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Abstract

Background

The elimination programme for visceral leishmaniasis (VL) in India has seen great

progress, with total cases decreasing by over 80% since 2010 and many blocks now

reporting zero cases from year to year. Prompt diagnosis and treatment is critical to

continue progress and avoid epidemics in the increasingly susceptible population.

Short-term forecasts could be used to highlight anomalies in incidence and support

health service logistics. The model which best fits the data is not necessarily most

useful for prediction, yet little empirical work has been done to investigate the balance

between fit and predictive performance.
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Methodology/Principal Findings

We developed statistical models of monthly VL case counts at block level. By evaluating

a set of randomly-generated models, we found that fit and one-month-ahead prediction

were strongly correlated and that rolling updates to model parameters as data accrued

were not crucial for accurate prediction. The final model incorporated auto-regression

over four months, spatial correlation between neighbouring blocks, and seasonality.

Ninety-four percent of 10-90% prediction intervals from this model captured the

observed count during a 24-month test period. Comparison of one-, three- and

four-month-ahead predictions from the final model fit demonstrated that a longer time

horizon yielded only a small sacrifice in predictive power for the vast majority of blocks.

Conclusions/Significance

The model developed is informed by routinely-collected surveillance data as it

accumulates, and predictions are sufficiently accurate and precise to be useful. Such

forecasts could, for example, be used to guide stock requirements for rapid diagnostic

tests and drugs. More comprehensive data on factors thought to influence geographic

variation in VL burden could be incorporated, and might better explain the

heterogeneity between blocks and improve uniformity of predictive performance.

Integration of the approach in the management of the VL programme would be an

important step to ensuring continued successful control.

Author summary

This paper demonstrates a statistical modelling approach for forecasting of monthly

visceral leishmaniasis (VL) incidence at block level in India, which could be used to

tailor control efforts according to local estimates and monitor deviations from the

currently decreasing trend. By fitting a variety of models to four years of historical data

and assessing predictions within a further 24-month test period, we found that the

model which best fit the observed data also showed the best predictive performance,

and predictive accuracy was maintained when making rolling predictions up to four

months ahead of the observed data. Since there is a two-month delay between reporting
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and processing of the data, predictive power more than three months ahead of current

data is crucial to make forecasts which can feasibly be acted upon. Some heterogeneity

remains in predictive power across the study region which could potentially be improved

using unit-specific data on factors believed to be associated with reported VL incidence

(e.g. age distribution, socio-economic status and climate).

1 Introduction 1

1.1 Visceral leishmaniasis in India 2

Visceral leishmaniasis (VL) is the acute disease caused by Leishmania donovani, which 3

is transmitted through infected female Phlebotomus argentipes sandflies. In India, the 4

burden of disease is largely contained within the four northeastern states of Bihar, 5

Jharkhand, Uttar Pradesh and West Bengal, with the rural state of Bihar most broadly 6

affected [1–3]. 7

Incidence of VL in India has decreased substantially since the initiation of the 8

regional Kala-Azar Elimination Programme (KEP), which aims to tackle the disease 9

across the Indian subcontinent through enhanced case detection and treatment and 10

reduction of vector density [4]. As a result, reported cases have fallen from 29,000 in 11

2010 to less than 5,000 in 2018 [3, 4]. The overall target of the programme is to reduce 12

incidence to less than 1 case/10,000 people/year within each “block”. Blocks are 13

administrative sub-divisions of a district with population sizes varying from twenty 14

thousand to several million, depending on geographic area and the proportion of urban 15

and rural habitation. As a consequence, the target equates to an absolute total of 16

between three and two hundred cases per year. To support the elimination effort, data 17

are reported to a central repository (Kala-Azar Management Information System, 18

KA-MIS) to construct line lists including the date and location of every diagnosed case. 19

Despite the overall decrease in incidence, there is considerable heterogeneity between 20

blocks (Fig. 1). In some blocks cases are now few and far between, while others remain 21

substantially affected from year to year. The combination of the decrease and the 22

heterogeneity raises the need for a more targeted approach; the finite resources available 23

must be distributed efficiently to continue progress. Additionally, history has shown 24
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that VL has the potential to develop into large epidemics [5–7] and hence it is 25

important that localised pockets of incidence are not overlooked. Intervention when 26

incidence is low is required to prevent the trajectory from turning upwards again, as 27

cycles of VL incidence appear to occur with a frequency of 10-20 years [8]. 28

Fig 1. Estimated incidence per 10,000 population per block in 2018, for
Bihar and the four endemic districts of Jharkhand (Dumka, Godda,
Sahibganj and Pakur). Incidence is estimated according to reported cases in
KA-MIS with diagnosis date in between 01/01/2018 and 31/12/2018 and block
populations projected from the 2011 census according to decadal, block-level growth
rates [9]. Black lines indicate block boundaries. The affected blocks of Jharkhand on
average have much higher incidence than Bihar and can be seen in the bottom right of
the map. Blocks marked grey had no reported cases during the study period.

