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Abstract  

Recently immuno-oncology (IO) therapies, especially checkpoint inhibitor therapies, have 

transformed the therapeutic landscape of non-small cell lung cancer (NSCLC). However, 

responses to IO in NSCLC are highly disparate because patients are heterogenous with a 

variety of genomic and clinical-phenotype complexity. Thus, there is a pressing need to 

discover and characterize NSCLC subgroups to advance precision immuno-oncology. 

However, this is a challenging task largely due to: 1) the study cohort is too small to 

investigate this heterogeneous disease; 2) the datasets used in subtyping studies are not 

comprehensive enough to incorporate both genomic data and diverse clinical-phenotype 

data with long-term follow-ups, and 3) the subtyping algorithms and models are ineffective 

in integrating high-dimensional data from both genomic and clinical domains. To address 

these challenges, we have developed a graph convolutional neural network (GCN) method 

to discover NSCLC complexity on IO treatment responses based on the high-dimensional 

electronic health records (EHR) and genomic data from 1,937 IO treated NSCLC patients. 

First, using Flatiron Health’s database, we identified a IO treated NSCLC cohort (n = 

1,937), with genomic data from Foundation Medicine’s targeted DNA deep-sequencing, 

clinical data from harmonized real-world EHR from 275 US oncology practices, and 

survival data after IO treatment with a median follow-up time of 6.61 months (average 

follow-up time 9.11 months). We then developed a GCN based artificial intelligence (AI) 

model to build a patient-patient similarity network from integrating both genomic and EHR 

data to discover novel NSCLC subgroups with dramatically different responses to IO 

therapies. We have demonstrated the performance of the GCN is superior to commonly 

used machine learning methods such as autoencoder, UMAP, and tSNE, and superior to 
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utilizing genomic or clinical data alone. Importantly, we have successfully discovered the 

IO responsive (covers 20.27% of the cohort) and the IO non-responsive (45.46%) 

subgroups that demonstrate significant overall survival difference after IO treatments (9.42 

vs. 20.35 months, 𝑝 < 0.0001). These two subgroups demonstrate enrichments of novel 

clinical phenotypes and genomic traits beyond well-known IO biomarkers of tumor 

mutation burden and PDL1 status, such as enrichment of abnormal blood Basophils and 

KRAS mutations in the responsive subgroup and the enrichment of low hemoglobin, low 

lymphocytes, PI3KCA amplifications, etc. in the non-responsive subgroup, suggesting 

distinct clinical and molecular underpinnings. To the best of our knowledge, this is the first 

study to employ a graph-based AI approach to integrate both high-dimensional clinical and 

genomic features to investigate IO treatment responses in NSCLC. The new subtypes 

discovered in this work cast new lights on understanding the heterogeneity of IO treatment 

responses, and pave ways to inform clinical decision making for precision oncology of 

NSCLC. 

Keywords: artificial intelligence, graph convolutional neural network, machine learning, 

immuno-oncology, precision oncology, non-small cell lung cancer, disease subtyping 
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Introduction 

According to American Cancer Society1, non-small cell lung cancer is the second most 

common cancer in both men and women. About 228,150 new cases of lung cancer were 

identified in 2019 and about 142,670 deaths were from lung cancer; among them, about 

80%-85% of lung cancers are non-small cell lung cancer (NSCLC)2. The NSCLC can be 

adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and other subtypes. The 

causes of NSCLC are various: 1) about 80% of lung cancer deaths are caused by smoking 

or exposure to secondhand smoke; 2) lung cancer in non-smokers can be caused by radon, 

air pollution, asbestos, and/or diesel exhaust; 3) risk factors for lung cancer can caused by 

certain DNA of lung cells. Besides the complicated causing factors, NSCLC is a 

heterogeneous disease, which makes the prognosis prediction very challenging. The 

treatment strategies in NSCLC are very limited, which urgently needs developing tools to 

determine the survival subgroups. 

     Some previous works studied the NSCLC heterogeneity among patients to identify the 

NSCLC molecular subtypes3-8. This is because genomics, mRNA profiling, and proteomics 

have proven promising in characterizing cancer subtypes for personalized therapeutics. For 

instance, tumor mutational burden (TMB) as determined via genomic profiling has been 

shown to affect response to nivolumab in NSCLC patients. Real-world-evidence (RWE) 

based clinical phenotype data such as electronic health records (EHR), which include 

patient exposures, lab data, diagnosis, medications, and clinical outcomes represent another 

promising resource for precision oncology, have also been used to identify subtypes9-14. 

However, most existing cancer patient stratification methods use genomics evidence only, 

without consideration of real-world clinical phenotypes. Conversely, most EHR studies 
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model clinical phenotypes with respect to outcome (e.g. patient survival), rarely 

considering the integration of genomics data.  The integration of genomics and real-world 

clinical phenotype evidence is expected to drive to reveal the full landscape of human 

cancer, therefore enabling novel discoveries towards cancer biology, therapeutics and 

patient stratification.  

