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Abstract 43 

Atrial fibrillation (AF) is the most common arrhythmia and significantly increases stroke risk. 44 

This risk is effectively managed by oral anticoagulation. Recent studies using national 45 

registry data indicate increased use of anticoagulation resulting from changes in guidelines 46 

and the availability of newer drugs.  47 

The aim of this study is to develop and validate an open source risk scoring pipeline for free-48 

text electronic health record data using natural language processing.  49 

AF patients discharged from 1st January 2011 to 1st October 2017 were identified from 50 

discharge summaries (N=10,030, 64.6% male, average age 75.3 ± 12.3 years). A natural 51 

language processing pipeline was developed to identify risk factors in clinical text and 52 

calculate risk for ischaemic stroke (CHA2DS2-VASc) and bleeding (HAS-BLED). Scores 53 

were validated vs two independent experts for 40 patients. 54 

Automatic risk scores were in strong agreement with the two independent experts for 55 

CHA2DS2-VASc (average kappa 0.78 vs experts, compared to 0.85 between experts). 56 

Agreement was lower for HAS-BLED (average kappa 0.54 vs experts, compared to 0.74 57 

between experts). 58 

In high-risk patients (CHA2DS2-VASc >2) OAC use has increased significantly over the last 59 

7 years, driven by the availability of DOACs and the transitioning of patients from AP 60 

medication alone to OAC. Factors independently associated with OAC use included 61 

components of the CHA2DS2-VASc and HAS-BLED scores as well as discharging specialty 62 

and frailty. OAC use was highest in patients discharged under cardiology (69%). 63 

Electronic health record text can be used for automatic calculation of clinical risk scores at 64 

scale. Open source tools are available today for this task but require further validation. 65 
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Analysis of routinely-collected EHR data can replicate findings from large-scale curated 66 

registries. 67 

 68 

Keywords 69 

Natural language processing, electronic health records 70 

Abbreviations 71 

AF = atrial fibrillation 72 

AP = antiplatelet 73 

DOAC = direct oral anticoagulant 74 

EHR = electronic health record 75 

NLP = natural language processing 76 

OAC = oral anticoagulant77 
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Introduction 78 

Atrial fibrillation (AF) affects 2% of the UK population and significantly increases stroke 79 

risk.[1] Although this risk can be substantially reduced by oral anticoagulants (OAC), 80 

warfarin has historically been underused in AF. Over the last decade the antithrombotic 81 

landscape has changed significantly with: (1) the introduction of direct oral anticoagulants 82 

(DOACs), and (2) the updated UK NICE 2014 AF guidelines[2] which introduced the 83 

CHA2DS2-VASc[3] and HAS-BLED[4] risk calculators and removed endorsement of the use 84 

of antiplatelet agents for stroke prevention. A number of large-scale observational studies 85 

have found that rates of OAC use have significantly increased since the introduction of 86 

DOACs.[5–8] However, these previous analyses have used structured data, which do not 87 

capture the full clinical narrative, and many studies have used registry data which can be 88 

costly and time-consuming to collect and may not always accurately reflect real-world 89 

practice.  90 

An alternative approach to observational research is the use of Electronic Health Record 91 

(EHRs) data generated as part of routine clinical care.[9] Modern EHRs contain a 92 

combination of structured (e.g. age, sex) and unstructured (e.g. free text, image) data. Whilst 93 

free text is information-dense to a human reader, to be useful for computational analysis it 94 

requires conversion to a structured format. Performing this process manually is very labour-95 

intensive. However, given the enormous volume of clinical data contained solely in written 96 

notes[10], extracting this information is critical to realizing the full potential of EHRs.  97 

Natural language processing (NLP) uses computer algorithms to identify key elements in 98 

everyday language and extract meaning from spoken or written language. NLP can be used to 99 

convert unstructured text found in EHRs to structured data. This should allow rapid, low-cost 100 
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and automated analysis of medical text, including the generation of observational data for 101 

research purposes. 102 

In this study we develop an NLP pipeline to calculate clinical risk scores from free text. We 103 

build upon our existing data pooling, harmonization and information retrieval tool 104 

(CogStack[11,12]), together with a semantic NLP tool for information extraction 105 

(SemEHR[13,14]). Previous studies have found it is possible to accurately predict CHA2DS2-106 

VASc using EHR text.[15–17] We build on this work to develop a flexible open source 107 

pipeline and calculate additional risk scores. Our specific objectives are to: 108 

a) Develop and validate an NLP risk scoring pipeline. 109 

b) Explore trends in antithrombotic medication use for AF including the impact 110 

of the availability of DOACs and changes in NICE 2014 guidelines. 111 

c) Quantify the association between antithrombotic medication use and relevant 112 

clinical patient-level variables. 113 

  114 
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Methods 115 

Data, materials and code 116 

A subset of the dataset limited to anonymisable information (e.g. only UMLS codes and 117 

demographics) is available on request to researchers with suitable training in information 118 

governance and human confidentiality protocols; contact jamesteo@nhs.net. All code for 119 

calculating risk scores is open-source in GitHub at https://github.com/CogStack/risk-score-120 

builder . Source text from patient records used in the study will not be available due to 121 

inability to fully anonymise up to the Information Commissioner Office (ICO) standards. 122 

