. Tibshirani R. Regression Shrinkage and Selection via the Lasso;58:267-288.

33. R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing;. Available from: https://www.R-project,

org/.
34. from Jed Wing MKC, Weston S, Williams A, Keefer C, Engelhardt A, Cooper

T, et al.. caret: Classification and Regression Training; 2018. Available from:
https://CRAN.R-project.org/package=caret!

35. Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance;.
Available from: http://CRAN.R-project.org/package=tseries|

November 19, 2019 32/]109


https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=tseries
https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Supplementary Material

Pearson
Correlation

07 08 09 10 .. Cen.
091 091 082 nNom

= e
0.87

0.91
092 091

5d Est

Auv.
lle Fra
09 091 082 Bre
086 088 0.89 Loi

. 089 088 089 085 087 09 088 082 . Aqui
. 081 076 082 084 089 086 083 085 091 08 Hifra

. 08 081 072 081 083 091 087 081 087 087 0.88 Bour.

&. ('b' \? C} @' A K'b' Sg‘ i C} ((\ ‘0. o Qf}
& & V9 & (& \ Q @
v @ L o ®) 90 < @6

Fig S1. Correlation between French regions on the period starting from January 2013 to March 2017

November 19, 2019 33/]109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week

N w

Incidence rates
-

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Auvergne-Rhéne-Alpes

Legend Gold Standard E Real_time E| One_week Two_week

5

4
[%]
g 3
[
3 '~
g Z\ .
o /7 ~,
G 1 / A4
£

- P \ 4
0
VoS . i S NAa_o _— = e W
-1
03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16

ARGONET : Auvergne-Rhdne-Alpes

Fig S2. Evolution of Auvergne-Rhdne-Alpes estimates over time for AR(52) and ARGONET models

Legend Gold Standard E Real_time E One_week E| Two_week

Incidence rates

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Bourgogne—Franche-Comté

Legend Gold Standard E Real_time E| One_week Two_week

N w IS 3

Incidence rates

-

/f /\ 2\ / b
o Na . J - \L P

—_—
03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Bourgogne-Franche-Comté

Fig S3. Evolution of Bourgogne-Franche-Comté estimates over time for AR(52) and ARGONET models

o

November 19, 2019 34/109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Bretagne

N w

Incidence rates
—

Legend Gold Standard E Real_time E| One_week Two_week

w I o

Incidence rates

[

’ /‘\x\/‘ N \\_\.J—A\
M J i \
’ v f—“—%'/ DN Lom s

- ———

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Bretagne

Fig S4. Evolution of Bretagne estimates over time for AR(52) and ARGONET models

Legend Gold Standard E Real_time E One_week E| Two_week

6
1%}
La
@
(]
(5]
c
Q
82
o
£

0

— —
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Centre-Val de Loire
Legend Gold Standard E Real_time E| One_week Two_week

6 '/'
1%}
]
Sy
Q
o b
] A
bl ™~
22 / /y /\/y;(\\
= \

d \
=4 i
0 \/ _ DBl o EEO— —
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16

ARGONET : Centre-Val de Loire

Fig S5. Evolution of Centre-Val de Loire estimates over time for AR(52) and ARGONET models

November 19, 2019 35/109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week

IS

w

Incidence rates
=N

o

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Grand Est

Legend Gold Standard E Real_time E| One_week Two_week

Incidence rates

P \ . | ,W@//%d/\ | - {__M//J

—

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Grand Est

Fig S6. Evolution of Grand Est estimates over time for AR(52) and ARGONET models

Legend Gold Standard E Real_time E One_week E| Two_week

Incidence rates

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Hauts de France

Legend Gold Standard E Real_time E| One_week Two_week

N

Incidence rates

f
o »A,Q/w

—_—

————

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Hauts de France

Fig S7. Evolution of Hauts de France estimates over time for AR(52) and ARGONET models

November 19, 2019 36109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week

| ) U\

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : lle de France

IS

Incidence rates
N

Legend Gold Standard E Real_time El One_week Two_week

IS =)
P

Incidence rates
N

N

\
N
0 / AP ,A,,.M———\,f/ /VM\X\ e~ b"‘c—é(// \

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : lle de France

Fig S8. Evolution of Ile de France estimates over time for AR(52) and ARGONET models