The primary aim of this paper is to demonstrate a methodology for providing 29

short-term, block-level predictions of VL cases for two purposes. First, as a prediction 30

tool to support logistics, for example to set minimum stock levels of rapid diagnostic 31

tests and drugs. Second, to provide an early warning if the number of cases starts to 32

resurge. For such a framework to be useful to the elimination programme, it is essential 33

that its predictions are sufficiently accurate. Hence we make predictive accuracy of the 34

forecasting approach the focus of the model selection. We believe that this is a critical 35

step in the effort to maintain the successes of the current programme, and as a 36

foundation for improved disease control. 37

1.2 Spatio-temporal analysis 38

Epidemiological data, in particular regarding infectious disease, are often spatially and 39

temporally correlated. This simply means that incidence in one area is related to 40

incidence in nearby areas, and incidence at one point in time is related to incidence in 41

the past. Mapping VL incidence at the block level highlights spatial correlation (Fig. 1), 42

with concentrated regions of high incidence appearing in East Bihar and Jharkhand. 43

This could be due to similar geographic and demographic characteristics of 44

neighbouring blocks, or the spread of infection by regular population movement. The 45

latter can induce a spatio-temporal pattern in which pockets of high incidence appear to 46

“step” between neighbouring blocks. The seasonal cycle of incidence and overall 47

decreasing trend (Fig. 2) are clearly evident in aggregated case counts. 48

Several statistical approaches have been developed to model count data in space and 49

October 21, 2019 4/28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 5, 2019. ; https://doi.org/10.1101/19009258doi: medRxiv preprint 

https://doi.org/10.1101/19009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig 2. Total monthly reported cases across the study region. The annual
cycle (peaking between January and April) and overall decreasing trend are clear at this
aggregate level.

time. These methods have been largely developed and used for understanding the 50

drivers of patterns, often incorporating additional covariate information describing 51

climate, geography or demography [10]. Where aetiology is not the focus, analyses often 52

incorporate GIS data to identify hotspots and predict disease spread at a local village or 53

household level [11]. In the case of VL on the Indian subcontinent, the KA-MIS system 54

grants us reliable and near-complete date and location data for notified cases over the 55

past six years. However, on this scale, GIS data are not yet available, covariate data 56

beyond crude population estimates are sparse and time-varying information even harder 57

to come by. As such, statistical approaches to spatio-temporal analysis have been 58

broadly limited to specific study regions within which additional data were 59

collected [12]. Predictions on a regional level have so far been the remit of transmission 60

dynamic modelling [13]. We aim to make use of the available data for the whole state of 61

Bihar and the affected region of Jharkhand, focussing our attention on prediction and 62

not aetiology and building our approach purely from the spatial and temporal 63

correlations of case counts. 64

Often the model which best fits observed data is selected for forecasting, yet 65

goodness of fit does not guarantee predictive power. We therefore also investigate the 66

relationship between the fit and predictive power. 67

1.3 Model Framework 68

A natural modelling approach is to consider the cases in each month in each block as a 69

function of cases in the previous month and in neighbouring blocks. A model framework 70

has been developed in [14,15] which decomposes the distribution of counts at each point 71

in space and time into three components (auto-regressive, neighbourhood and endemic): 72

• Auto-regressive (AR) The contribution of previous incidence in the same block 73

to current incidence. A choice must be made about time period of previous 74

incidence considered (i.e. the number of months). 75

• Neighbourhood (NE) The contribution of previous incidence in surrounding 76
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blocks to current incidence. A choice must be made about both the time period and 77

spatial extent considered (i.e. neighbours, neighbours of neighbours etc.), with 78

indirect neighbours assigned decaying weights, for example, according to a power 79

law. 80

• Endemic (END) A function describing the intrinsic incidence related to block 81

factors (such as geography or demography) or seasonality. 82

The sum of these components forms the mean structure for a negative binomial 83

distribution used to model the count in each block and month. The epidemic 84

component consists of both auto-regression and spatial/spatio-temporal regression. The 85

maximum distance in space or time at which we assume one block-and-month count 86

affects another is referred to as the maximum spatial or temporal lag. The endemic 87

component attempts to explain any remaining variation, potentially due to overall 88

temporal trends, population size and other unit-specific factors. 89

In addition to the genuine epidemiology of VL, there is an intermediary process of 90

detection and reporting which contributes to the distribution of case counts. A new case 91

in a previously unaffected area triggers active case detection (ACD) which continues for 92

twelve months, therefore contributing to the pattern of temporal correlation. In other 93

words, one case is likely to be promptly followed by more cases - not only because of 94

transmission but also as a result of increased, localised detection effort. We therefore 95

explored a flexible, distributed lag structure [16] which extends the range of 96

spatio-temporal interaction by allowing incidence over multiple previous months to 97

contribute to both the auto-regressive and spatial elements. The selection of an optimal 98

lag length has been investigated for distributed lag models in one dimension (i.e. time 99

alone) [17], but the impact of introducing a spatial component has not been thoroughly 100

discussed. A strong interdependence between the autoregressive and neighbourhood 101

components is introduced by simultaneously incorporating past information from the 102

same block and the neighbourhood of that block in a distributed lag model; each block 103

affects subsequent incidence in its neighbours, which in turn affects subsequent 104

incidence in the original block. We apply a systematic approach which attempts to 105

optimise the temporal and spatial lags simultaneously such that one does not mask the 106

effect of the other. 107
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1.4 Evaluation of forecasts 108