Risk factor-level data is available as S3 Table.  123 

 124 

Ethical approval 125 

This study was performed on anonymised data as a clinical audit for service evaluation. The 126 

project was reviewed by the King’s College Hospital Information Governance committee 127 

chaired by the Caldicott Guardian Professor Alastair Baker (the Caldicott Guardian is the 128 

statutory individual responsible for protecting the confidentiality of health and care 129 

information in a UK healthcare organisation) and approval was granted in November 2018 130 

with continued oversight. The legal basis of secondary use was analysis for service 131 

evaluation, operational performance and clinical audit. 132 

 133 

Cohort selection 134 

We used an open-source retrieval system for unstructured clinical data (CogStack)[11,12] to 135 

define a cohort of patients aged ≥ 18 with AF admitted to KCH between 01-01-2011 and 01-136 
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10-2017. We searched discharge summaries for adult inpatients discharged alive containing 137 

the exact keywords “AF”, “PAF”, “AFib” or “Atrial Fibrillation”. Although the risk of stroke 138 

and OAC indications in atrial flutter are similar to AF, in clinical practice in the UK many 139 

patients with isolated typical flutter undergo flutter ablation after which there is significant 140 

variation in practice in terms of long-term OAC prescription. For this reason we decided not 141 

to include patients with flutter. Patients with missing data such as gender or discharge ward 142 

were excluded (N=397). We also excluded patients discharged directly from the emergency 143 

department, day units or the clinical decision unit, as these did not constitute an inpatient 144 

admission and did not generate the discharge summaries we used to identify discharge 145 

medication and diagnosis of AF.  146 

 147 

We further refined our cohort using an NLP pipeline SemEHR[13,14] which generates 148 

semantic annotation and can detect negation, temporality (current, historic) and experiencer. 149 

We excluded patients for which the NLP pipeline detected negation, a hypothetical mention 150 

or another experiencer (the mention refers to another individual who is not the patient e.g. 151 

family history) for AF. 152 

 153 

We defined a new diagnosis of AF as the first mention of AF in a patient with at least one 154 

previous visit and no earlier record of AF or prescription of antithrombotic medication. 155 

 156 

CHA2DS2-VASc and HAS-BLED risk score calculation  157 

We used the SemEHR NLP pipeline to annotate clinical documents with Unified Medical 158 

Language System (UMLS) concepts.[18] To calculate CHA2DS2-VASc and HAS-BLED risk 159 

scores, we manually mapped each phenotypic component of the score (e.g. stroke) to the 160 
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closest general term in the Human Phenotype Ontology (HPO)[19] and automatically 161 

included all descendent terms in the ontology. All HPO concepts were then mapped 162 

automatically to UMLS. Medications were manually mapped to UMLS concepts directly (as 163 

they are not present in HPO), and the first child terms are included automatically using 164 

UMLS concept relationships. The only factor not included was a labile International 165 

Normalised Ratio (INR) in the HAS-BLED score, which is not in HPO and is ambiguous in 166 

UMLS, and which is not reliably recorded in the dataset.  167 

 168 

The result is a mapping of each score component to a list of UMLS concepts, which was 169 

manually refined based on manual review of a random sample of 205 patients by a single 170 

annotator. The final mapping is available as S1 Table. For each component we then identified 171 

matching annotations in medical records using the NLP pipeline and awarded points as 172 

defined for each score.  173 

 174 

For patients with multiple admissions (and the possibility of change in risk scores over time) 175 

we used the most recent admission to calculate risk scores. 176 

 177 

Antithrombotic Drug Prescription 178 

Antithrombotic prescriptions of OACs (apixaban, rivaroxaban, dabigatran, edoxaban, 179 

warfarin) and antiplatelets (AP; aspirin, clopidogrel, dipyridamole, ticagrelor, prasugrel) were 180 

extracted from free text discharge summaries. This was performed using a custom NLP 181 

pipeline written in Python and specifically adapted to the KCH record structure. Drug 182 

mentions are identified by fuzzy matching and any detected mentions are tested for negation 183 

using regular expressions. The open source code is available at 184 

https://github.com/CogStack/OAC-NLP . 185 
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 186 

Hospital Frailty Risk Score (HFRS) Calculation 187 

We calculated the Hospital Frailty Risk Score (HFRS) proposed by Gilbert et al. [20] which 188 

uses ICD-10 diagnostic codes to identify a group of patients at higher risk of adverse 189 

outcomes. We mapped these ICD-10 codes to UMLS concept unique identifiers (CUI) using 190 

bio-ontology.[21] We used SemEHR to detect all UMLS concepts in free text and calculate 191 

the total frailty risk as the sum of concept weights as defined by Gilbert et al..[20]  192 

 193 

Validation of AF diagnosis, Antithrombotic drug prescription and 194 

NLP risk scores  195 

The diagnosis of AF and antithrombotic drug prescriptions were manually validated on a 196 

random sample of 300 discharge summaries (AF diagnosis) or 200 discharge summaries 197 

(prescription) taken from our cohort. Performance was measured by calculating the precision, 198 

recall and F1 score. 199 

 200 

CHA2DS2-VASc and HAS-BLED risk scores were validated for a sample of 40 patients 201 

selected at random after stratification by gender and age (this sample does not overlap with 202 

the initial sample used to refine the automated scoring). Each patient was manually scored for 203 

all components of CHA2DS2-VASc and HAS-BLED by two independent expert clinicians 204 

according to agreed criteria (see S1 Table). Inter-annotator agreement for the final scores was 205 

calculated using a weighted Cohen’s kappa. Given the high-dimensional complexity of the 206 

HFRS, we did not attempt to validate it and instead compared the score distribution to the 207 

original findings of Gilbert et al..[20] 208 
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 209 

Statistical analysis 210 

Categorical variables are expressed as percentages and compared using a chi-squared test. 211 

Normally distributed continuous variables are expressed as mean+/-standard deviation and 212 

compared using Student t test. Skewed continuous variables (length of stay, number of visits, 213 

HFRS) are expressed as median (minimum-maximum) and compared using a Kruskal-Wallis 214 

H-test. Statistical analyses were performed using the StatsModels and scipy libraries in 215 