A

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16

AR(52) : Normandie
8
j/\L w2 Y iavi
0 . \/ — D ,_—A\,o—/ » — S \

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Normandie

Fig S9. Evolution of Normandie estimates over time for AR(52) and ARGONet models

Legend Gold Standard E Real_time E One_week E| Two_week

Incidence rates
- N w £ w

o

Legend Gold Standard E Real_time El One_week Two_week

o

Incidence rates
~

N

—

November 19, 2019 37/109


https://doi.org/10.1101/19009795

Incidence rates

Incidence rates

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week
4
2
0
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Nouvelle-Aquitaine
Legend Gold Standard E Real_time E| One_week Two_week
6
4
2 ¢
-
| A R /[ \
A, W N 5
\/ VRQALS, Al oo~ — PR — g

03/15

06/15 09/15 12/15 03/16
ARGONET : Nouvelle-Aquitaine

06/16

09/16 12/16

Fig S10. Evolution of Nouvelle-Aquitaine estimates over time for AR(52) and ARGONet models

Incidence rates

Incidence rates

Fig S11. Evolution of Occitanie estimates over time for AR(52) and ARGONet models

Legend Gold Standard E Real_time E One_week E| Two_week

5

4

3

2

1

0

03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Occitanie

Legend Gold Standard IE‘ Real_time E One_week Two_week

5.0

25 /

/ \
0.0 / \ = / \ J \
Do e
03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16

ARGONET : Occitanie

November 19, 2019

38/109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Legend Gold Standard E Real_time E One_week E| Two_week

w4
o
<
(0]
(5]
5
g2
‘©
£
0
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Pays de la Loire
Legend Gold Standard E Real_time E| One_week Two_week
6
[}
L4
[
3
5 \
el N\
(5}
£ Y A
/'/) k P x POV.N \
1
o V i\/ o o = e =7 e e s O e |
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16

ARGONET : Pays de la Loire

Fig S12. Evolution of Pays de la Loire estimates over time for AR(52) and ARGONet models

Legend Gold Standard E Real_time E One_week E| Two_week

0 4
2
[
[}
(5]
5
82
‘S
£
0 PPN
03/15 06/15 09/15 12/15 03/16 06/16 09716 12/16
AR(52) : Provence-Alpes—-Cote d'Azur
Legend Gold Standard IE‘ Real_time E One_week Two_week
0 50
]
[
@
g
g 2.5 i
2 \ x
= /j \\’5' v
0.0 x —e A e “,/

03/15 06/15 09/15 12/15 03/16 06/16 09/16 12/16
ARGONET : Provence-Alpes-Cote d'Azur

Fig S13. Evolution of Provence-Alpes-Céte d’Azur estimates over time for AR(52) and ARGONet models

November 19, 2019 39/109


https://doi.org/10.1101/19009795

medRxiv preprint doi: https://doi.org/10.1101/19009795; this version posted November 25, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.

MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 0.169 0.129 0.241 | 0.161 | 0.108 | 0.368 | 0.141
ARGO | 0.064 | 0.140 | 0.117 | 0.080 | 0.065 0.130 0.101 0.176 | 0.112 | 0.047 | 0.320 | 0.072
pPCC
AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 | 0919 | 0.946 | 0.815 | 0.929
ARGO | 0.967 | 0.929 | 0.941 | 0.959 | 0.967 | 0.935 0.949 0.911 | 0.944 | 0.976 | 0.839 | 0.964

Table S1. Real time estimate: MSE and PCC for ARGO models including only historical data (AR(52)) and the 10 most
correlated variables from Google data, for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 0.433 0.372 0.580 | 0.480 | 0.278 | 0.704 | 0.389

ARGO | 0.218 | 0.333 | 0.231 | 0.193 | 0.172 0.248 0.303 0.373 | 0.328 | 0.150 | 0.569 | 0.170
PCC

AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.890 | 0.832 | 0.884 | 0.903 | 0.913 0.875 0.847 0.812 | 0.835 | 0.924 | 0.713 | 0.914

Table S2. One-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and the 10
most correlated variables from Google data, for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 | 0.679 | 0.618 | 0.914 | 0.775 | 0.533 | 0.935 | 0.596

ARGO | 0.370 | 0.600 | 0.445 | 0.332 | 0.330 0.351 0.446 0.568 | 0.562 | 0.291 | 0.753 | 0.282
PCC

AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.814 | 0.697 | 0.776 | 0.832 | 0.834 | 0.823 0.775 0.714 | 0.716 | 0.853 | 0.620 | 0.858