     Recently, IO treatments, especially checkpoint inhibitor therapies, have significantly 

improved the overall survival in some NSCLC cases and achieve some great success15-20. 

However, responses to IO are highly disparate, because of the genetic and clinical 

heterogeneity across NSCLC patients. Subtyping the heterogeneous NSCLC cases for 

precision immune-oncology remains a challenging problem. For instance, understanding 

which of these many DNA-seq mutations are important in NSCLC treatment response is 

not easy to solve. Although studies of NSCLC genomes have implicated several genes as 

likely crucial mediators for tumor initiation and progression (TP5321, EGFR22, 

CDKN2A/CDKN2B23, etc.), the experimental validation of the most important, functional 

genomic changes in NSCLC cells remains a challenge.  Also, the available preclinical and 

clinical results are either too small, lacking important data domains, or follow-up time is 

too short24-28, which is also another challenging factor for patient subtyping. 

     Existing AI work in cancer subtyping and prognostic modeling has some limitations 

because the subtyping algorithms and models are not effective in incorporating big data 

from different domains. Previous methods using a grid-based problem formulation29-31 did 

not take into consideration the patient-patient interaction as what a graph formulation does. 

Several traditional machine-learning based methods have been applied to cancer 

subtyping32-34. However, there are some limitations such that those methods may not be 
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effective to detect high-level distinguishable features from the integrated heterogeneous 

patient EHR and genomics features for patient subtyping. Some recent applications have 

utilize deep learning methods such as word embedding35,36, recurrent neural networks30,37-

39, convolutional neural networks31 or stacked denoising autoencoders (SDA)29,40 and 

demonstrating significant performance for several prediction tasks. However, those models 

are not trained use a sufficient large amount of patient EHR data to some degree, and hence, 

the performance of those model may not be sufficient to be used for patient cancer 

subtyping and prognostic purposes. 

     To address the abovementioned problems, for the first time, we integrate both genomics 

and real-world clinical-phenotype evidence using Flatiron Health’s longitudinal database. 

We have built a NSCLC cohort (n = 1,973) for precision IO oncology, with genomic data 

from Foundation Medicine’s targeted DNA deep-sequencing, real-world-evidence (RWE) 

from harmonized electronic health records (EHR), and survival data after IO treatment. We 

applied both unsupervised machine learning and data-driven graph methods41,42. These two 

types of methods are complementary and together enable more comprehensive discoveries. 

Graph-based convolutional neural networks were used to build autoencoder framework as 

the implementation for integration of both clinical and genomic features. We believe the 

systematic integration of genomics and real-world clinical phenotype evidence will 

redefine the NSCLC disease landscape and may revolutionize personalized treatment 

paradigms. The autoencoders framework learns high-level feature embedding through 

reconstructing the original input using combinations of nonlinear functions. The learned 

feature embedding can then be further used for spectral clustering and identify 

differentiable survival subgroups, i.e. responsive and non-responsive. Several clinical 
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features enrichment and genomic signaling pathways were also identified, which may be 

used for directing clinical cancer research. This provides a truly unique opportunity to 

improve our understanding of how cancer should be segmented for personalized therapies 

to achieve our goals. 

     We discovered two subtypes with significant differences in survival, apart from clinical 

characteristics. We also identified two subtypes have different signaling pathways. Hence, 

the survival subtype graph-based model proposed here is essential for NSCLC therapeutic 

intervention, and potentially for some other diseases as well. 
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Materials and Methods  

Datasets and study design 

The aim of this study is to develop a data-driven, AI graph-based approach to identify 

differential survival subgroups across NSCLC IO-treated patients using their clinical 

phenotype traits and genomic features. 

Flatiron NSCLC data set 

The patients had NSCLC had genomic testing from January 2010 to October 2018 were 

selected. The overall Flatiron Health longitudinal EHR-derived database included over 210 

cancer clinics representing more than 1.2 million active patients across the United States. 

The database is updated 3-4 months actively with increasing number of patients added. The 

clinical data were collected from Flatiron Health, while the genomic data were from 

Foundation Medicine. The clinical data included in the Flatiron database contains several 

aspects of tables: demographic, clinical, and outcomes data. This study was conducted in 

accordance with the Declaration of Helsinki.  

 
IRB not applicable since the analysis uses retrospective data from secondary source. 
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     The inclusion criterium for the experiment was that NSCLC patients diagnosed 

advanced disease between January 2011 and August 2018. The patients were treated with 

immunotherapy: Perbrolizumab, Nivolumab, Atezolizumab, or Durvalumab. The end point 

is using overall survival time starting from the first line of IO treatment. If a patient has 

deceased, then the decease date was used as the end point date. If a patient has lost his 

follow-up information, then the last visit date was used to calculate survival months from 

the 1L IO starting date. For the PDL1 status, the most recent successful test is used, if 

available. To put another word, if there are two recent successful tests with the same result 

date, then the positive test is preferred and used. 