Python. In all analyses a P<0.05 was considered significant.  216 

 217 

We evaluated temporal trends in the rates of prescription of antithrombotic drugs for patients 218 

at high stroke risk (CHA2DS2-VASc ≥ 2) using linear regression with quarterly data, 219 

retaining the last visit per quarter for each patient.  220 

 221 

The association of individual risk score (CHA2DS2-VASc and HAS-BLED) components and 222 

other clinical variables with antithrombotic prescription were evaluated in univariate and 223 

multivariate analyses. Factors with a significant association (P<0.05) in univariate analysis 224 

were entered into multivariate models. These associations were estimated using odds ratios 225 

from logistic regression. Uncontrolled hypertension and concomitant alcohol abuse were not 226 

included in the models as there were too few positive cases in our validation data. 227 

Concomitant drugs increasing bleeding risk were also excluded as this includes antiplatelets 228 

which could be prescribed for anticoagulation. 229 

 230 

 231 
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Results 232 

Cohort identification 233 

We identified 11,260 adult patients admitted to KCH with a diagnosis of AF. After excluding 234 

1,230 patients (Fig 1) we were left with a final cohort of 10,030 patients admitted 17,387 235 

times during the prescribing study period and 151,174 times in total (Table 1). 236 

 237 

 238 

Fig 1. Derivation of the study cohort. AF = Atrial fibrillation, NLP = natural language 239 

processing.  240 

 241 

Table 1. Baseline characteristics of study cohort. 242 
Factor Total 

(n=10030) 
Any OAC 
(n=5287) 

Warfarin 
(n=3328) 

DOAC 
(n=1873) 

AP only 
(n=1902) 

No 
Antithrombotic 

medication 
(n=1998) 

P-value 

Other 
clinical 
variables 

Age (y) 75.3 ± 12.3 75.1 ± 11.5 74.4 ± 
11.1 

76.4 ± 
12.1 

77.5 ± 12.5 74.5 ± 14.3 <0.001 

Frailty 
(HFRS) 

2.5 (0.0-28.1) 2.0 (0.0-
28.1) 

1.8 (0.0-
23.0) 

3.2 (0.0-
28.1) 

3.2 (0.0-
20.5) 

3.2 (0.0-28.1) <0.001 

LOS (days) 6.5 (0.0-
390.0) 

6.2 (0.0-
360.4) 

6.2 (0.0-
326.2) 

6.2 (0.0-
360.4) 

6.4 (0.0-
253.7) 

5.8 (0.0-390.0) 0.019 

Previous 
admissions 

(n) 

7.0 (1.0-
242.0) 

8.0 (1.0-
242.0) 

7.0 (1.0-
178.0) 

9.0 (1.0-
242.0) 

6.0 (1.0-
215.0) 

8.0 (1.0-189.0) <0.001 

CHA2DS
2-VASc 
factors 

Congestive 
heart failure 

3238 (32.3%) 1992 
(37.7%) 

1254 
(37.7%) 

711 
(38.0%) 

529 
(27.8%) 

511 (25.6%) <0.001 

Diabetes 
mellitus 

5722 (57.0%) 3222 
(60.9%) 

2044 
(61.4%) 

1125 
(60.1%) 

984 
(51.7%) 

976 (48.9%) <0.001 

Female 4351 (43.4%) 2277 
(43.1%) 

1371 
(41.2%) 

866 
(46.2%) 

911 
(47.9%) 

886 (44.3%) <0.001 

Hypertension 6828 (68.1%) 3664 
(69.3%) 

2226 
(66.9%) 

1376 
(73.5%) 

1323 
(69.6%) 

1256 (62.9%) <0.001 

Stroke 4824 (48.1%) 2607 
(49.3%) 

1528 
(45.9%) 

1028 
(54.9%) 

967 
(50.8%) 

952 (47.6%) <0.001 

Vascular 
disease 

3132 (31.2%) 1710 
(32.3%) 

1082 
(32.5%) 

600 
(32.0%) 

562 
(29.6%) 

429 (21.5%) <0.001 

0 156 (1.6%) 58 (1.1%) 29 (0.9%) 29 (1.6%) 22 (1.2%) 72 (3.6%)   
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CHA2DS
2-VASc 
score 

1 392 (3.9%) 168 (3.2%) 118 
(3.5%) 

46 (2.5%) 78 (4.1%) 112 (5.6%)   

2 932 (9.3%) 451 (8.5%) 306 
(9.2%) 

143 
(7.6%) 

171 (9.0%) 207 (10.4%)   

3 1405 (14.0%) 707 
(13.4%) 

482 
(14.5%) 

214 
(11.4%) 

227 
(11.9%) 

312 (15.6%)   

4 1700 (16.9%) 891 
(16.9%) 

608 
(18.3%) 

268 
(14.3%) 

303 
(15.9%) 

345 (17.3%)   

5 1853 (18.5%) 1001 
(18.9%) 

625 
(18.8%) 

364 
(19.4%) 

370 
(19.4%) 

338 (16.9%)   

6 1651 (16.5%) 899 
(17.0%) 

540 
(16.2%) 

337 
(18.0%) 

338 
(17.8%) 

310 (15.5%)   

7 1138 (11.3%) 628 
(11.9%) 

350 
(10.5%) 

269 
(14.4%) 

249 
(13.1%) 

180 (9.0%)   

8 613 (6.1%) 371 (7.0%) 211 
(6.3%) 

153 
(8.2%) 

115 (6.0%) 92 (4.6%)   

9 190 (1.9%) 113 (2.1%) 59 (1.8%) 50 (2.7%) 29 (1.5%) 30 (1.5%)   

Total 4.7 ± 2.0 4.8 ± 2.0 4.7 ± 1.9 5.0 ± 2.0 4.8 ± 2.0 4.3 ± 2.1 <0.001 

HAS-
BLED 
factors* 

Abnormal 
liver function 

532 (5.3%) 240 (4.5%) 150 
(4.5%) 