Table S3. Two-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and the 10
most correlated variables from Google data, for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 | 0.169 0.129 | 0.241 | 0.161 | 0.108 | 0.368 | 0.141

ARGO | 0.072 | 0.171 | 0.114 | 0.133 | 0.093 0.154 0.127 | 0.199 | 0.157 | 0.074 | 0.291 | 0.118
pPCC

AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 10919 | 0.946 | 0.815 | 0.929
ARGO | 0.964 | 0.914 | 0.943 | 0.933 | 0.953 0.922 0.936 0.900 | 0.921 | 0.963 | 0.853 | 0.941

Table S4. Real time estimate: MSE and PCC for ARGO models including only historical data (AR(52)) and the 10 most
correlated variables from Hospital data, for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Tle Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 | 0.433 0.372 | 0.580 | 0.480 | 0.278 | 0.704 | 0.389

ARGO | 0.234 | 0.440 | 0.315 | 0.375 | 0.284 0.342 0.365 0.441 | 0.432 | 0.193 | 0.626 | 0.326
PCC

AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.882 | 0.778 | 0.841 | 0.811 | 0.857 0.828 0.816 0.778 | 0.782 | 0.903 | 0.684 | 0.835

Table S5. One-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and the 10
most correlated variables from Hospital data, for the period starting from January 2015 to March 2017
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‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.

MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 0.679 0.618 0.914 | 0.775 | 0.533 | 0.935 | 0.596
ARGO | 0.488 | 0.812 | 0.532 | 0.632 | 0.620 0.514 0.638 0.658 | 0.730 | 0.452 | 0.758 | 0.482
PCC
AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.754 | 0.590 | 0.732 | 0.681 | 0.687 | 0.741 0.678 0.668 | 0.632 | 0.772 | 0.618 | 0.757

Table S6. Two-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and the 10
most correlated variables from Hospital data, for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.083 | 0.203 | 0.167 | 0.161 | 0.096 | 0.169 | 0.129 | 0.241 | 0.161 | 0.108 | 0.368 | 0.141

ARGO | 0.100 | 0.168 | 0.134 | 0.110 | 0.087 | 0.242 0.133 0.213 | 0.141 | 0.097 | 0.315 | 0.117
pPCC

AR(52) | 0.958 | 0.898 | 0.916 | 0.919 | 0.952 0.915 0.935 0.879 | 0919 | 0.946 | 0.815 | 0.929
ARGO | 0.950 | 0.916 | 0.933 | 0.945 | 0.957 | 0.878 0.933 0.893 | 0.929 | 0.951 | 0.842 | 0.941

Table S7. Real time estimate: MSE and PCC for ARGO models including only historical data (AR(52)) and only hospital
and Google data (all variables), for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.262 | 0.611 | 0.433 | 0.438 | 0.276 | 0.433 | 0.372 | 0.580 | 0.480 | 0.278 | 0.704 | 0.389

ARGO | 0.275 | 0.691 | 0.372 | 0.288 | 0.206 0.489 0.373 0.500 | 0.280 | 0.350 | 0.523 | 0.304
PCC

AR(52) | 0.868 | 0.692 | 0.782 | 0.779 | 0.861 0.782 0.813 0.707 | 0.758 | 0.860 | 0.645 | 0.804
ARGO | 0.862 | 0.653 | 0.814 | 0.856 | 0.897 | 0.755 0.813 0.749 | 0.860 | 0.825 | 0.738 | 0.848

Table S8. One-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and only
hospital and Google data (all variables), for the period starting from January 2015 to March 2017

‘ Auv. ‘ Bour. ‘ Bre. ‘ Cen. ‘ Gd Est ‘ Ht Fra. ‘ Ile Fra. ‘ Norm. ‘ Aqui. ‘ Occi. ‘ Loi. ‘ Pro.
MSE
AR(52) | 0.534 | 0.947 | 0.665 | 0.776 | 0.530 | 0.679 | 0.618 | 0.914 | 0.775 | 0.533 | 0.935 | 0.596

ARGO | 0.516 | 0.724 | 0.408 | 0.539 | 0.361 0.657 0.493 0.632 | 0.454 | 0.286 | 0.643 | 0.269
PCC

AR(52) | 0.731 | 0.522 | 0.665 | 0.609 | 0.733 0.658 0.688 0.539 | 0.610 | 0.731 | 0.528 | 0.699
ARGO | 0.741 | 0.637 | 0.795 | 0.730 | 0.819 0.670 0.753 0.683 | 0.772 | 0.857 | 0.678 | 0.865