The three components described in the previous section have arbitrary complexity and 109

lead to a large number of candidate models. A key issue is therefore to identify the 110

best-fitting model, or a set of well-fitting models, and to assess to which degree good 111

in-sample (or retrodiction) performance translates to out-of-sample forecasting 112

performance. In-sample performance is widely assessed via the Akaike information 113

criterion (AIC). The AIC balances the model fit and complexity, and has been 114

recommended for model selection for prediction purposes [18]. To assess predictive 115

performance it is common to use proper scoring rules [19]. These measure 116

simultaneously calibration and sharpness of forecast distributions, where sharpness 117

describes the concentration of the predictive distribution and calibration describes the 118

statistical consistency between forecasts and observations. An ideal forecast maximizes 119

sharpness subject to calibration [20]. We use the ranked probability score (RPS) [19] 120

averaged over all blocks and predicted months, which for a predictive distribution P 121

and an observation x is defined as 122

RPS(P, x) =
∞∑
k=0

[FP (k)− 1(x ≤ k)]2 (1)

Here, FP is the cumulative distribution function of P and 1 is the indicator function. 123

The RPS thus compares the cumulative distribution function of P to that of an “ideal” 124

forecast with all probability mass assigned to the observed outcome x. We use this score 125

rather than the logarithmic score as it is considered more robust [20], and we wish to 126

assign some credit to forecasts near the observed value. The score is negatively oriented, 127

meaning that smaller values are better. 128

Calibration can in addition be assessed using probability integral transform (PIT) 129

histograms. The PIT histogram shows the empirical distribution of FP ;i(xi) for a set of 130

independent forecasts i = 1, ..., I. We here use an adapted version for count data 131

suggested by Czado et al [19]. If the forecasts are calibrated, the histogram should be 132

approximately uniform. U and inverse U-shaped PIT histograms indicate that the 133

forecasts imply too little or too much variability, respectively. 134

A closely-related summary measure which is easy to communicate are empirical 135

coverage probabilities [20]. We will provide coverage probabilities of central 50% and 136
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80% prediction intervals (reaching from the 25% to 75% and 10% to the 90% quantiles 137

of the predictive distribution, respectively). For a calibrated forecast, the empirical 138

coverage probabilities should be close to the nominal levels. However, in the context of 139

sparse, low counts the discreteness of the data often prevents achieving exactly the 140

nominal coverage level. Prediction intervals can then either be slightly conservative (too 141

high coverage), which is usually preferred in practice, or slightly liberal. Initially, we 142

examine and discuss the relationship between model complexity, its ability to describe 143

past data (i.e. its fit) and its ability to predict the next month. We then apply this 144

understanding to systematically select an optimal model for prediction, before 145

comparing its predictive ability for different time horizons. 146

2 Materials and methods 147

2.1 Data 148

Access to the KA-MIS database of VL cases was provided by the National Vector Borne 149

Disease Control Programme (NVBDCP) and facilitated by CARE India. Individual case 150

records were downloaded for Bihar and Jharkhand, restricted to diagnosis date between 151

01/01/2013 and 31/12/2018 and then aggregated by block and diagnosis month. This 152

gave reported case counts for 441 blocks. The KA-MIS data were merged with data 153

from the 2011 census [9] (compiled by CARE India) for the two states to produce the 154

final data set, including endemic blocks which had no reported cases during the study 155

period and hence did not appear in KA-MIS. Because we incorporate spatial correlation 156

into the model, it is necessary to not have “holes” of missing data in the map. For 157

individual blocks within the assumed “endemic” region without any reported cases in 158

certain months, case counts were assumed to be “true zeros” since detection efforts 159

should be consistent with the affected neighbouring blocks. The time series for these 160

blocks were imputed with zeros and therefore contributed to the fit of the model. Four 161

entire districts of Bihar, at the edge of the “endemic” region, (Gaya, Jamui, Kaimur and 162

Rohtas) had no reported cases during the period, and were excluded from the analysis. 163

The final analysis data set included 502 blocks across 38 districts of Bihar and 164

Jharkhand over 72 months. 165
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2.2 Model Structure 166

Due to considerable temporal variation in incidence within blocks, as a result of 167

detection effort and cases arising in “clumps”, the block-level monthly case counts are 168

widely dispersed. A negative binomial distribution was therefore used to model the 169

block-level case counts throughout. 170

All models fitted conform to the same negative binomial structure for case counts Yit 171

given previous incidence: 172

Yit | past ∼ NegBin(µit, ψi) (2)

µit = λt

Q∑
q=1

uqYi,t−q︸ ︷︷ ︸
AR

+φt
∑
j 6=i

Q∑
q=1

wijuqYj,t−q︸ ︷︷ ︸
NE

+ νteit︸︷︷︸
END

. (3)

where Yit denotes the reported case count in block i in month t with population eit, 173

neighbourhood weights wij for neighbours j of block i, and overdispersion parameter 174

ψi > 0 such that Var(Yit) = µit(1 + ψiµit). Normalised weights uq for distributed lags 175

q = 1, ..., Q are defined according to a scalar parameter p which is estimated from the 176

data. 177

u0q = p(1− p)q−1, uq =
u0q∑Q
q=1 u

0
q

(4)