89 (4.8%) 97 (5.1%) 176 (8.8%) <0.001 

Abnormal 
renal 

function 

1706 (17.0%) 937 
(17.7%) 

539 
(16.2%) 

380 
(20.3%) 

307 
(16.1%) 

355 (17.8%) <0.001 

Alcohol 75 (0.8%) 75 (1.4%) 26 (0.8%) 47 (2.5%) 0 (0.0%) 0 (0.0%) <0.001 

Bleeding 1429 (14.2%) 604 
(11.4%) 

348 
(10.5%) 

241 
(12.9%) 

269 
(14.1%) 

483 (24.2%) <0.001 

Drugs 
increasing 
bleed risk 

3504 (34.9%) 3504 
(66.3%) 

2130 
(64.0%) 

1317 
(70.3%) 

- - - 

HAS-
BLED 
score 

0 681 (6.8%) 204 (3.9%) 141 
(4.2%) 

62 (3.3%) 148 (7.8%) 194 (9.7%)   

1 2716 (27.1%) 1053 
(19.9%) 

723 
(21.7%) 

314 
(16.8%) 

650 
(34.2%) 

638 (31.9%)   

2 3528 (35.2%) 1780 
(33.7%) 

1186 
(35.6%) 

568 
(30.3%) 

783 
(41.2%) 

721 (36.1%)   

3 2190 (21.8%) 1488 
(28.1%) 

866 
(26.0%) 

596 
(31.8%) 

267 
(14.0%) 

359 (18.0%)   

4 763 (7.6%) 618 
(11.7%) 

338 
(10.2%) 

267 
(14.3%) 

53 (2.8%) 79 (4.0%)   

5 135 (1.4%) 127 (2.4%) 65 (1.9%) 59 (3.1%) 1 (0.1%) 7 (0.3%)   

6 17 (0.2%) 17 (0.3%) 9 (0.3%) 7 (0.4%) 0 (0.0%) 0 (0.0%)   

Total 2.0 ± 1.1 2.3 ± 1.1 2.2 ± 1.1 2.5 ± 1.1 1.7 ± 0.9 1.8 ± 1.0 <0.001 

Continuous variables are represented as mean ± standard deviation or median (min-max), 243 

categorical variables are represented as n (%). Hospital Frailty Risk Score (HFRS) is 244 

calculated according to Gilbert et al.[20]. P-value calculated comparing the mutually-245 

exclusive groups Warfarin, DOAC, AP-only, No Antithrombotic medication. Continuous 246 

variables tested using a Kruskal-Wallis H-test, categorical variables tested using a Chi-247 
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squared test. *uncontrolled hypertension is not shown for HAS-BLED as it was not detected 248 

for any patients. Stroke is only shown under CHA2DS2-VASc but is a factor for both 249 

CHA2DS2-VASc and HAS-BLED. 250 

 251 

Validation of AF diagnosis, Antithrombotic drug prescription and 252 

NLP risk scores  253 

A diagnosis of AF was confirmed in 96% of 300 cases reviewed. Of these, 200 cases were 254 

manually coded for prescription of any of 10 antithrombotic medications. Five drugs with <5 255 

positive examples in the validation sample were excluded (edoxaban, dipyridamole, 256 

prasugrel, dabigatran, ticagrelor) due to the small sample size. The pipeline achieved perfect 257 

precision and recall for these excluded drugs but the sample size was too small to be 258 

meaningful. The average performance over the remaining 5 drugs was 95% precision at 97% 259 

recall (Table 2).  260 

 261 

Table 2. Performance of the drug NLP pipeline in manual validation. 262 

Drug Accuracy Precision Recall F1 P FN FP TN TP 

Warfarin 0.94 0.87 0.97 0.92 69 2 10 121 67 

Aspirin 0.96 0.90 0.98 0.94 62 1 7 131 61 

Rivaroxaban 1.00 1.00 0.95 0.98 22 1 0 178 21 

Clopidogrel 1.00 1.00 0.94 0.97 17 1 0 183 16 

Apixaban 1.00 1.00 1.00 1.00 13 0 0 187 13 

Average 0.98 0.95 0.97 0.96 
     

Discharge summaries were selected at random (n=200) and manually annotated for the 263 

prescription of the 10 drugs detected by the pipeline. Performance for the 5 drugs with > 10 264 

positive examples in manual annotation is shown.  P = total positive examples in manual 265 

annotation, FN = false negative, FP = false positive, TN = true negative, TP = true positive. 266 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 12, 2019. ; https://doi.org/10.1101/19011643doi: medRxiv preprint 

https://doi.org/10.1101/19011643
http://creativecommons.org/licenses/by/4.0/


 15 

 267 

 268 

The performance of the automatic NLP scoring procedure was evaluated in 40 patients. 269 

Overall the agreement between two human expert raters and the algorithm for CHA2DS2-270 

VASc was high for all pairs, and only slightly higher for the two human raters than for the 271 

algorithm vs. either expert. HAS-BLED agreement however was lower for all comparisons 272 

(Table 3 and S2 Table). Total scores and risk factor-level variables are available as S3 Table. 273 

 274 

Table 3. Inter-rater agreement statistics for CHA2DS2-VASc and HAS-BLED risk 275 
scores. 276 

Score Rater 1 Rater 2 Kappa (95% CI) 

CHA2DS2-VASc Algorithm Expert A 0.76 (0.65-0.86) 

CHA2DS2-VASc Algorithm Expert B 0.80 (0.68-0.92) 

CHA2DS2-VASc Expert A Expert B 0.85 (0.73-0.97) 

HAS-BLED Algorithm Expert A 0.54 (0.36-0.72) 

HAS-BLED Algorithm Expert B 0.53 (0.34-0.72) 

HAS-BLED Expert A Expert B 0.74 (0.51-0.97) 