     In this dataset, 1,973 patients were IO treated. The patients are 7.4% African American, 

73.7% European white, 2.4% Asian, and 7.4% others as reported. The data were composed 

of 953 (49.2%) females and 984 (50.8%), and the median age is 69.0 years for overall 

populations. The overall characteristics are shown in Figure 1. The individuals represented 

in the clinical dataset are from diverse racial, ethnic, and socioeconomic backgrounds. The 

EMR data are deidentified, and the study was governed by institutional review board 

approval and informed consent. 

Clinical features and genomic features  

To make accurate prediction, it is important to provide useful input features to machine 

learning methods. Here, a feature vector corresponding to the patient clinical and genomic 

features, which consists of a rich set of information derived from individual patient. 

For clinical feature array contains three parts: 1) Clinical measurements: PDL1 tumor 

status, PDL1 TIL status, TMB, microsatellite instability (MSI), gender, race, eastern 

cooperative oncology group (ECOG) performance, group stage, smoking status, ALK 
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pathological biomarker, BRAF pathological biomarker, EGFR pathological biomarker, 

KRAS pathological biomarker, ROS1 pathological biomarker, PDL1 pathological tumor 

cell measurement and PDL1 pathological immune cell measurement and line of therapy. 2) 

Lab measurements: leukocytes, hemoglobin, platelets, hematocrit, erythrocytes, creatinine, 

urea nitrogen, alanine aminotransferase, sodium, potassium, aspartate aminotransferase, 

alkaline phosphatase, albumin, bilirubin, protein, lymphocytes per 100 leukocytes, calcium, 

lymphocytes, monocytes per 100 leukocytes, glucose, chloride, monocytes, neutrophils, 

basophils per 100 leukocytes, glomerular filtration rate, basophils, eosinophils per 100 

leukocytes, glomerular filtration rate, eosinophils, magnesium, granulocytes per 100 

leukocytes, neutrophils, lactate dehydrogenase, and ferritin. The lab features are sorted by 

frequency and for all IO patients 1,937, only the lab measurements above 800 counts are 

kept. Otherwise, some lab measurements contain many missing values, which are not 

included. 3) Vital features contain: body height, body weight and oxygen saturation in 

arterial blood by pulse oximetry. For current version of Flatiron, the blood pressure 

measurements contain different units, and not cleaned, and hence, for current 

implementation, we did not include the blood pressure. We will include it in the future 

work. 

For the genomic features, each patient can have different gene mutation measurements, 

all patient genes have been measured, and the results are either mutated or not mutated. We 

filtered out the gene list and kept those genes with at least 50 patients have such gene 

mutation in the measurement. The reduced list contains following genes (sorted by 

frequency): “TP53”, “KRAS”, “CDKN2A”, “STK11”, “CDKN2B”, “EGFR”,  “PIK3CA”, 

“LRP1B”,  “MYC”, “KEAP1”,  “NF1”,  “NKX2.1”,  “PTEN”, “SMARCA4”, “ARID1A”, 
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“RBM10”, “RB1”, “SOX2”, “NFKBIA”, “CCND1”, “FGF3”, “FGF4”, “FGF19”, 

“BRAF”,  “MLL2”, “ATM”, “MDM2”, “ERBB2”, “TERC”, “MET”, “SPTA1”,  

“FGFR1”, “RICTOR”, “MCL1”,  “DNMT3A”, “ARID2”, “PRKCI”, “FAT1”, “ZNF703”, 

“TERT”, “APC”, “NFE2L2”, “FGF12”, “MYST3”, “FRS2”, “TET2”, “PTPRD”, and 

“CCNE1”. For each patient, the genomic features are represented as a vector of length 48. 

The value of it is either 1 (mutated) or 0 (not mutated). 

The clinical feature vector is concatenated with the genomic feature vector to represent 

as the feature for each patient. 

Problem formulation 

The patient subtyping can be formulated as a graph community spatial clustering problem 

on an undirected graph encoding patient-patient relationships. We consider the patient-

patient relationship is represented by a graph with node content as 𝐺 = (𝑉, 𝐸, 𝑋) with N 

nodes (patients) 𝑣/ ∈ 𝑉, 𝑖 ∈ [0, 𝑁] , edges connectivity ( 𝑣/, 𝑣5 ) 	∈ 𝐸 , where the edge 

connectivity can be either 0 (disconnected) or 1 (connected), and 𝑥/ ∈ 𝑋, 𝑖 ∈ [0, 𝑁] is the 

attribute vector associated with vertex 𝑣/ . Each patient has an attribute vector such as 

clinical features (such as: age; TMB; LDH (Lactate dehydrogenase)) and mutation features 