The log-transformed parameter of each model component is then defined by a linear 178

regression on any relevant covariates, Xit; in this case we consider time with sine and 179

cosine terms to replicate seasonal waves. 180

log(λt) = βλXλ
it, (5)

181

log(φt) = βφXφ
it, (6)

182

log(νt) = βνXν
it, (7)

where β are the regression coefficients. 183

All models were fit using the R package surveillance [21] and its extension 184
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hhh4addon [22] in R version 3.5.1 (2018-07-02) [23]. 185

Investigating fit and prediction 186

Thirty random models were drawn from the set of possible formulations (where all three 187

of the endemic-epidemic components are included in some form) and compared on the 188

metrics of interest. This informed the subsequent selection process for the final 189

prediction model. 190

Code used to produce the results in this paper is available from 191

https://github.com/esnightingale/VL_prediction_paper, along with a simulated 192

version of the dataset from the final selected model. 193

2.3 Model selection 194

During the selection process, all models were fit to the subset of months 5 to 48 in order 195

to make comparisons between temporal lags up to four months. The remaining 24 196

months were then predicted sequentially in a “one-step-ahead” (OSA) approach to 197

assess predictive power, either with rolling updates to the fit (incorporating each 198

month’s data into parameter estimates to predict the next) or without (using only the 199

training set of data for all predictions) [19]. The RPS of these predictions was compared 200

to the AIC from the training period fit to assess the relationship between fit to the 201

“observed” data and future prediction. 202

Starting with a basic, endemic-only model (including a population offset and linear 203

trend in time), potential extensions of the three core components were added in turn 204

and measures of fit and predictive power were calculated. The addition which yielded 205

the best improvement in the RPS of OSA predictions, subject to calibration (p not less 206

than 0.1 for test of calibration based on RPS), was selected and then all remaining 207

options tested again. This process was repeated until no further extension of the model 208

made a significant (p ¡ 0.001) improvement to predictive power (as determined by a 209

permutation test on the RPS). This stringent criterium was employed in order to 210

prioritise simplicity over complexity. If at any point an individual model parameter lost 211

significance, the element associated with this parameter was removed in subsequent 212

models. 213
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The following elements were considered for inclusion: 214

• Log of population density as an offset in the endemic component, in place of 215

population fraction. 216

• Seasonality and linear trend in all three components. 217

• Distributed temporal lags up to 4 months, with decaying weights according to a 218

geometric distribution. 219

• Spatial lags up to maximum of 7th order neighbours, with weights decaying 220

according to a power law (wij = o−dij , where oij is the neighbourhood order of 221

blocks i and j, and the decay exponent d is to be estimated). 222

• Intercept of log population density in the neighbourhood component (Gravity 223

Law), to reflect that blocks of high population density are more strongly 224

influenced by their neighbours due to migration. 225

• District and state-specific dispersion, allowing the variation in incidence to differ 226

between spatial units. 227

It was not feasible to allow a block-specific dispersion parameter since many blocks 228

had too few cases to obtain stable estimates. 229

2.3.1 Empirical Coverage Probabilities 230

Again using a one-step-ahead approach, the 25th and 75th quantiles of the predicted 231

distribution were calculated and a score of 0 or 1 assigned if the observed value fell 232

inside or outside this quantile range respectively. This binary score was assigned for 233

each block and each month in the test set, such that we could subsequently calculate a 234

proportion of prediction intervals which did not capture the true count. Thus, the 235

overall score, C, is given by 236

C =
1

nint

∑
i,t

1[yit ≤ qi,t,0.25|yit ≥ qi,t,0.75] (8)

where yit is the observed count for block i at month t, ni and nt the total number of 237

blocks and months respectively, and qi,t,p the pth quantile of the predicted distribution. 238
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For an ideal forecast this score will match the nominal level. We also investigated such a 239

score using 10th and 90th quantiles, to ascertain whether these could be used as 240

approximate lower and upper bounds for case counts. 241

2.3.2 Longer Prediction Horizons 242

For the final model, further predictions were calculated based on a rolling window of 243

three and four months. As with the rolling OSA approach, the model was initially fit to 244

the training set (months 1, . . . , t) and this fit used to predict month t+ 3. The model 245

was then updated with the data from t+ 1 in order to predict t+ 4, and so on. The 246

RPS of one, three and four month ahead predictions were compared to assess the loss in 247

accuracy with a longer time horizon. 248

3 Results 249

3.1 Preliminary analyses 250

3.1.1 Dispersion 251

District-specific dispersion parameters were investigated, but ultimately not considered 252

a viable option to be included in the model. Four districts in particular (Aurangabad, 253