Raters 1 and 2 are two independent clinician raters, Algorithm is the automatic scoring 277 

pipeline developed in this paper. 278 

 279 

Temporal Trends in Antithrombotic drug prescription 280 

Prior to 2013, OAC use varied between 40-45% (mean 43.4%) with no strong trend (linear 281 

regression R2=0.08, slope = +0.2% per quarter, Fig 2a,b). From 2013 onwards the average 282 

OAC rate remained above 47% and there was a gradual increase in OAC use such that at the 283 

end of the study period 68.4% of patients were taking an OAC (linear regression R2=0.77, 284 

slope = +1.2% per quarter). This increase in OAC rate is particularly pronounced from 2016 285 

onwards (linear regression R2=0.86, slope = +2.7% per quarter). Conversely, the proportion 286 
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of patients taking an AP drug alone declined significantly from 48.9% at the start to 14.5% at 287 

the end of the study, with a consistent linear decrease over the period (linear regression 288 

R2=0.94, slope = -1.24% per quarter). 289 

 290 

Fig 2. Antithrombotic drug prescribing patterns in the AF cohort patients with 291 

CHA2DS2-VASc ≥ 2. A,B) Prescribing rates for all admissions during the study period. A) 292 

OAC choice vs. no OAC. B) Prescribing of OAC and/or AP vs. neither. C) Prescribing rates 293 

stratified by CHA2DS2-VASc for all patients. D) Prescribing rates grouped by HFRS as 294 

defined by Gilbert et al. Due to low numbers of patients with score > 20 the final (highest) 295 

bin is wider than the others. E) Prescribing rate vs. age at discharge. Points are the mean 296 

prescribing rate per year for all ages with ≥ 10 patients, a 10-year moving median (trend) is 297 

shown as a dashed red line. F) prescribing rates in patients grouped by discharging specialty. 298 

In C, D, F the number above each bar indicates the number of patients. AP = antiplatelet, 299 

HFRS = hospital frailty risk score, OAC = oral anticoagulant. 300 

 301 

 302 

At the start of the study warfarin was the only widely available OAC. In 2012 NICE endorsed 303 

the use of the first 2 DOACs (Dabigatran and Rivaroxaban) and the prescription of both 304 

drugs increased from the end of 2012, at a similar time to when overall OAC use began to 305 

rise. From then on there was a gradual increase in the use of DOACs at the expense of 306 

warfarin, such that at the end of the study period in 2017 warfarin only contributed a third of 307 

all OAC prescriptions.  308 

 309 

For newly diagnosed AF (n=4986) Antithrombotic drug trends closely mirrored those found 310 

in the overall AF cohort (Fig 3). 311 
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 312 

Fig 3. Prescribing trends for new AF cases over the study period. The solid blue line 313 

represents warfarin, the solid pink line represents DOAC, the dashed black line represents AP 314 

prescription without any OAC, the solid green line represents the no drug group. Total N = 315 

4986. AP = antiplatelet, DOAC = direct oral anticoagulant, OAC = oral anticoagulant.  316 

 317 

Clinical Factors associated with Antithrombotic drug 318 

prescription 319 

There was gradual increase in rates of OAC use with a higher CHA2DS2-VASc score (+1.6% 320 

per point, linear regression R2 = 0.93, p < 0.001) (Fig 2c). Conversely OAC prescription 321 

decreased with older age in patients ³80 years (Fig 2e). 322 

 323 

In multivariate analysis (Table 4) clinical variables associated with a higher rate of OAC use 324 

(vs. no OAC) included heart failure, diabetes and stroke. Factors negatively associated with 325 

OAC use included a history of vascular disease, abnormal liver function and history of 326 

bleeding. Older patients receiving OAC were more likely to be on warfarin vs. DOACs. 327 

Higher rates of AP drug use alone (vs. OAC) were associated with the presence of vascular 328 

disease, whereas heart failure, and diabetes were associated with lower rates. 329 

 330 

Table 4. Univariate and multivariate logistic regression for factors associated with 331 
antithrombotic drug prescribing at most recent discharge for patients with CHA2DS2-332 
VASc ≥ 2. 333 

  
Any OAC vs no OAC DOAC vs Warfarin AP-only vs OAC-only 

  
Univariate Multivariate Univariate Multivariate Univariate Multivariate 

Group Factor OR 
(95%C

I) 

P- 
val
ue 

OR 
(95%C

I) 

P-
val
ue 

OR 
(95%C

I) 

P-
val
ue 

OR 
(95%C

I) 

P-
val
ue 

OR 
(95%C

I) 

P-
val
ue 

OR 
(95%C

I) 

P-
val
ue 
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Other 
clinical 
variabl

es 

Age (per 
20 

years) 

0.9 
(0.9-
1.0) 

0.0
39 

0.9 
(0.8-
0.9) 

<0.
001 

1.3 
(1.2-
1.4) 

<0.
001 

0.8 
(0.8-
0.9) 

<0.
001 

1.4 
(1.2-
1.5) 

<0.
001 

1.0 
(1.0-
1.1) 

0.0
80 

LOS 
(per 14 
days) 

0.9 
(0.9-
1.0) 

<0.
001 

1.0 
(0.9-
1.0) 

0.0
16 

1.1 
(1.1-
1.2) 

<0.
001 

1.1 
(1.0-
1.1) 

0.0
25 

1.1 
(1.0-
1.1) 

0.0
06 

1.0 
(1.0-
1.1) 

0.0
73 

Visits 
(per 10) 

1.1 
(1.0-
1.1) 

<0.
001 

1.1 
(1.1-
1.1) 

<0.
001 

1.1 
(1.1-
1.1) 

<0.
001 

1.0 
(1.0-
1.1) 

0.4
46 

0.9 
(0.9-
1.0) 