(such as EGFR, KRAS, PARK2) as node features. The node features are converted into 

categorical feature vectors X: the mutation features are binary encoding, i.e. if a patient has 

that specific gene mutation, the corresponding gene feature is 1; otherwise, 0. For 

continuous features, we used the high- and low-bound measurement bound provided by the 

Flatiron and categorize the continuous features into categorical features. For example, a 

patient has hemoglobin measurement as 8.3, the low- and high-bound for hemoglobin is 

14 and 18, respectively. It falls between two bounds, which indicate a “normal” class. The 
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two nodes are connected if the node feature vectors are similar. Here we applied cosine 

similarity to be the measurement to define similarity. If cosine similarity is less than 0.5, 

then there is not a link connected between two nodes; otherwise, connected. So formally, 

the graph can be represented by two types of information, the patient content information 

𝑋 ∈ 𝑅9×; and the structure information 𝐴 ∈ 𝑅9×9, where 𝐴 is an adjacent matrix of 𝐺 and 

𝐴/,5 = 1 if 𝑒/,5 ∈ 𝐸 otherwise, 0. 

     Given a patient-patient graph 𝐺, patient subtyping is to partition the patient nodes from 

G into k disjoint subgroups {𝐺?, 𝐺@, … , 𝐺B} so that: (1) the patient nodes within the same 

cluster have similar clinical outcome (survival) to each other than patient nodes in different 

clusters in terms of graph structure; (2) the patient nodes within the same subgroup are 

more likely to have similar clinical and genomic attribute values. 

Deep feature representation for graph clustering 

It is beneficial to formulate the patient-patient relationship into a graph since both the node 

content (patient clinical and genomic features) and structure interaction (patient-patient 

connectivity) will be integrated and used. To fully extract and have deep feature 

representation, we apply the marginalized graph autoencoder (MGAE) method 43 to exploit 

the patient network information. 

     The MGAE is based on graph convolutional network (GCN) 44 and to learn the 

convolution feature representation on the structure information with node content in the 

spectral domain. The MGAE extends GCN to a purely unsupervised clustering task. 

MGAE can exploit the interplay between node content and graph structure information by 

using a marginalization process, which is to encode content features of graph into the deep 
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learning framework. MGAE also uses stacked graph convolutional network for learning 

deep graph representation for clustering. 43 

Graph convolutional network  

Graph convolutional network (GCN) 44 applies the convolution operation on a graph from 

the spectral domain. Given the adjacency matrix A and content matrix X of a graph, the 

spectral convolution function used to calculate layer-wise transformation is defined as: 

𝑍(EF?) = 𝑓(𝑍(E), 𝐴) 

Here, 𝑍(E) ∈ 𝑅9×; (n nodes and d features) defines the input for layer l. The input layer 

contains the patient clinical and genomic feature matrix for our problem. The feature 

dimension of input layer is 227, which was derived from original 100 features. Our graph 

model has three hidden layers and the embedding dimension is same as input layer 227. 

MGAE embedding method reconstructs the feature matrix of node without hidden layers. 

     GCN 44 applies Chebyshev polynomials 45 to approximate the convolution filter. The 

layer-wise propagation rule for GCN can be then defined as: 

𝑓(𝑍(E), 𝐴) = 𝜎(𝐷𝑍(E)𝑊) 

Here, D is the degree matrix for A. W is the learnable weights. 𝜎(⋅) is an activation function 

such as ReLU 46.  

Marginalized graph autoencoder (MGAE) 

The MGAE 43 is a content and structure augmented autoencoder. MGAE reconstructs the 

input 𝑋 = {𝑥?, … , 𝑥9} ∈ 𝑅9×; by using a single mapping function 𝑓(∙), that minimizes the 

squared reconstruction loss: 

‖𝑋 − 𝑓(𝑋)‖@ 
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     For graph convolution networks, the loss function becomes: 

‖𝑋 − 𝐷𝑋𝑊‖@ + 𝜆‖𝑊‖Q@  

Here, D is the degree matrix for A. W is the parameter matrix. ‖𝑊‖Q@  is a regularization 

term with coefficient 𝜆 being a tradeoff. 

     The marginalized graph autoencoder provides an effective way to integrate both content 

and structure information. To encourage the interplay between content and structure 

information, MGAE introduces some random noises into the content features during 

training. The corruption process can be randomly removing some features or setting them 

to 0. Given the corrupted version of the original input X, the corrupted version of original 

input X is: 

𝑋R = {𝑥?S,… , 𝑥9S} 
     The objective function becomes: 

1
𝑚UV𝑋 − 𝐷𝑋WX𝑊V@

Y

/Z?