Table S9. Two-week ahead forecast : MSE and PCC for ARGO models including only historical data (AR(52)) and only
hospital and Google data (all variables), for the period starting from January 2015 to March 2017
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MSE
AR(52)
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Net
K=1
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AR(52)
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Net
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LLL
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Mean
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‘ Auv. ‘ Bour.
0.083 | 0.203
0.069 | 0.129
0.071 | 0.181
0.075 | 0.120
0.066 | 0.124
0.081 | 0.137
0.068 | 0.128
0.057 | 0.141
0.059 | 0.139
0.958 | 0.898
0.965 | 0.935
0.964 | 0.909
0.962 0.956
0.967 | 0.939
0.959 | 0.937
0.966 | 0.931
0.971 | 0.929
0.970 | 0.930

Bre.

0.167
0.090
0.156
0.102
0.099
0.104
0.106
0.109
0.105

0.916
0.954
0.921
0.948
0.950
0.948
0.947
0.945
0.947

‘ Cen.

0.161
0.088
0.104
0.098
0.094
0.093
0.101
0.090
0.097

0.919
0.955
0.948
0.951
0.952
0.953
0.949
0.955
0.951

‘ Gd Est ‘ Ht Fra.

0.096
0.065
0.098
0.072
0.081
0.073
0.072
0.072
0.063

0.952
0.967
0.951
0.963
0.959
0.963
0.964
0.964
0.968

0.169
0.152
0.127
0.127
0.126
0.119
0.129
0.115
0.118

0.915
0.923
0.936
0.936
0.936
0.940
0.935
0.942
0.940

Ile Fra.

0.129
0.122
0.141
0.116
0.115
0.117
0.116
0.116
0.131

0.935
0.938
0.929
0.941
0.942
0.942
0.941
0.942
0.942

Norm. ‘ Aqui.
0.241 0.161
0.219 0.125
0.265 | 0.139
0.247 | 0.118
0.210 | 0.119
0.208 | 0.123
0.242 0.124
0.224 | 0.118
0.264 | 0.129
0.879 | 0.919
0.890 | 0.937
0.866 | 0.930
0.875 | 0.941
0.894 | 0.940
0.895 | 0.938
0.877 | 0.938
0.887 0.941
0.867 | 0.935

‘ Occi. ‘ Loi.
0.108 | 0.368
0.060 | 0.309
0.105 | 0.375
0.068 | 0.357
0.079 | 0.311
0.088 | 0.314
0.069 | 0.292
0.070 | 0.311
0.066 | 0.336
0.946 | 0.815
0.970 | 0.844
0.947 | 0.811
0.966 | 0.820
0.960 | 0.843
0.956 | 0.842
0.965 | 0.852
0.965 | 0.843
0.967 | 0.830

Pro.

0.141
0.105
0.115
0.133
0.123
0.131
0.136
0.090
0.100

0.929
0.947
0.942
0.933
0.938
0.934
0.931
0.954
0.949

Table S10. PCC and MSE for real time estimate for all french regions for the period starting from January 2015 to March

2017 with all the variables from Google and hospital data included in ARGO model

‘ Auv. ‘ Bour.
0.262 | 0.611
0.205 | 0.803
0.343 | 0.269
0.203 | 0.783
0.253 | 0.766
0.235 | 0.205
0.187 | 0.765
0.101 | 0.435
0.118 | 0.327
0.868 | 0.692
0.896 | 0.595
0.827 | 0.864
0.897 | 0.605
0.872 | 0.614
0.881 | 0.897
0.906 | 0.614
0.949 | 0.781
0.940 | 0.835

Bre.

0.433
0.334
0.398
0.213
0.227
0.244
0.339
0.217
0.216

0.782
0.832
0.799
0.893
0.885
0.877
0.829
0.890
0.891

‘ Cen.

0.438
0.259
0.282
0.237
0.167
0.173
0.189
0.156
0.165

0.779
0.869
0.858
0.881
0.916
0.913
0.905
0.921
0.917

‘ Gd Est ‘ Ht Fra.

0.276
0.394
0.271
0.328
0.320
0.319
0.314
0.172
0.182

0.861
0.801
0.863
0.835
0.839
0.839
0.842
0.913
0.908

0.433
0.289
0.324
0.385
0.333
0.366
0.374
0.188
0.226

0.782
0.854
0.837
0.806
0.832
0.815
0.811
0.905
0.886

Ile Fra.