Banka, Jehanabad and Nawada) demonstrate extended periods of zero incidence with 254

occasional sporadic cases or large spikes, which lead to very large dispersion estimates 255

for these districts and therefore unrealistically high predictions. See S1 Fig for an 256

illustration of these patterns. Due to the neighbourhood effect, these high predictions in 257

turn influence the predictions of any bordering blocks. Changes in detection effort could 258

go some way to explaining these unusual patterns, however it is also likely that such 259

patterns will become more common as elimination is approached. This suggests that an 260

alternative modelling strategy will become necessary as cases become more sparse in 261

space and time. 262

3.1.2 Distributed temporal lags 263

By sequentially adding further distributed lags to the best-fitting single-lagged model, 264

neither a clear minimum nor an “elbow” in RPS was attained up to twelve months. The 265
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weights assigned to each lag did not show a rapid “drop-off” as a result of a high 266

estimated decay parameter, and months substantially far back in time were still 267

assigned non-negligible weight. PIT histograms of predictions from these lagged models 268

are included in 4. We found that adding higher orders of distributed lags consistently 269

improved both predictive power and fit. This appears to contradict analysis of 270

individual block time series which suggested significant auto-correlation no more than 271

four months back in time. In the current form of “hhh4addon”, it is not possible to 272

specify a different temporal lag length within the AR and NE components (for example, 273

to incorporate neighbouring incidence from further back in time than within-block). 274

Therefore, the contribution of distributed lags to both components had to be considered 275

and a balance had to be drawn. Comparing the PIT histograms of solely auto-regressive 276

models, the very highest counts are vastly underestimated for all lag lengths. Since the 277

highest values in each block often reflect sudden jumps they cannot be captured by 278

auto-regression; more information - potentially from the surrounding area - is required 279

to anticipate them. Models with no auto-regression but which incorporate neighbouring 280

incidence are better able to reach the highest counts but in doing so over-estimate the 281

moderate-to-high range. It was concluded that beyond four months of lags the 282

improvement in prediction was small enough to discount, and much longer lags were 283

difficult to justify epidemiologically. Therefore only four months of lags were considered 284

for the final model. 285

3.1.3 Random model assessment 286

According to the thirty random models drawn, fit and prediction were found to be 287

strongly correlated (Fig. 3A). Predictions were calculated based on either a rolling fit 288

(incorporating each month’s data into parameter estimates to predict the next month) 289

or fixed fit (using parameters fit to the training set only for all predictions). The scores 290

for both prediction approaches were very similar for most models, suggesting that the 291

processes defined in these models are consistent over time and hence the quality of 292

prediction does not depend on regular model updates (Fig. 3B). This is noteworthy 293

since in practice it may not be possible to update the fits on such a regular basis. 294

Selecting the model based on RPS of predictions from a fixed model fit would best 295

reflect the constraints of reality and be the more conservative approach. 296
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Fig 3. Comparison of predictive performance and model fit, and predictive performance for training period
fit and rolling fit updates, for models with randomly selected components. (A) AIC versus RPS for 30 randomly
selected models. AIC is calculated from the fit to the training period only (months 13 to 48) and RPS from one-step-ahead
predictions (months 49 to 72) based on the same fit. According to this random sample, fit and prediction are strongly
correlated; the model which fits best to the observed data produces the best one-step-ahead predictions. (B) RPS of
predictions based on the fixed training set fit versus rolling fit updates. Predictive power is very similar between the two
prediction approaches.

3.2 Systematic model selection 297

As was found with the random model set, the systematically selected model which 298

demonstrated the highest predictive power as measured by RPS also achieved the 299

closest fit to existing data. Initially, no more than two distributed AR lags could be 300

added to the model without yielding evidence of miscalibration in the predictions. 301

However, once the neighbourhood component was added in the third stage of selection, 302

increasing the AR lags to four months significantly improved both AIC and RPS with 303

no evidence of miscalibration. At this point the endemic linear trend lost significance 304

and therefore was removed in subsequent models. The AIC, RPS and empirical 305

coverage probabilities for all models considered in the selection process are shown in Fig. 306

4. Fit and prediction metrics for the selected model at each stage are given in S1 Table 307

and PIT histograms compared in Fig. 5. 308

Fig 4. Measures of fit and predictive power throughout the model selection
process. Figures illustrate the models tested in chronological order from left to right,
with each stage indicated by a different colour. Models were selected at each stage
based on the biggest reduction in RPS, subject to calibration; these are identified by
hollow points, and the final selected model by a star. For the two variants on the
coverage probability, average quantile interval width (representing uncertainty in the
predicted case count) is shown on the right axis and by the grey dashed line. Interval
width is determined by the count at the upper quantile minus the count at the lower,
hence an interval width of two covers three possible count values (e.g. 2, 3, 4).

Fig 5. PIT histograms for the selected model at each stage. Model 42 is the
final model. Model 52 offered minor improvement in RPS with additional complexity.

An empirical coverage probability cannot be considered “strictly proper” [15, 19, 20], 309

as the RPS score is, and hence does not favour sharpness in addition to calibration. By 310

tightening the predicted distribution and hence tightening the interval in absolute terms, 311

the chance of capturing the observed value in that interval is lessened. Moreover, with 312

very low counts across the majority of the region, the interval from 25-75% often consists 313

October 21, 2019 14/28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 5, 2019. ; https://doi.org/10.1101/19009258doi: medRxiv preprint 

https://doi.org/10.1101/19009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


of only a single value. It would be more interpretable to simply report the median. 314