+ 𝜆‖𝑊‖Q@  

And the final graph embedded representation Z is defined as: 

𝑍 = 𝐴[𝑋𝑊 

Patient subtype clustering with MGAE 

We applied the spectral clustering algorithm 43 for patient subtyping. The symbol used and 

pseudo-code is defined as follows:  
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Interpretable clinical patient similarity networks  

Formulating the patient-patient relationship as a graph-based model can address many 

challenges in analysis and is naturally interpretable. In the network design, each node 

represents an individual patient and an edge between two patients represents pairwise 

similarity. In terms of individual patient, each pair with similar characteristics can then be 

tightly connected to each other. In terms of a subgroup of patients, i.e. clusters, each 

subgroup can enrich for different comorbidities and biological meanings, such as survival, 

adverse event and/or drug dose. 

Given the patient graph network 𝐺 with n nodes, each patient node is a 𝑑-dimension 
attribute vector. The patient attribute matrix 𝑋 ∈ 𝑅9×; of 𝐺, the total number of patient 
subtypes 𝑘, the corruption probability p, and the number of stacked autoencoder layers 
𝛤. In our problem formulation, 𝛤 = 2.  𝑍(`) = 𝑋 is the input to the first layer. 
Step-1:  
	 For	𝑙	 = 	1	to	𝛤	
	 Construct	a	single	layer	denoise	autoencoder	with	input	data	𝑍(Eu?)	
	 Learn	the	autoencoder	output	representation	𝑍(E)	according	to		

𝑍 = 𝐴[𝑋𝑊	
Step-2:  

𝑍` ⇐ 𝑍(x)	
𝑍? ⇐ 𝑍`𝑍`y	

𝑍@ ⇐
1
2 (
|𝑍?| + |𝑍?{|)	

 
Step-3:  
 Run spectral clustering on 𝑍@ 
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NSCLC-specific patient graph network overall workflow 

The patient clinical features are from electronic medical records and genomic features are 

from Foundation Medicine. We collected and filtered out patients treated by immune 

therapy. There are total 1,973 patients in the cohort.  

     We designed and applied an unsupervised, graph based neural network that uses both 

patient clinical feature and genomic feature to infer a patient-patient similarity network as 

the computational model to represent a complex patient population. The overall method 

workflow is shown in Figure 1. We first applied marginalized graph autoencoder (MGAE) 

43 to get graph representation encoding both patient network graph structure information 

and patient node clinical and genomic features. Then, we applied two-layer stacked graph 

convolutional network to extract high level feature representation.  

     After getting the latent space representation, the spectral clustering algorithm 43 was 

applied on the patient graph network to generate graph clusters. Those clusters are patient 

subgroups. For each subgroup, we performed survival analysis and detect potential 

biomarkers for each subtype. 

 

Patient subtype survival analysis 

We used the Kaplan-Meier (KM) estimate 47 to measure the fraction of subgroup patient 

drug response. In clinical trials, the effect of an intervention is assessed by measuring the 

number of patients survived or saved after that intervention over a period of time. The 

starting time in our case is the first IO treatment starting time for patients, and the patient 

deceased time is used to be the event occurrence date in the survival analysis. In Flatiron 

database, there are also patients under study that were uncooperative and refused to be 
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remained in the study or when some of the patients may not have experienced the event or 

death before the end of the study, although they would have experienced or died if 

observation continued, or were lost in touch midway in the study. We labeled these 

situations as censored observations. The statistical difference between different groups of 

patients of KM estimate could be used to study the drug response of different groups. 

Signaling pathway analysis  

We hypothesized that genetic abnormalities alter the activities of key signaling pathways 

and consequently lead to the differential survivals observed between the responsive and 

the non-responsive subtypes. We further assumed that a single functional genetic alteration 

of a determinative gene in such key signaling pathways is sufficient to impact patients’ 

responses to IO. Key signaling pathways thus could be revealed by searching for the 

combinations of such determinative genetic alterations. Mathematically, such a 

combination of alterations satisfies the following criteria: 1) Differentially enriched in 

responsive vs. non-responsive subtypes. That is, patients in the responsive subgroup are 

more likely to have at least one of these genetic alterations, and the Non-responders are 

more likely to host none of such alterations, or vice versa. 2) necessary. If any of the genetic 

alterations is removed from the combination, the differential enrichment of these genetic 

alterations in the two subtypes will become weaker. 3) Complete. If any other genetic 

alteration is added into the combination, the differential enrichment will not turn stronger. 

Genetic alterations considered in this work included functional mutations (gain or loss of 

biological functions), copy number amplifications, and copy number deletions. The 

differential enrichment of the combination of genetic alterations in responsive or non-

responsive subtypes was measured by the p-values of Fisher’s exact test. The optimal 
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combinations were discovered by greedy search algorithm. The possible signaling 

pathways related with the discovered differentially enriched genetic alterations were 

inferred using Ingenuity Pathway Analysis48 (QIAGEN Inc., 

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis).  

