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Abstract

HIV set-point viral load (SPVL) is an important predictor of HIV progression and transmission. Although it
has been reported that anti-retroviral therapy (ART) reduces viral load (VL), increased SPVL levels have
been observed in MSM in the decade following the introduction of ART in the Netherlands. Several studies
have been devoted to explain these counter-intuitive trends in SPVL. However, to our knowledge, none of
these studies has investigated an explanation in which it arises as the result of a sexually transmitted
infection (STI) co-factor in detail.

In this study, we adapted an event-based, individual-based model to investigate how STI co-infection and
sexual risk behaviour affect the evolution of HIV SPVL in MSM before and after the introduction of ART.

The results suggest that both STI co-factors and sexual risk behaviour have an effect on SPVL. However,
the observed trends in SPVL cannot be explained by sexual risk behaviour and STI co-factors only.

We recommend to develop mathematical models including also factors related to viral evolution as
reported earlier in the literature. However, this requires more complex models, and the collection of more
data for parameter estimation than what is currently available.

Introduction 1

HIV viral load (HIV RNA concentration in plasma) is an important and widely used prognostic marker for 2

HIV progression and transmission [18,19,25]. While immediately after infection rapid HIV replication and 3

high HIV viral load (VL) values are observed, VL declines during the asymptomatic phase and reaches a 4

stable level, called set-point viral load (SPVL) after a few weeks to a few months [9]. Although it has been 5

reported that anti-retroviral therapy (ART) reduces HIV transmission by decreasing VL [20,23], increased 6

SPVL levels were observed in MSM in the Netherlands during the period 1995-2007, after the introduction of 7

ART in 1994 [14]. Moreover, in Belgium, where ART was also introduced in the mid-1990s [22], an increase 8

in HIV incidence in MSM has been observed during the period 1997-2013. After 2013, a drop in new HIV 9

diagnoses has been observed [27]. 10
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Several studies have been devoted to explain these counter-intuitive trends in HIV SPVL after the 11

introduction of ART. The majority of these studies try to explain these trends from an evolutionary 12

perspective. They explain the observed trends by host genetic factors [33, 35], viral adaptation of HIV to its 13

host population [3, 6, 10, 28] and evolution of HIV SPVL to maintain higher viral fitness [8, 13, 29, 32]. A few 14

studies have investigated sexual risk behaviour as a potential factor influencing SPVL [1,12]. A recent study 15

of Goodreau et al. [12] reports a positive relationship between relational concurrency and mean SPVL. 16

Mathematical modeling has been shown to be a valuable tool to investigate the evolution of SPVL and HIV 17

virulence. Bezemer et al. [1] used a deterministic compartmental ODE model to study the influence of sexual 18

risk behaviour on the HIV epidemic. Herbeck et al. [17] used an individual-based model to investigate trends 19

in HIV virulence and community viral load. Their model contained functions for transmission and 20

progression of HIV, SPVL, VL at multiple stages of HIV and SPVL heritability. Sexual relationships were 21

described by a simplified contact network, without including sexual mixing patterns. Roberts et al. [24] 22

designed a deterministic model to assess the impact of ART on viral evolution. Smith et al. [30] developed a 23

compartmental model to study the influence of ART and pre-exposure prophylaxis (PrEP) on the evolution 24

of HIV virulence. Goodreau et al. [12] used an individual- and network-based model to study the relationship 25

between relational concurrency, HIV stages and evolution of HIV SPVL. However, none of these models 26

implemented the effect of a sexually transmitted infection (STI) co-factor whereas the presence of an STI 27

co-factor has been suggested to influence the trend in SPVL [14]. 28

In this study, we adapted an event-based, individual-based model to investigate the effect of sexual risk 29

behaviour, STI co-infection and their combined effect on the evolution of HIV SPVL in MSM after the 30

introduction of ART. The paper is organized as follows. In the Materials and Methods section, we describe 31