We found that as RPS and AIC were improved, the empirical coverage probabilities 315

of prediction intervals were increased far beyond their nominal level. With the final 316

model (Model no. 42), only 5.4% (652/12048) of observations fell outside the 10-90% 317

interval, with an average interval width of just three possible case counts. This 318

predicted distribution is much more conservative in its coverage than a simple linear 319

trend model (coverage 10-90% = 0.905) but attains substantially better fit and RPS, 320

suggesting that more of the improvement comes in the form of calibration. The 321

conservative 90% predicted quantile provides a reliable upper limit for the next month’s 322

incidence, to which a management plan could be defined accordingly. 323

3.3 Final model 324

The final model consists of a negative binomial distribution with a single dispersion 325

parameter and the following mean structure: 326

µit = λit

4∑
q=1

uqYi,t−q + φit
∑
j 6=i

4∑
q=1

wijuqYj,t−q + eitνit (9)

log(νit) = αν (10)

327

log(λit) = αλ + γλ1 sin

(
2π

12
t

)
+ δλ1 cos

(
2π

12
t

)
(11)

328

log(φit) = αφ + γφ1 sin

(
2π

12
t

)
+ δφ1 cos

(
2π

12
t

)
(12)

The model fit is dominated by auto-regression; the majority of information with 329

which to predict the current month comes from incidence in the previous four months. 330

Since the contribution of each component is modelled on a log scale these parameters 331

have a multiplicative effect, hence the range of the seasonal AR component (approx. 332

[0.6, 0.8]; see Fig. 6) indicates that each month’s count is expected to be a certain 333

fraction of the weighted average of the counts over the last four months. This occurs 334

over all blocks and therefore amounts to an overall decreasing trend. After accounting 335

for auto-regression, it was found that the neighbourhood effect did not extend beyond 336

directly bordering blocks with respect to prediction. Seasonality within this component 337
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also serves to vary the magnitude of the effect throughout the year. 338

Fig 6. Fitted seasonal waves in the auto-regressive (AR) and
neighbourhood (NE) model components. Both reflect the first-quarter peak in
reported cases but the magnitude of the waves differs, with the contribution of the AR
component varying more than that of the NE.

The contribution of an endemic trend was found to be negligible, reflecting the lack 339

of homogeneity across blocks, and was therefore not included; the reduction in total 340

incidence comes entirely from each block’s autoregressive pattern. Block-specific 341

covariate data (e.g. relating to socio-economic or geographic features of the area) would 342

contribute to this component and potentially reveal associations which are consistent 343

across blocks. Random intercepts were tested in the endemic component to capture 344

unexplained block variation, yet did not improve predictive power in a basic model and 345

caused convergence issues in more complex, distributed-lag models. 346

The relative contributions of the three model components are illustrated for the four 347

blocks with highest average monthly incidence (Gopikandar, Kathikund, Boarijor and 348

Sundarpahari) in Fig. 7. 349

Fig 7. Model fit for the four blocks with highest average monthly incidence
(Gopikandar, Kathikund, Boarijor, and Sundarpahari, all in Jharkhand).
The observed case counts are indicated by black points and the coloured regions
illustrate the relative contribution of the different model components. The contribution
of the endemic component is negligible therefore barely visible. The fitted value from
the model falls at the upper edge of the coloured region.

3.3.1 Predictive performance 350

The final model achieved an overall RPS of 0.420, with individual block-wise averages 351

ranging from 4.3× 10−5 to 3.47. The histogram in Fig. 8 demonstrates that the final 352

model is able to predict accurately and sharply across the majority of the region, yet 353

there is a small subset of blocks with more widely varying RPS. It should be noted that 354

the overall performance of the model is strongly influenced by blocks with almost no 355

incidence as these yield the very lowest scores. Similarly, there is some correlation 356

between the blocks for which the model performs least well, and the blocks which have 357

historically demonstrated the highest average incidence since higher counts are harder 358

to predict than zeros or single cases. The blocks with the highest RPS also tend to 359
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exhibit sporadic patterns or have experienced sudden, sharp changes in incidence 360

(potentially outbreaks) within the test period, which cannot be reproduced by a model 361

primarily informed by an average of past incidence. Examples of these patterns are 362

illustrated in S3 Fig. 363

Fig 8. Distribution of time-averaged ranked probability scores across all
502 blocks. Low values reflect accurate and precise prediction. The majority of blocks
fall below 1 with a subset for which predictive power varies widely.

Pakur, Maheshpur, Boarijor and Sundarpahari in Jharkhand (RPS = 3.47, 2.70, 2.58 364

and 2.58, resp.) experienced substantial jumps in incidence between May and July 2017, 365

constituting differences of up to 27 cases from one month to the next. Paroo (RPS = 366

3.07) showed a particularly erratic pattern of cases within the test period, with spikes of 367

21 and 19 cases separated by a few months of ∼5 cases and a subsequent fall to just one 368

case by December 2018. Incidence in Garkha has also been inconsistent and appeared to 369

have been on the rise in recent years, until a similar fall at the end of 2018. It should be 370

noted that additional case detection efforts in Jharkhand at the start of 2017 will likely 371

have contributed substantially to the observed spikes at this time. 372

This highlights a limitation of fitting such a model over a large number of highly 373

heterogeneous units with minimal unit-specific information. Model selection was 374

performed based on an average score over all blocks and time points for which 375

predictions were made; a model is therefore chosen which predicts well overall, but in 376

doing so sacrifices predictive power for a minority of blocks which do not follow the 377

general trend. Zero counts dominate over all time and space, and the variance of the 378

negative binomial distribution with a universal dispersion parameter is still too 379

restrictive to account for blocks with the highest counts. It is in these areas where 380

additional information on potential predictors of incidence could prove most valuable. 381