Results 

Cohort characteristics 

The baseline demographic and pathologic characteristics is shown in Figure 2. Figure 2a 

shows how the cohort was identified with inclusion and exclusion criteria. Figure 2b shows 

the cohort characteristics. There are totally 1,937 patients in the cohort. The median age is 

67 and about half of the population is female. We also report the race, histology, stage, 

ECOG value, smoking status, and previous treatment in the statistics.  All the patients in 

this cohort were treated by immunotherapy (IO), which means the patients were treated by 

one of the IO drugs: Perbrolizumab, Nivolumab, Atezolizumab, or Durvalumab. Figure 2c 

shows the clinical features, such as hemoglobin, erythrocytes, hematocrit, etc. They can be 

classified into molecular pathological features, blood test, and demographic behavioral and 

vital pathologic features. Figure 2d shows the waterfall plot for gene mutation. Each row 

represents a gene and each column represents a patient. The mutation type can be SV 

(structural variant), CN (copy number variations), and RE (rearrangement). From Figure 

2d, we found there are seven genes found most frequency of mutation along the NSCLC 

patient cohort. The potentially actionable somatic mutations found in this study is 

consistent with prior studies49. The EGFR and KRAS were the most commonly identified 

oncogenic drivers and were with very rare exception mutationally exclusive. CDKN2A and 
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CDKN2B have copy number mutation patterns. Comparing with other two TCGA lung 

cancer comprehensive paper 50,51, our finding is consistent with theirs. Cancer Genome 

Atlas Research Network 50 found statistically recurrent mutations in 11 genes, including 

mutation of TP53 in nearly all specimens. Significantly altered pathways included NFE2L2 

and KEAP1 in 34%, squamous differentiation genes in 44%, phosphatidylinositol-3-OH 

kinase pathway genes in 47%, and CDKN2A and RB1 in 72% of tumors 50. EGFR 

mutations were more frequent in female patients, where mutations in RBM10 were 

common in males 51. 

Patient subgroups (clusters) 

The NSCLC patients were clustered into five subgroups using the spectral algorithm. 

Figure 3a shows the tSNE plot for patients assigned to five clusters. The survival plots for 

each subgroup is shown in Figure 3b. A total of 1,937 patients NSCLC IO treatment 

patients were selected to build the patient cohort in this experiment. The responsive and 

non-responsive subtype groups were selected by our graph-based method. The responsive 

subtype group has better overall survival than the non-responsive subtype group. There are 

400 patients in the selected responsive subtype group while 897 patients in the non-

responsive subtype group. Figure 3c shows how graph based the convolutional graph 

network outperforms other best machine learning methods such as autoencoder, UMAP, 

etc. Specifically, we compared MGAE clustering methods with other clustering methods, 

which are: tSNE 52 + clustering, UMAP 53 + clustering, autoencoder + clustering, denoise 

autoencoder + clustering, and MGAE without denoising, and MGAE. We used a volcano 

plot and KM plot to visualize and evaluate how good the clustering algorithm can perform 

on patient subtyping tasks. The purpose is to find out whether the denoising process can 
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contribute to the feature learning and eventually for patient subtyping. Also, it is important 

to validate whether the problem formulation makes a difference, that is formulating the 

patient-patient relationship as graph vs. a plain matrix. We can observe that graph-based 

MGAE approach problem formulation has the best patient subtyping among other methods. 

The volcano plots and KM survival analysis shows that the responsive (green curve) and 

non-responsive (red curve) have a significant difference. The other methods do not have a 

good way to stratify the subgroups into responsive or non-responsive, which can be 

observed both from volcano plots. The reason behind this is that patient EHR contains 

high-dimensional, heterogeneous and incomplete features and a graph-based model can 

effectively describe such complex patient network system. Graph-based approach favors 

over grid-based approach in terms of leveraging the rich patient clinical information in 

graph-structure data and learn effective node or graph representation from both node/edge 

attributes and the graph topological structure. Figure 3d shows that both clinical and 

genomic features show better clustering results comparing to use just one feature alone. 

Also, k=5 gives good clustering results that can better stratify responsive and non-

responsive subtypes comparing to choosing other parameters. Figure 3e shows the five 

subtypes identified by MGAE. For each cluster, the K-M estimation will get the median 

survival time. Same for the overall cohort. From that figure, the clinical important clusters 

can be selected for further analysis.  

      

Annotation describes molecular feature and clinical feature 

The subgroups detected can contain potential biomarkers. The GCN successfully detect 

several subgroups from IO cohort. The KM plots were generated for each subgroup. The 
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responsive group represents the patients with good survival prognosis, whereas the non-

responsive group represents the patients with bad survival prognosis. (Figure 3b and Figure 

3e). After merging the two non-responsive groups, (since their corresponding survival 

prognosis are very close), Figure 4 shows the clinical and genomic features enrichment in 

responsive and non-responsive groups. The enrichment was determined by the greater 

number of occurrences in responsive or non-responsive subgroups. From Figure 4, an 

observation is that some blood measurements abnormality may be act as biomarker for 

future study as they are differential between responsive and non-responsive subgroups.   