the individual-based model, the parameter estimation procedure and the scenarios considered. In the Results 32

section, the results for the different scenarios are presented and compared. In the Discussion section, we 33

discuss our main findings and formulate recommendations for future research. 34

Materials and Methods 35

Simpact Cyan 1.0 modeling framework 36

Simpact Cyan 1.0 is a open-source framework for constructing individual-based models for simulating the 37

transmission, diagnosis and treatment of HIV [21]. The program models each individual in a heterosexual or 38

homosexual population, and the sexual relationships between individuals. The formation and dissolution of 39

relationships, as well as birth, mortality, HIV transmission, diagnosis and treatment are represented by 40

events, which have a certain risk of taking place at a certain moment, represented by their hazard function. 41

Models are implemented in continuous time and updated each time an event happens. Simpact Cyan 1.0 also 42

implements a generic sexually transmitted infection (STI) co-factor effect on HIV. Furthermore, it’s also 43

possible to simulate interventions by changing certain parameters during the simulation. 44

More detailed information on the Simpact Cyan 1.0 modeling framework is available in [21] and from 45

http://www.simpact.org/. 46

Model scenarios 47

In this study, we focus on the influence of sexual risk behaviour and STI co-infection dynamics on the 48

evolution of the HIV set point viral load (SPVL) in MSM. Simulations are conducted for the period from 49

1980 to 2015, including both the period before and after the introduction of ART in 1994. After the 50

introduction of ART, it is also assumed that the CD4 count threshold below which ART is offered 51

increased [7], so that more people are treated. Furthermore, we assume that availability of ART has led to 52

intensified HIV testing [11]. 53

Four model scenarios including ART coverage, corresponding to four different hypotheses for explaining 54

the rise in SPVL between 1995 and 2007, are considered: 55

• no STI co-factor effect and no change in risk behaviour: the observed trends are caused by other 56

factors; 57
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• STI co-factor effect and no change in risk behaviour: the observed trends are caused by an increased 58

STI co-factor effect; 59

• a change in risk behaviour and no STI co-factor effect: the observed trends are caused by an increase in 60

sexual risk behaviour; 61

• a change in risk behaviour and an STI co-factor effect: the observed trends are caused by a 62

combination of increased sexual risk behaviour and an increased STI co-factor effect. 63

Parameters based on prior knowledge used in the model simulations, and intervention events for simulating 64

the increase in ART coverage since 1994, and the increased risk behaviour with ART coverage (if applicable) 65

are described in the Supplementary Material. 66

Model calibration 67

Table 1 presents the available literature data on the HIV epidemic in MSM in the Netherlands, used for 68

model calibration.

Table 1. Available literature data used for model calibration. All data are for the Netherlands. CI: confidence
interval; CrI: credible interval.

data value reference
mean log10 SPVL in MSM in 1985 4.46 (95% CI: 4.27 – 4.65) [14]
mean log10 SPVL in MSM in 1995 4.21 (95% CI: 4.09 – 4.33) [14]
mean log10 SPVL in MSM in 2007 4.88 (95% CI: 4.76 – 5.01) [14]
HIV prevalence in MSM in 2007 0.051 (95% CrI: 0.032–0.083) [5]
HIV prevalence in MSM in 2012 0.083 (95% CrI: 0.061–0.113) [5]
ART coverage in MSM in 2013 62% [15]

69

For the nine parameters in Table 2, there were no literature values available. Therefore, these parameters 70

were fitted to the data in Table 1 by applying an active learning approach [34] using the following steps: 71

1. Select 10,000 parameter sets by applying Latin Hypercube Sampling (LHS) [31] and using the initial 72

parameter ranges from Table 2. 73

2. For each of the 10,000 parameter sets, run a simulation with Simpact Cyan 1.0. 74

3. For each simulation, calculate the goodness-of-fit (GOF) based on the sum of squared relative errors [2]. 75

4. Apply the selection procedure of Castro Sanchez et al [26] based on the GOF measure to narrow the 76

solution space (intervals for the parameters). 77

5. Repeat steps 1-4 using the new intervals for the parameters until the GOF does not improve anymore. 78
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Table 2. Parameters fitted to the data in Table 1. Initial ranges are based on the examples in the
RSimpactHelper package https://github.com/wdelva/RSimpactHelp.