3.3.2 Three- and four-month-ahead prediction 382

For the final model, further predictions were calculated based on rolling windows of 383

three and four months. Fig. 9 illustrates that the longer time window did not result in a 384

substantial loss in predictive power, with block-wise RPS very similar for the majority 385

of blocks. When compared over the same predicted months, the differences in RPS 386

between one-month-ahead prediction and three-/four-month-ahead were found to be 387
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small but statistically significant (-0.024 and -0.028, resp.; p < 0.0001 for both). In 388

terms of the empirical coverage, 85.4% of test period observations were captured in the 389

middle 50% of the predicted distribution based on a three month window, and 85.7% 390

with a four month window. 391

Fig 9. Time-averaged (over months 52-72 for comparability) RPS for three-
(A) and four-month-ahead (B) predictions versus one-month-ahead. Scores
are closely matched for the majority of blocks (where RPS < 1.5) but the differences
increase for blocks which are harder to predict.

Figs 10 and 11 illustrate the coverage of 45-55%, 25-75% and 10-90% prediction 392

intervals for the block with the highest RPS of 3.47 (Pakur, Jharkhand) and a block 393

with RPS of 1 (Bhagwanpur, Bihar). For Pakur, RPS is strongly influenced by the 394

model’s inability to match the spike in 2017, yet the incidence in surrounding months is 395

well represented. 396

Fig 10. One-, three- and four-step-ahead predictions (solid white line) with
10-90%, 25-75% and 45-55% quantile intervals, for Pakur block in
Jharkhand (RPS = 3.47 for one-step-ahead over months 49-72).
Observations which fall outside the outer prediction interval are indicated
by a cross.

Fig 11. Corresponding predictions for Bhagwanpur block in Bihar (RPS =
1.00).

4 Discussion 397

We have presented the evaluation of a predictive model of VL in Bihar and four 398

endemic districts in Jharkhand. We have empirically investigated the performance of 399

different models on prediction performance rather than model fit and produced a 400

statistical model that is capable of accurate forecasting. To the best of our knowledge, 401

this is the first time the spatio-temporal correlation of incidence at block level across all 402

the endemic districts of Bihar and Jharkhand has been quantified. Methods such as 403

these can be an important tool for management of endemic diseases. 404

Given the lack of an effective vaccine and evidence that indoor residual spraying of 405

insecticide fails to significantly reduce sandfly densities and VL incidence in sprayed 406

villages [24,25], rapid diagnosis and treatment is currently our best method of control. 407
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With a block-level estimate of the likely number of cases to arise over the next few 408

months, local management teams could take steps to ensure they are prepared. For 409

example, the 90% quantile of the predicted distribution could be used to inform 410

block-specific minimum stock levels for drugs. 411

In practice, the prediction interval is constrained by the efficiency of the reporting 412

process; the time taken to process diagnosis reports and input the information into the 413

database sets a minimum horizon at which predictions would be genuinely prospective 414

and therefore of practical use. In this paper we have assumed a delay of two months 415

until a month’s data can be considered complete, which would necessitate making 416

predictions at least three months ahead of that point. However, conservative predictions 417

based on preliminary month totals would still likely be of use to the programme. 418

We have demonstrated here that rolling three-month-ahead predictions are a 419

reasonable approximation to one-month-ahead, but confidence is sacrificed for a 420

minority of blocks as the time horizon is increased. There is a need for discussion with 421

local disease management teams to determine the optimal balance between practicality 422

and uncertainty. Moreover, the way in which we quantify the accuracy and utility of 423

predictions would benefit from some public health insight; it is highly likely that over- 424

and under-estimation would need to be weighted differently, which may alter which 425

model is deemed preferable. Ideally, the model structure would have been optimised 426

according to predictive power on this slightly longer time horizon, but this is not a 427

trivial task and was deemed beyond the scope of this paper. 428

There are also potential issues with movement of VL cases across international 429

borders; in particular, the international boundary with Nepal cuts through a VL 430

endemic area, artificially removing some aspects of spatial correlation. Ideally, we would 431

take a regional perspective and also include areas in neighbouring states that have some 432

more sporadic VL reporting. 433

It could be argued that the block-level is too coarse a spatial scale for modelling the 434

spread of an infectious disease. Outbreaks of VL occur on a smaller spatial and 435

temporal scale than has been applied here, therefore cannot be anticipated by this 436

model. The transmission dynamic models which are usually employed for this type of 437

problem can be defined on a village, household or even individual level [26], yet this 438

more detailed picture demands many more assumptions which are difficult to justify in 439
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this context. The sparseness of cases at this point in the elimination process also means 440

that aggregation at a finer temporal scale might lead to issues with parameter 441

estimation. The block is the unit at which control efforts are co-ordinated, disease 442

burden is monitored, and control targets are set, therefore predictions at this level could 443

prove to be a worthwhile compromise while more realistic transmission models are out 444

of reach. With more detailed location data, the spread of disease can be modelled as a 445

point process at the village or household level, potentially giving insight into the size 446

and movement of disease clusters or “hot-spots” over time. This technique has 447

previously been applied to the case of VL [27] and may be possible to extend to a larger 448

study region in the near future, following a recent effort to collect GPS co-ordinates of 449

affected villages across Bihar. 450

In this case the best-fitting model was found to be the best-predicting model. The 451

similarity of prediction and fitting results perhaps reflects the continuity of the 452

processes creating the data. However, consideration of predictive power across the whole 453

range of possible values was key to determining an optimal temporal lag length for 454

short-term prediction. Fit and overall predictive power favoured a high number of lags 455

in order to best capture the spatio-temporal correlation between neighbouring block 456

counts, which appears to contribute to prediction of sudden changes in incidence. 457