     Two genetic alteration combinations were identified (Supplemental Table 1), one 

enriched in responsive subtype (genetic abnormalities were highlighted in green shade) and 

the other in non-responsive subtype (in brown shade). Genes specific to responsive subtype, 

non-responsive subtype, or shared by both subtypes were presented in green, brown, and 

yellow colors. Interestingly, functional mutations (in 6 genes) and copy number 

amplifications (in 7 genes) dominated the 12 genes specific to the responsive subtype and 

copy number deletion (in 1 gene) was rare. In contrast, no obvious pattern of genetic 

alteration types were found in Non-responder-specific genes or shared genes.  

     The landscapes of the genetic alterations in responsive and non-responsive subtypes 

were further illustrated by the inferred underlying signaling pathways (Supplemental 

Figure 4). The responsive group demonstrated a classical oncogenic signaling axis from 

EGFR1/HER2 over-activation to the KRAS and BRAF signaling hubs to the uncontrolled 

proliferation featured with p15/p16, cyclins, and RB1. In contrast, the non-responsive 

subtype was dominated by DNA damage repair mechanisms, demonstrating the deletions 

of STK11 and p53 genes and the functionally active mutation of the TERT gene. Both 
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subtypes shared a common cMET/FGFR – PI3K/AKT pathway but with different 

activation mechanisms. For example, The activation of cMET and the deactivation of 

PTEN were achieved through copy number variations in responsive group, but through 

functional mutations in non-responsive patients. The activation of the FGF pathway was 

by the copy number amplification of the FGF12 ligand or the FGFR1 receptor in Non-

responders, but by the functional mutation of FGFR1 in Responders. In summary, while 

both subtypes seemly were driven by the common PI3K/AKT pathway, the responsive 

subtype demonstrated enhanced proliferation, while the non-responsive subtype exceled in 

fast genetic evolution through the malfunctioned DNA damage repairing mechanisms.  

     Figure 5a shows when TMB54 is in intermediate level (We applied the classification 

standard as what Foundation Medicine Inc used)54, the GCN approach can further stratify 

patients into responsive and non-responsive subtypes. In contrast, when the PDL1 

expression level is high, both responsive and non-responsive subtypes showed similar good 

responses to IO treatment. Our findings are that GCN subtyping can provide novel IO 

stratification beyond TMB and PDL1. We found GCN can stratify IO-treated patients with 

low or intermediate TMB into subtypes with distinct clinical outcomes. When TMB is in 

low or intermediate level, the GCN can further stratify patients into responsive and non-

responsive subtypes. This shows that for traditional biomarker TMB, if it labels a patient 

not suitable for IO treatment, our approach can be based on that to further suggest subtypes 

for new subtypes and for precision treatment. In our dataset, above 90% patients do not 

have PDL1 measurements, which suggest that under such situation, our method can 

perform patient subtyping independent on traditional biomarkers.  
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     Genomic alternations that are known to boost EGFR/KRAS signaling were examined 

for their effects on survival. These genomic variants include EGFR mutation, KRAS 

mutation, or KRAS copy number amplification. In the Responsive Subtype (Figure 5c), 

patients with any of these genomic variations demonstrated significantly worse survival 

(14.4 months vs 23.0 months, log-rank test p-value <= 0.01). Meanwhile, no significant 

survival difference was observed in the overall IO cohort (Figure 5d). Further examination 

on EGFR mutations (Supplemental Figure 1a) or KRAS mutations/copy number 

amplifications (Supplemental Figure 1c) alone also showed no correlation with patients’ 

overall survival in the whole IO cohort.   

     The effects of BRAF genomic alteration types on patients’ response to IO treatment in 

the overall IO cohort were examined. Patients with BRAF mutations and recombinations 

responded better than patients without BRAF genomic abnormality (Supplement Figure 3), 

while copy number amplification of BRAF did not affect survival.   

Discussion 

We carried out our study based on a large number of patients with immune therapy 

treatment. A computational practical pipeline was built to detect patient subtypes and 

findings in our data. The reason why our approach works well on patient graph-based 

problem is that GCN can automatically learn a low-dimensional feature representation for 

each node in the graph. The low-dimensional representations are learned to preserve the 

structural information of graphs, and thus can be used as features in building machine 

learning models for various downstream tasks, such as clustering (here, patient subtyping). 

The graph-based approach compared with grid-based approach can better utilizing the 
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structures within the patient clinical and genomic data. The graph convolutional operation 

can effectively include the entire graph information and embed the local patient 

information. It is a more global approach of using the entire data.  

     Five clusters are buried in noises in the raw data. Or, more formally, due to the intrinsic 

relationship between samples in the raw data, these samples, when projected to 5 clusters 

using different approaches, show consistent patterns across these approaches. Other 

approaches can recognize the existence of these clusters, but due to the noise in the raw 

data, these methods cannot effectively distinguish which sample belongs to which cluster. 