Parameter definition Parameter name Initial range
formation hazard - baseline
value

formationmsm.hazard.simple.alpha 0 [2, 8]

formation hazard - weight
for the number of relation-
ships the men in the relation-
ship have; -Inf: everyone is
monogameous; 0: formation
of a relationship not influ-
enced by the number of part-
ners one already has

formationmsm.hazard.simple.alpha 12 [−10, 0] for scenarios with-
out increased risk behaviour;
[−10,−1] for scenarios with
increased risk behaviour

formation hazard - influence
of the difference in number of
partners; in case of no assorta-
tivity this parameter is 0; e.g.
if this parameter is log(0.5),
then the formation hazard de-
creases with 50% if the num-
ber of current partners of the
two men differs 1.

formationmsm.hazard.simple.alpha 3 [−1, 0]

formation hazard - weight for
the average age of the part-
ners; negative: for older per-
sons, less relationships are
formed

formationmsm.hazard.simple.alpha 4 [−1, 0]

formation hazard - relative im-
portance of the age gap be-
tween the partners; 0: no in-
fluence; very negative: people
are only interested in relation-
ships with people who have
the preferred age gap

formationmsm.hazard.simple.alpha 5 [−2, 0]

dissolution hazard - baseline
value

dissolutionmsm.alpha 0 [−1.6, 0.1]

HIV transmission hazard -
parameter a in the formula
hazard = exp(a + bV −c)
where V is the current viral
load [16]

hivtransmission.param.a [−1.5,−1]

HIV transmission hazard -
parameter b in the formula
hazard = exp(a + bV −c)
where V is the current viral
load [16]

hivtransmission.param.b [−90,−10]

HIV transmission hazard -
parameter c in the formula
hazard = exp(a + bV −c)
where V is the current viral
load [16]

hivtransmission.param.c [0.1, 0.5]
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Results 79

Model calibration 80

Table 3 shows the fitted parameters for the four model scenarios. 81

Table 3. Fitted parameters for the four model scenarios. nSTI-nBC: no STI co-factor, no behavioural
change; STI-nBC: STI co-factor, no behavioural change; nSTI-BC: no STI co-factor, behavioural change;
STI-BC: STI co-factor, behavioural change.

parameter nSTI-nBC STI-nBC nSTI-BC STI-BC
formationmsm.hazard.simple.alpha 0 4.65 7.60 4.07 6.50
formationmsm.hazard.simple.alpha 12 -0.181 -8.30 -2.04 -3.61
formationmsm.hazard.simple.alpha 3 -0.149 -0.688 -0.782 -0.670
formationmsm.hazard.simple.alpha 4 -0.00386 -0.0194 -0.0193 -0.00847
formationmsm.hazard.simple.alpha 5 -0.298 -0.0186 -0.0130 -0.00785
dissolutionmsm.alpha 0 -0.0586 -0.436 -0.253 0.0304
hivtransmission.param.a -1.17 -1.21 -1.09 -1.13
hivtransmission.param.b -63.1 -23.7 -28.5 -28.8
hivtransmission.param.c 0.352 0.399 0.476 0.334

Goodness-of-fit 82

Figure 1 (left) shows that including an STI co-factor effect or/and a behavioural change results in a 83

considerably better goodness-of-fit (GOF). The model including only an STI co-factor shows the best GOF, 84

followed by the model including both an STI co-factor and behavioural changes (see Figure 1 (right)). For the 85

remainder of the paper, we only discuss the models including an STI co-factor and/or behavioural changes. 86