<0.
001 

0.9 
(0.9-
1.0) 

<0.
001 

CHA2
DS2-
VASc 

factors 

Congesti
ve heart 
failure 

1.7 
(1.6-
1.8) 

<0.
001 

1.7 
(1.5-
1.8) 

<0.
001 

1.0 
(0.9-
1.1) 

0.8
99 

    0.7 
(0.6-
0.8) 

<0.
001 

0.7 
(0.6-
0.8) 

<0.
001 

Diabetes 
mellitus 

1.4 
(1.3-
1.5) 

<0.
001 

1.2 
(1.1-
1.3) 

<0.
001 

1.0 
(0.9-
1.1) 

0.9
73 

  
0.8 
(0.7-
0.9) 

<0.
001 

0.9 
(0.8-
1.0) 

0.0
33 

Female 1.0 
(0.9-
1.0) 

0.3
27 

  
1.2 
(1.1-
1.4) 

0.0
02 

1.1 
(1.0-
1.2) 

0.1
69 

1.1 
(1.0-
1.2) 

0.2
21 

 
  

Hyperte
nsion 

1.1 
(1.0-
1.2) 

0.0
42 

1.1 
(1.0-
1.2) 

0.1
37 

1.4 
(1.2-
1.5) 

<0.
001 

1.1 
(0.9-
1.2) 

0.2
54 

1.1 
(1.0-
1.2) 

0.0
89 

 
  

Stroke 1.1 
(1.0-
1.2) 

0.0
20 

1.3 
(1.1-
1.4) 

<0.
001 

1.4 
(1.3-
1.6) 

<0.
001 

1.0 
(0.9-
1.2) 

0.6
69 

1.0 
(0.9-
1.1) 

0.5
51 

 
  

Vascula
r disease 

1.1 
(1.0-
1.2) 

0.0
18 

0.9 
(0.8-
0.9) 

0.0
03 

1.0 
(0.9-
1.1) 

0.6
85 

    1.3 
(1.1-
1.5) 

<0.
001 

1.6 
(1.4-
1.9) 

<0.
001 

HAS-
BLED 
factors 

Abnorm
al liver 

function 

0.7 
(0.6-
0.9) 

<0.
001 

0.7 
(0.5-
0.8) 

<0.
001 

1.0 
(0.8-
1.3) 

0.9
52 

    1.1 
(0.8-
1.4) 

0.5
59 

    

Abnorm
al renal 
function 

1.1 
(1.0-
1.2) 

0.1
36 

  
1.3 
(1.1-
1.5) 

0.0
02 

1.0 
(0.8-
1.1) 

0.5
94 

0.9 
(0.8-
1.0) 

0.1
17 

 
  

Bleeding 0.6 
(0.5-
0.7) 

<0.
001 

0.6 
(0.5-
0.6) 

<0.
001 

1.3 
(1.1-
1.5) 

0.0
14 

0.9 
(0.8-
1.2) 

0.6
20 

1.2 
(1.0-
1.4) 

0.0
81 

    

Frailty HFRS 
(per 10 
points) 

0.8 
(0.7-
0.9) 

<0.
001 

0.7 
(0.6-
0.8) 

<0.
001 

2.6 
(2.2-
3.0) 

<0.
001 

2.1 
(1.8-
2.6) 

<0.
001 

1.2 
(1.0-
1.4) 

0.0
15 

1.2 
(1.0-
1.4) 

0.0
41 

Discha
rge 

Locatio
n 

 Stroke 0.6 
(0.6-
0.7) 

<0.
001 

(referen
ce) 

  1.4 
(1.1-
1.6) 

<0.
001 

(referen
ce) 

  2.2 
(1.9-
2.5) 

<0.
001 

(referen
ce) 

  

 
Cardiolo

gy 

2.2 
(2.0-
2.5) 

<0.
001 

2.6 
(2.2-
3.0) 

<0.
001 

0.7 
(0.6-
0.8) 

<0.
001 

0.5 
(0.4-
0.7) 

<0.
001 

0.3 
(0.3-
0.4) 

<0.
001 

0.2 
(0.2-
0.3) 

<0.
001 

 Elderly 
Care 

0.8 
(0.7-
0.9) 

<0.
001 

1.2 
(1.0-
1.4) 

0.0
36 

1.9 
(1.6-
2.2) 

<0.
001 

0.8 
(0.7-
1.1) 

0.2
34 

1.2 
(1.0-
1.4) 

0.0
13 

0.6 
(0.5-
0.7) 

<0.
001 

 Other 
medical 
specialti

es 

0.8 
(0.8-
0.9) 

<0.
001 

1.2 
(1.0-
1.4) 

0.0
13 

1.2 
(1.0-
1.3) 

0.0
23 

0.7 
(0.5-
0.8) 

<0.
001 

1.0 
(0.9-
1.1) 

0.9
05 

0.6 
(0.5-
0.7) 

<0.
001 

 Surgery 
& 

Trauma 

1.2 
(1.1-
1.3) 

<0.
001 

1.6 
(1.4-
1.8) 

<0.
001 

0.7 
(0.6-
0.8) 

<0.
001 

0.5 
(0.4-
0.6) 

<0.
001 

0.8 
(0.7-
1.0) 

0.0
13 

0.5 
(0.4-
0.5) 

<0.
001 

All factors significant at p<0.05 level in univariate analysis were included in the multivariate 334 
model. HFRS = hospital frailty risk score, LOS = length of stay 335 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 12, 2019. ; https://doi.org/10.1101/19011643doi: medRxiv preprint 

https://doi.org/10.1101/19011643
http://creativecommons.org/licenses/by/4.0/


 19 

 336 

 337 

Hospital Frailty Risk Score (HFRS) and antithrombotic 338 

prescription 339 

As HFRS increased, OAC use did not significantly change but there was a clear decrease in 340 