Therefore, clusters identified by other approaches are not pure enough and thus fail to show 

clinical importance (i.e., not good enough to pass statistic tests). 

     When working on real-world EMR data, since the noises are in the raw data, traditional 

cluster purity metrics are not suitable for evaluating the performance of an approach. 

Therefore, we used a pragmatic metric to compare the performance of our approach with 

others: whether an approach can effectively identify clinically meaningful subtypes. 

Meanwhile, we use concordance analysis to check whether our findings are artifacts. 

     In the results section, we found some interesting clinical and genomic findings that can 

be used to stratify patient subtypes, which can be used to describe associations between 

driver mutations and response to targeted therapy. These findings demonstrate the 

powerfulness of deep learning and can provide support for further research and discovery 

evaluation this approach in oncology. 

     There are some limitations in this study. First of all, the overall survival analysis is 

based on the patient data collected from routine clinical practice. Not every deceased 

patient’s data of death was captured, some were imputed using “last day of visit”. Also, the 
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unknown distribution of missingness is also a factor. Furthermore, the time receiving 

therapy end point may not account for non-progression-related reasons for discontinuing 

therapy.55   
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Figures 

  

Figure 1. The overall workflow: The dataset is from real world evidences in Flatiron. 

Each patient has his clinical features and genomic features measured by Foundation 

Medicine. The features are preprocessed (See Material and Method part for details) and 

then concatenated. We applied marginalized graph autoencoder (mGAE) to learn each 

patient latent representation. Then, we applied spectral clustering algorithm to identify 

patient subtypes (clusters). Last but not least, we performed data analysis such as survival 

plot to compare between different subgroups and identified the clinical and genomic 

findings. 
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(d) 

Figure 2. Identification of IO treated NSCLC cohort from Flatiron database and 

cohort characteristics a) Cohort Identification: define the cohort with inclusion and 

exclusion criteria. b) baseline demographic and pathologic characteristics c) an overview 

of all clinical features classified into molecular pathology features, blood test features. It 

also shows the incompleteness in RWE. d) genomic features are shown in waterfall plot.  
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(f) 

Figure 3. GCN discovered NSCLC subgroups with dramatically different responses 

to IO therapies from integrating both genomic data and EHR and GCN showed 

superior performances to commonly used machine learning methods. a) The GCN 

effectively learns embedding from patient clinical and genomic features. Here, a tSNE 

plot is to show the high level embedding in 2-d. The embeddings are formed five clusters 

which indicates five subgroups. 3b) The survival plots of five subgroups corresponding to 

the five clusters shown in Figure 3a. 3c) GCN approach compared with other machine 

learning approaches. Here, we compared our approach with other grid-based method and 

other well-established machine learning methods. In the volcano plot, each dot represents 

a cluster, the X axis will be the difference of the estimated median survival times between 

a cluster and the overall cohort, and the Y will be –log10(p-value), where the p-value will 
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be from the log-rank test of the KM estimation of survival functions between a cluster 

and the overall cohort. It shows that our methods give better subgrouping results 

compared with other methods in terms of differentiable survival analysis and statistical 

significance. 4d) It shows that integrating both genomic and clinical features give the best 

subgroup results. Five clusters give best survival difference. We also explore other cluster 

parameters, but they fail to give statistically significant differentiable survival subgroups. 

4e) responsive and non-responsive subgroups identified by GCN approach. Here for two 

non-responsive subgroups, we merge them together for following analysis. 4f) Survival 

plots for responsive and non-responsive subtypes after merging the two non-responsive 

subgroups; The survival analysis plot shows statistically significant difference between 

two subtypes as the responsive subgroup can have more then 10 months than 

nonresponsive one. 
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Figure 4: Enrichment of distinct clinical-phenotype differentiating the responsive and 

nonresponsive IO-treated NSCLC subgroups identified by GCN. 
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(a) 

  

Our approach stratifies patients when 
TMB in low and intermediate range 
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(b) 

  

No significant stratification when TMB is high  
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(d) 

Figure 5: GCN based subgrouping enabled IO based patient stratifications beyond utilizing 

TMB  

Figure 5a) When TMB in low and intermediate range, GCN further stratifies patients into 

responsive and non-responsive subtypes. 5b) When TMB in high range, GCN cannot 

further stratify patients. From 5a and 5b it shows that although TMB is a commonly use 

biomarker to suggest patient IO treatment response, when TMB is in low and intermediate 

range, our approach can still stratify patient into differential survival subgroups with 

statistically significance. The effects of genomic alterations that may upregulate the 

EGFR/KRAS signaling on overall survivals are demonstrated in the Responsive subtype 

(5c) and the overall cohort (5d).  

Month 

Month 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 12, 2019. ; https://doi.org/10.1101/19011437doi: medRxiv preprint 

https://doi.org/10.1101/19011437
http://creativecommons.org/licenses/by-nc-nd/4.0/