0.372
0.279
0.439
0.238
0.249
0.245
0.254
0.170
0.219

0.813
0.859
0.778
0.880
0.875
0.877
0.872
0.914
0.890

Norm. ‘ Aqui.
0.580 | 0.480
0.487 | 0.300
0.595 | 0.518
0.347 0.196
0.338 | 0.212
0.343 | 0.209
0.331 | 0.227
0.444 | 0.252
0.484 | 0.284
0.707 | 0.758
0.754 | 0.849
0.700 | 0.739
0.825 | 0.901
0.860 | 0.893
0.827 | 0.895
0.833 | 0.885
0.776 | 0.873
0.756 | 0.857

‘ Occi. ‘ Loi.
0.278 | 0.704
0.168 | 0.479
0.235 | 0.770
0.112 | 0.460
0.101 | 0.486
0.213 | 0.465
0.155 | 0.479
0.098 | 0.523
0.103 | 0.536
0.860 | 0.645
0.915 | 0.758
0.881 | 0.612
0.944 | 0.768
0.949 | 0.755
0.893 | 0.765
0.922 | 0.759
0.951 | 0.736
0.948 | 0.729

Pro.

0.389
0.254
0.173
0.159
0.173
0.156
0.180
0.084
0.083

0.804
0.876
0.912
0.920
0.913
0.921
0.909
0.957
0.958

Table S11. PCC and MSE for one-week forecast for all french regions for the period starting from January 2015 to March

2017 with all the variables from Google and hospital data included in ARGO model
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‘ Auv.

0.534
0.424
0.351
0.209
0.257
0.240
0.300
0.167
0.197

0.731
0.786
0.823
0.895
0.871
0.879
0.849
0.916
0.901

Bour.

0.947
0.505
0.365
0.362
0.324
0.290
0.280
0.244
0.277

0.522
0.745
0.816
0.817
0.837
0.854
0.859
0.877
0.860

Bre.

0.665
0.439
0.374
0.263
0.283
0.301
0.298
0.222
0.238

0.665
0.778
0.811
0.867
0.857
0.848
0.849
0.888
0.880

‘ Cen.

0.776
0.386
0.282
0.175
0.193
0.315
0.326
0.127
0.144

0.609
0.805
0.858
0.912
0.902
0.841
0.836
0.936
0.927

‘ Gd Est ‘ Ht Fra.

0.530
0.357
0.352
0.236
0.290
0.284
0.282
0.145
0.195

0.733
0.820
0.822
0.881
0.854
0.857
0.858
0.927
0.902

0.679
0.378
0.346
0.377
0.371
0.390
0.411
0.213
0.253

0.658
0.809
0.825
0.810
0.813
0.803
0.793
0.892
0.872

Ile Fra.

0.618
0.416
0.573
0.365
0.280
0.302
0.397
0.242
0.250

0.688
0.790
0.841
0.816
0.859
0.847
0.850
0.878
0.874

Norm. | Aqui.
0.914 | 0.775
0.621 | 0.490
0.472 | 0.457
0.407 | 0.229
0.499 | 0.281
0.471 | 0.276
0.477 | 0.270
0.337 | 0.225
0.361 | 0.247
0.539 | 0.610
0.687 | 0.753
0.762 | 0.770
0.794 | 0.885
0.748 | 0.858
0.762 | 0.861
0.759 | 0.864
0.830 | 0.886
0.818 | 0.875

‘ Occi. ‘ Loi.
0.533 | 0.935
0.222 | 0.548
0.265 | 0.802
0.132 | 0.695
0.178 | 0.438
0.196 | 0.497
0.149 | 0.636
0.086 | 0.452
0.099 | 0.511
0.731 | 0.528
0.888 | 0.723
0.867 | 0.596
0.934 | 0.649
0.910 | 0.779
0.901 | 0.749
0.925 | 0.679
0.957 | 0.772
0.950 | 0.742

Pro.

0.596
0.252
0.333
0.239
0.181
0.143
0.231
0.129
0.135

0.699
0.873
0.832
0.879
0.909
0.928
0.888
0.935
0.932

Table S12. PCC and MSE for two-week forecast for all french regions for the period starting from January 2015 to March

2017 with all the variables from Google and hospital data included in ARGO model
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Fig S14. Auvergne Real-time estimate
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