Figure 1. Boxplots for top 30 solutions based on goodness-of-fit. Left: boxplots for the four model scenarios;
right: boxplots for the three model scenarios including an STI co-factor or/and behavioural changes.
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Trends in HIV prevalence, ART coverage, viral load and HIV incidence 87

Figure 2 shows the median HIV prevalence and the 100% percentile for 30 simulations with the scenarios 88

STI-nBC, nSTI-BC and STI-BC. When comparing the results with the HIV prevalence data from [5] (see 89

Figure 2 lower right panel), we observe that only for the STI-BC scenario, the 100% percentile falls within 90

the lower and upper bound of the 95% credible interval. 91

Figure 2. Median HIV prevalence of 30 simulations with the fitted parameters (solid line) and 100%
percentile (shaded area) for the period 2007-2012: upper panel, left: STI co-factor, no behavioural change;
lower panel, left: no STI co-factor, behavioural change; upper panel, right: STI co-factor and behavioural
change. Lower panel, right: mean HIV prevalence with 95% credible interval for 2007 and 2012 from [5].

Figure 3 presents the median ART coverage and the 100% percentile for 30 simulations with the scenarios 92

STI-nBC, nSTI-BC and STI-BC. We observe that the scenario nSTI-BC has the closest approximation of the 93

value of 62% ART coverage in 2013 [15] . 94
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Figure 3. Median ART coverage of 30 simulations with the fitted parameters (solid line) and 100% percentile
(shaded area) for the period 1994-2013: left panel: STI co-factor, no behavioural change; middle panel: no
STI co-factor, behavioural change; right panel: STI co-factor, behavioural change.

Figure 4 shows that none of the scenarios including an STI and/or increased risk behaviour explains the 95

increasing trend in HIV SPVL between 1995 and 2007 described by Gras et al [14]. However, for the scenario 96

including both an STI co-factor and increased risk behaviour (STI-BC), only a slight decrease in SPVL 97

between 1995 and 2007 is observed, while the other two scenarios show a larger decline. This suggests that 98

both STI co-factor effects and behavioural changes contribute to the reduction of the beneficial effects of 99

ART on the spread of HIV. 100
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Figure 4. Mean log10 HIV SPVL (mean set-point HIV RNA concentration at 9-27 months after seroconver-
sion) - median of 30 simulations with the fitted parameters (solid line) and 100% percentile (shaded area)
for the period 1984-2007: upper panel, left: STI co-factor, no behavioural change; lower panel, left: no STI
co-factor, behavioural change; upper panel, right: STI co-factor and behavioural change. See Supplementary
Material for more detail on how the figures were generated. Lower panel, right: mean log10 SPVL with 95%
confidence interval for 1985, 1995 and 2007 from [14].

Figure 5 shows the median HIV incidence (as fraction of the total population) and the 100% percentile for 101

30 simulations with the scenarios STI-nBC, nSTI-BC and STI-BC. Only the scenario STI-nBC shows an 102

increase in HIV incidence from 1997 until 2012-2013, followed by a decrease in 2014 and a slight increase in 103

2015, corresponding with the trend in Belgium [27]. 104
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Figure 5. Median HIV incidence (as fraction of the total population) of 30 simulations with the fitted
parameters (solid line) and 100% percentile (shaded area) for the period 1997-2015: left: STI co-factor, no
behavioural change; middle: no STI co-factor, behavioural change; right: STI co-factor and behavioural
change.