However, auto-regression is the dominant model component and appears to be captured 458

by lags up to four months. It would be preferable to specify a different lag length for 459

the auto-regressive and spatial components but this is not currently implemented in the 460

surveillance framework. By inspection of PIT histograms, we were able to select the lag 461

length which balanced overall predictive power with capacity to predict at the upper 462

end of the range. 463

The model selection approach taken in this analysis is pseudo-systematic; it was not 464

feasible to assess every possible combination of model components. Therefore we aimed 465

to home in on a suitable model by adding components which gave the biggest 466

improvement in predictive performance out of a range of likely options. It was found 467

that once the major components were included in some form, further adjustment largely 468

had the effect of redistributing the variation attributed to each component and did not 469

substantially alter fit or prediction. There is only so much information within the time 470

series of cases to feed the model, so predictive power quickly reaches a limit. 471
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The model presented here aims to demonstrate the best that can be done with the 472

minimal information routinely collected by the current programme, but there is 473

evidence that this model still cannot fully account for the heterogeneity in incidence 474

across the region. The lack of geographic and/or demographic covariates beyond 475

population size means that the endemic component in this model is negligible; almost 476

all our information comes from the spatio-temporal correlations, underlining the need 477

for up-to-date data in order to make accurate predictions. Associations between VL 478

incidence and, for example, age and socio-economic quintiles have been 479

demonstrated [12,28], which may give rise to varied endemic patterns at the block level. 480

This unknown variation could in theory be quantified by random effects within this 481

model framework, but convergence issues (likely due to the large number of zero-counts) 482

made this infeasible in practice. 483

The variation in case counts may be better explained by a zero-inflated process, and 484

the extent of zero-inflation will likely become more prominent as elimination is 485

approached. Bayesian hierarchical models can be used to distinguish sources of 486

variation at different levels and have the benefit of accommodating any informal or 487

incomplete understanding of the transmission process within prior distributions for 488

model parameters. These models have until recently been commonly implemented using 489

Markov Chain Monte Carlo (MCMC) [29], which is computationally intensive for data 490

rich in both space and time. They are however becoming increasingly accessible as a 491

tool for inference and prediction, thanks to user-friendly wrappers which take advantage 492

of fast computation using Integrated Nested Laplace Approximations (INLA) [30]. We 493

hope to explore this approach in future work. 494

Conclusion 495

We have demonstrated a framework for forecasting VL incidence at subdistrict level in 496

India which achieves good predictive performance based on the available routinely 497

collected surveillance data. This framework could be used to make short-term forecasts 498

to provide an early indication of where case numbers are higher (or lower) than 499

expected and to support the logistics of the elimination programme. 500
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Supporting information 501

S1 Fig. Districts with unusual incidence patterns resulting in inflated 502

dispersion estimates.

503

S2 Fig. Probability integral transform (PIT) histograms for models with 504

increasing orders of geometric lags from 1 to 12 months (left to right, top 505

to bottom) in the autoregressive component. The final model selection 506

process considered up to four lags.

507
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S1 Table. Fit and prediction metrics for selected model at each stage. The reported AIC is for the fit to training data only, 508

and RPS is of predictions made without updating this fit (i.e. fixed instead of rolling). C2575 and C1090 refer to the 509

coverage of 50% and 80% quantile intervals, respectively, alongside the average interval width in cases. Model no. 42 is the 510

final model.

Model No. END AR NE No. parameters AIC RPS Calibration (p-value) C2575 Avg. width C1090 Avg. width
1 offset + 1 + t 3 65412 0.657 <0.001 0.808 0.907 0.905 2.243
6 offset + 1 + t AR(1) + seas(∼1, S=1) 6 57058 0.493 0.115 0.842 1.124 0.942 2.388
23 offset + 1 + t AR(2) + seas(∼1, S=1) 6 53833 0.455 0.189 0.845 1.021 0.947 2.230
33 offset + 1 + t AR(2) + seas(∼1, S=1) NE(1) + seas(∼1) 9 51675 0.437 0.122 0.855 1.016 0.945 1.966
42 offset + 1 AR(4) + seas(∼1, S=1) NE(1) + seas(∼1) 8 50323 0.420 0.346 0.857 0.982 0.946 1.872
52 offset + t AR(4) + seas(∼1, S=2) NE(1) + seas(∼1) 10 50164 0.419 0.194 0.856 0.981 0.945 1.868

511
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S3 Fig. Blocks with average RPS greater than 2.5 over the test period 512

(Jan 2017 - Dec 2018)

513
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