AP drug use either alone or with an OAC (-8.3% per group, linear regression R2 = 0.85, p < 341 

0.01, Fig 2d). However in multivariate analysis increasing HFRS was strongly negatively 342 

associated with OAC use, positively associated with DOAC use and positively associated 343 

with AP drug use only.  344 

 345 

Relationship Between Discharging Specialty and OAC use 346 

We found a large variation in OAC prescribing rates between different specialities (Fig 2f). 347 

The highest rate of OAC use was in patients discharged from cardiology (68.8%, n=1048), 348 

with lower rates of OAC use in patients discharged under a surgical team (56.6%, n=2768), a 349 

medical specialty (52.3%, n=3196), elderly care (46.8%, n=1249) and the stroke unit (42.0%, 350 

n=1222). The relationship between discharge location and antithrombotic drug use remained 351 

significant after correction for a range of clinical variables, age and HFRS (Table 4). 352 

 353 

Medication switching in AF patients 354 

We identified a group of 1708 patients (CHA2DS2-VASc ≥ 2) with 2 or more admissions at 355 

least 12 months apart. Of these 895 (52.4%) changed their antithrombotic medication status 356 

(Fig 4a). Overall there was an increase in OAC use from 985 to 1069 patients (+8.5%) and a 357 

net movement of patients to DOACs from warfarin and AP drugs. These findings were more 358 
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marked when only patients whose admissions straddled the 2014 NICE guidelines update 359 

were included (1096 patients; Fig 4b). 360 

 361 

Fig 4. Medication switching in patients with CHA2DS2-VASc ≥ 2 at last visit. a) all visits 362 

at least 12 months apart and b) last visit before vs last visit after the 2014 NICE guideline 363 

update (b is a subset of a). Line width indicates overall proportion. 364 

 365 

  366 
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Discussion 367 

We have developed a pipeline to calculate clinical risk scores from free-text using NLP. 368 

Using this pipeline, we were able to estimate CHA2DS2-VASc and HAS-BLED risk scores 369 

from free-text EHR data that are in line with those calculated manually and could scale up to 370 

analyse data on over 10,000 AF patients managed at a multi-site large UK NHS Trust.  371 

 372 

We were able to replicate the changes in antithrombotic drug practices observed over the last 373 

7 years in previous registry-based observational studies. First, there has been a substantial 374 

increase in the proportion of AF patients at high risk of stroke (CHA2DS2-VASc ≥ 2) 375 

prescribed an OAC, with OAC use rising from 42% in 2011 to 62% in 2017. Second, there 376 

has been a reduction in the use of warfarin and an increase in DOAC prescription, such that 377 

in 2017 more patients were discharged on a DOAC than warfarin. Third, the use of AP drugs 378 

alone to prevent stroke has dropped significantly, from 40% in 2011 to 10% in 2017. 379 

 380 

Semantic NLP analysis of routinely-generated clinical data  381 

Clinical applications of NLP are an active research area. A recent systematic review 382 

identified 71 NLP applications for clinical text, 12 of which are open-source.[22] We took 383 

different approaches to NLP for the two major components of our study: extracting 384 

medication from discharge summaries and detecting clinical concepts in text (to derive risk 385 

scores). For medications, we use a series of regular expression rules tuned to the specific 386 

prescription text used in this study with high precision but less generalizability. For risk 387 

scoring, we built a concept mapping pipeline on top of an open-source clinical NLP tool 388 

SemEHR[13], which can detect far more concepts than it is feasible to manually code rules 389 
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for, but with the trade-off that it is not specifically designed for any particular disease 390 

concepts.  391 

 392 

Use of EHR data for retrospective and prospective applications in 393 

cardiology 394 

EHRs have been increasingly used to support observational studies. However, typically this 395 

involves the transcription of clinical data from EHRs into a registry-specific electronic case 396 

report form, an approach with many of the limitations inherent of a classical observational 397 

study. The development and maintenance of case registries is time-consuming, and the scope 398 

of the research questions that can be answered are limited to the dataset defined a priori. By 399 

using a domain-agnostic concept mapping pipeline (SemEHR) on unstructured text, our study 400 

was able to test both conventional risk scores (CHA2DS2-VASc) and a novel risk score 401 

(HFRS).  402 

 403 

Ours is not the first study to utilize unstructured EHR data in AF research.[15–17,23] Our 404 

study builds on this previous work through the use of text data with an NLP pipeline, the 405 

calculation of additional risk scores and an analysis of prescribing patterns. Whilst we 406 

evaluate our pipeline in the context of AF, our aim is to provide an open tool for clinical risk 407 

scoring calculations in general. 408 

 409 

Trends in Antithrombotic drug use  410 

Large retrospective population-based studies have established a clear trend of increased OAC 411 

prescribing in AF patients, driven by uptake of DOACs.[6,7] Our ability to reproduce these 412 
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findings by applying NLP to unstructured EHR data strongly supports the validity of the NLP 413 

pipeline. In our analysis, OAC prescription was independently associated with risk factors for 414 

stroke and bleeding, consistent with the findings of other studies.  415 

 416 

Despite a significant increase in OAC use during our study period, ~35% of patients at high 417 

risk of stroke were still not prescribed an OAC indicating there are some remaining barriers 418 

to OAC use. In our data, a documented bleeding problem (present in 14% of the cohort and 419 

associated with 40% reduction in OAC use) and increasing frailty (Table 4) were independent 420 

predictors of OAC underuse, suggesting that perceived risk of bleeding and risk of harm due 421 

to OAC continues, particularly in elderly patients, to have a strong influence on the 422 

antithrombotic drug decision-making process.[24–26] 423 

 424 

HFRS proposed by Gilbert et al. [20] is a high-dimensional frailty score calculated from 425 