Relationship between HIV viral load and point prevalence of concurrency 105

Figure 6 shows the mean log10 HIV SPVL of all individuals with a date of HIV seroconversion between 1984 106

and 2007 against mean point prevalence of concurrency over the period 1984-2007 for 30 simulations with the 107

STI-nBC, nSTI-BC and STI-BC scenarios. Only the scenarios STI-nBC and nSTI-BC confirm the increasing 108

trend of SPVL with relational concurrency described by Goodreau et al [12]. 109
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Figure 6. Mean log10 HIV SPVL of all individuals with a date of HIV seroconversion between 1984 and
2007 against mean point prevalence of concurrency over the period 1984-2007 for 30 simulations with the
fitted parameters (black dots) and the trendline (blue line) with 95% confidence intervals (shaded area). Left:
STI co-factor, no behavioural change; middle: no STI co-factor, behavioural change; right: STI co-factor and
behavioural change.

Discussion 110

After the introduction of ART, increasing trends in HIV SPVL and HIV incidence were observed in 111

MSM [14,27], which are counter-intuitive and not fully understood. In this study, we used an event- and 112

individual-based model to investigate the impact of STI co-infection, changes in sexual risk behaviour and a 113

combination of both on the evolution of HIV SPVL in MSM. The results show a considerable improved fit of 114

the model to literature data when including an STI co-factor and/or behavioural changes, which suggests 115

that both sexual risk behaviour and STI co-factor effects influence HIV SPVL. Furthermore, the model 116

including only an STI co-factor and no behavioural change provides the best fit. However, the HIV 117

prevalence curves are closer to the observed values in [5] when also including behavioural changes. For the 118

ART coverage, the scenario including only behavioural changes and no STI co-factor results in the closest 119

approximation to the reported value in [15]. 120

Although none of the three scenarios including an STI co-factor and/or behavioural changes could explain 121

the increasing trend in SPVL reported in Gras et al. [14], all scenarios can explain the increase in new HIV 122

cases between 1995 and 2013. Moreover, only the scenario with an STI co-factor and no behavioural changes 123

could also explain the drop HIV incidence after 2013 reported in [27]. Only the scenarios that include an STI 124

co-factor or behavioural changes (but not both) could confirm the higher mean SPVL with higher relational 125

concurrency reported by Goodreau et al [12]. 126

There are several potential reasons that none of the scenarios can explain the trends in SPVL reported in 127

Gras et al. [14]. First, apart from treatment, sexual behaviour and STI co-factor effects, also factors related 128

to viral evolution were reported to have an effect on the evolution of SPVL. However, to the best of our 129

knowledge, no modeling framework is available that can incorporate treatment, sexual risk behaviour, STI 130

co-infection and viral evolution into a single model. This will be explored in future research. Second, the 131
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available data for this case study as reported in the literature is scarce. Making more data available will lead 132

to better estimation of the model parameters, and possibly to improved models that can better explain the 133

trends in SPVL observed in the literature. Furthermore, the data on SPVL from [14] (see Table 1) for 1995 134

are based on a considerably lower amount of persons than for 1985 and 2007, which creates uncertainty 135

about the observed trends. According to Cumming and Finch [4], methods for significance testing based on 136

confidence intervals (CI) are reliable when both sample sizes are equal or larger than 10, and when the 137

margins of error differ not more than a factor 2. For 1995 the first condition is not fulfilled. This means that 138

although a proportion overlap of 0.387 between the CIs for 1985 and 1995 is obtained, pointing to a 139

significant difference between the two samples according to Cumming and Finch [4], there is uncertainty 140

about the observed decrease between these two time points. Third, only a generic STI co-factor effect was 141

included in the model. Including a more specific STI co-factor effect, e.g. a herpes simplex virus (HSV-2) 142

co-factor effect where all stages of HSV-2 are described in detail may lead to improved models for this case 143

study. However, such model has many more parameters than the model used in this study, and as a 144

consequence requires more data than currently available for parameter estimation. 145

In summary, the results of this study suggest that both STI co-factors and sexual risk behaviour could 146

influence SPVL, but cannot explain the trends described in the literature. Future research to understand 147

SPVL evolution should also consider models that include factors related to viral evolution and describe STI 148

co-factors in more detail. To accomplish these goals, more data has to be collected and made available. 149
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