ICD-10 diagnostic codes. When we evaluated antithrombotic drug prescription using HFRS 426 

as a continuous variable and adjusting for other clinical variables and discharging specialty, 427 

there was a significant relationship between HFRS and antithrombotic drug use (Table 4). 428 

Patients with a higher HFRS were less likely to take an OAC, more likely to take a DOAC 429 

(vs. warfarin) if they were on an OAC, and more likely to take an AP drug alone versus an 430 

OAC. This suggests there is an underlying high-dimensional frailty characteristic influencing 431 

clinician decision-making despite not being explicitly calculated. 432 

 433 

The highest OAC prescription rates were in patients discharged from a cardiology ward 434 

(n=1048, 69%), whereas OAC use was significantly lower in patients discharged from an 435 

elderly care ward (n=1240, 47%) and other medical specialties (n=3196, 52%). Although in 436 

part this may reflect the differing case mix of specialty patient populations, given the 437 
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magnitude of the differences seen even with multivariate correction of clinical variables 438 

(including stroke and bleed risk factors and frailty risk score), it is likely that some of our 439 

findings are due to specialty-specific behaviours in relation to AF and bleeding risk. This 440 

suggests efforts to continue to increase OAC prescribing rates beyond current may be most 441 

effective if targeted by clinical specialty. 442 

 443 

Limitations 444 

One of the major limitations of an EHR- and NLP-based approach, as used in our analysis, is 445 

data accuracy. We manually validated the major variables in our analysis but the accuracy of 446 

our NLP algorithm deserves closer scrutiny as there is a risk of causing a significant 447 

degradation in data accuracy. Whilst the agreement between our algorithm and clinical 448 

experts was high for CHA2DS2-VASc and fair for HAS-BLED, in all comparisons the 449 

agreement between experts was higher. This gap represents room for improvement in the 450 

algorithm primarily due to difficulty detecting some risk factors.  451 

 452 

Retrospective assessment of the data source of many of the variables in the HAS-BLED score 453 

is challenging irrespective of the approach used, with a previous study finding that inter-rater 454 

reliability between human observers for some HAS-BLED components is low.[15] This 455 

disagreement at the level of the data source is commonly described even with curated registry 456 

data.[27] This limitation particularly affected the “uncontrolled hypertension” and “labile 457 

INR” features of the HAS-BLED score, neither of which is reliably recorded or detected. 458 

This leaves some comorbidity associated with bleeding risk unaccounted for in our 459 

multivariate analysis. 460 

 461 
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Unlike the use of registry data, routine EHR data may not capture all necessary clinical 462 

information on all patients, as this is a secondary use of the record. It is therefore possible 463 

that we have missed important co-morbidities in some of the patients. This may have led to 464 

an overall underestimation of co-morbidities in our patient population, as well as undermined 465 

some of our analyses relating clinical variables to anti-thrombotic drug use. 466 

 467 

The NLP algorithm was tested on data from one multi-site organization using three different 468 

EHR systems over a 6-year period. While this may show a degree of generalizability, further 469 

validation on data from other EHR systems in other organizations will be needed. 470 

 471 

We used data from inpatient admissions as these more accurately record data on drug 472 

prescriptions. As a result our patient population has the potential to be older and frailer, with 473 

more comorbidity, than typical community AF cohorts. Although our population had similar 474 

baseline characteristics to the populations in previous studies[28,29], not all co-morbidities 475 

may be captured. This is a limitation is inherent in the design of all studies using routinely 476 

generated non-curated data.  477 

 478 

Our study did not attempt to distinguish between the different temporal patterns of atrial 479 

fibrillation (permanent, persistent, paroxysmal). This is because these temporal patterns are 480 

frequently not used in free text or used ambiguously (e.g. ‘PAF’ could mean any of the 481 

terms). Nonetheless, national and international guidelines on anticoagulation for AF do not 482 

have different anticoagulation recommendations for different temporal patterns. 483 

 484 
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Finally, our data is observational. Therefore, although we have demonstrated associations 485 

between changes in antithrombotic drug use and a range of clinical variables, it is not 486 

possible to conclude a causal link. 487 

 488 

Conclusion 489 

We present a novel open-source methodology for an automated pipeline to calculate risk 490 

scores from NLP and track prescribing patterns, incorporating future disease entities, risk 491 

profiles and ontologies. We have used this methodology to demonstrate significant changes 492 

in antithrombotic practice in AF since the introduction of DOACs, in a large NHS Trust. The 493 

tools used in this study are open-source and transparent (CogStack[12], SemEHR[14] and our 494 

pipeline) allowing any other organization to validate on their own cohorts and optimize local 495 

population health at low cost. This highlights the power of semantic NLP processing tools for 496 

a disease-specific domain, but is generalizable to a variety of other diseases and use-cases, 497 

and highlights the growing impact of health informatics in healthcare.[30] 498 
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Supporting information 632 

S1 Table. Definition of HAS-BLED and CHA2DS2-VASc as used in this study. Age and 633 

gender are included directly from electronic health record data. The agreed terms under 634 

“include” and “exclude” headings were used by clinical experts to calculate each score 635 

manually. The lists of UMLS concepts for each component were derived automatically and 636 

used by the NLP scoring algorithm.  637 

 638 

S2 Table. Performance of the NLP pipeline for each component of CHA2DS2-VASc and 639 

HAS-BLED. Cases were considered positive if at least one manual rater marked as positive. 640 

The agreement between the two manual raters is shown as “agreement between raters”.  641 
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S3 Table. Total score and component score for CHA2DS2-VASc and HAS-BLED. Each 643 

row represents a single patient identified only by row number (“Patient” column).  644 
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Figure 1. 653 
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Figure 2. 667 
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Figure 3. 678 
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Figure 4. 699 
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