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Abstract

Understanding the behavior of emerging disease outbreaks in, or ahead of, real-time could help
healthcare officials better design interventions to mitigate impacts on affected populations. Most
healthcare-based disease surveillance systems, however, have significant inherent reporting delays
due to data collection, aggregation, and distribution processes. Recent work has shown that machine
learning methods leveraging a combination of traditionally collected epidemiological information
and novel Internet-based data sources, such as disease-related Internet search activity, can produce
meaningful “nowcasts” of disease incidence ahead of healthcare-based estimates, with most success-
ful case studies focusing on endemic and seasonal diseases such as influenza and dengue. Here, we
apply similar computational methods to emerging outbreaks in geographic regions where no histor-
ical presence of the disease of interest has been observed. By combining limited available historical
epidemiological data available with disease-related Internet search activity, we retrospectively es-
timate disease activity in five recent outbreaks weeks ahead of traditional surveillance methods.
We find that the proposed computational methods frequently provide useful real-time incidence
estimates that can help fill temporal data gaps resulting from surveillance reporting delays. How-
ever, the proposed methods are limited by issues of sample bias and skew in search query volumes,
perhaps as a result of media coverage.

Introduction

Disease outbreaks have been major drivers of morbidity and mortality since the beginning of
recorded history and continue to pose a major threat to humankind. Surveillance of disease out-
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breaks by healthcare systems is key to effective outbreak response. In particular, surveillance data
is necessary to determine the overall scale of response to an outbreak, allocate limited resources
for treatment and prevention, and effectively time interventions to minimize impacts [I]. Epidemi-
ologists use surveillance data to estimate important features of an outbreak, such as morbidity
and mortality burden, case fatality rate, and transmission patterns. In recent years, the use of
mathematical modeling of disease activity and transmission to predict the likely trajectory of an
outbreak and guide intervention strategies has been increasingly explored [11 2, [3] 4].

It is particularly challenging to monitor and characterize unexpected (emerging) disease outbreaks
in regions that have not experienced the presence of a specific pathogen in recent times. Such
emerging disease outbreaks, particularly in their early stages, are characterized by incomplete,
delayed, and biased epidemiological surveillance data [1]. Reporting delays in surveillance systems
inevitably emerge from limited healthcare resources and coverage, as well as the time required
to process lab tests and clean, anonymize, aggregate, and communicate data from distributed
healthcare facilities to central authorities. These reporting delays and issues of missingness are
manifested in epidemiological reports released by the World Health Organization (WHO) and other
health authorities for several recent outbreaks [5] [, [7, 8, [l 10 [11].

Novel Internet-based data sources have the potential to fill some of these temporal “data gaps”
in tracking emerging outbreaks. Research to date on using Internet-based data sources to provide
early estimations of disease activity has shown promising results for endemic diseases in high-
and middle-income countries, including influenza in the United States [12), (13, 14} 15, 16} [17] and
dengue in Brazil, Mexico, Thailand, Singapore, and Taiwan [I8]. Digital epidemiological methods
use mathematical methods to combine Internet-based data — including Google search trends (data
on aggregated Google query volumes) [12, [13], (18], Twitter microblogs [14] 15, 19], online news
aggregators [20], electronic medical records [2I], 22], and crowdsourced disease activity estimates
[23] 24] — with historic epidemiological data to produce real-time estimates of disease activity
(“nowcasts”).

One particularly well-studied method for tracking seasonal and endemic diseases is ARGO, a ma-
chine learning approach based on a dynamic multivariate regularized regression that leverages his-
toric epidemiological data along with real-time generalized online data sources, including Google
search trends, Twitter microblogs, electronic health records, and others [13] 25]. ARGO has been
shown to produce meaningful and accurate national-level disease activity estimates for influenza in
the US and Latin America, and dengue in several middle income countries weeks ahead of reports
issued by traditional surveillance systems [13| 17 [1§].

Adapting digital epidemiological methods like ARGO for tracking emerging outbreaks brings up
a host of new challenges relating to an absence of historical epidemiological data for training and
validation, and a paucity of digital data due to poorer internet coverage. To our knowledge, three
past studies have experimented with Internet-based data for emerging infections: Majumder et al.
[26] demonstrate the use of digital data sources (including Google search trends and news reports) to
provide estimates of Ry, the basic reproductive number, in the absence of real-time epidemiological
surveillance data in the 2016 Latin American Zika outbreak. Chunara et al. [27] use Twitter and
news report data to estimate Ry in the 2010 Haitian Cholera outbreak. In the only work to date
on nowcasting disease incidence in an emerging outbreak with digital data sources, McGough et
al. [28] incorporate information from Google search trends, Twitter, and news reports to produce
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accurate nowcasts of incidence in the 2015-2016 Latin American Zika outbreak 1-3 weeks in advance
of standard epidemiological reports.

Our Contribution. Here we expand on [2§] to evaluate the performance of digital epidemiological
methods for nowcasting five contemporary outbreaks: Yellow Fever in Angola (2016), Zika in
Colombia (2015-2016), Ebola in the Democratic Republic of the Congo (2018-present), Pneumonic
Plague in Madagascar (2017), and Cholera in Yemen (2016-2017). We propose three simple data-
driven predictive models: a linear autoregression that uses historic epidemiological data to produce
real-time disease activity estimates (AR), a linear regression that leverages observed Google query
volumes to estimate disease incidence (GT), and a regression on both historic epidemiological data
and search query data (ARGO). We find that ARGO provides useful estimates of disease activity for
Yellow Fever in Angola, Zika in Colombia, and Plague in Madagascar weeks earlier than traditional
healthcare-based surveillance data. We find that our data-driven methods are less effective at
tracking Ebola in the DRC and Cholera in Yemen, and hypothesize that issues of sample bias and
skew in search query volumes as a result of media coverage may contribute to a poor signal in these
cases.

Results

Motivation for Digital Epidemiological Methods. To motivate the use of digital data streams
to monitor emerging outbreaks, we produced a series of correlations assessing the relationship
between each country’s epidemiological curve and the volume of a simple Google search term
querying the disease of interest (e.g. the search term “Zika” in the case of Colombia). As shown in
Fig. 1, the search volumes appear to track the time series of cases synchronously in most countries,
and we observed high correlations for Angola (r=0.84, Yellow Fever), Colombia (r=0.80, Zika), and
Madagascar (r=0.73, Plague), suggesting the potential utility of digital data-driven epidemiological
models.
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Figure 1: Motivation for digital epidemiological modeling of five emerging outbreaks. In
each case, the outbreak’s epidemiological curve (in grey) is compared with normalized search
volumes for a single related search term in the country of question.

For each disease outbreak, we built three machine learning models to produce (retrospective and
out-of-sample) real-time disease activity estimates that use input information that would have been
available at the time of prediction. Our three models were trained dynamically on a continuously
expanding time window to incorporate new information as it became available and are summarized
as follows: (1) Autoregressive model (AR), that uses only historical cases from n weeks in the
past to predict current cases; (2) Google search trends (GT), a multivariate model that uses only
synchronous Google search terms for prediction; and (3) ARGO, a multivariate model similar to
the one presented in [I3] that combines both autoregressive case information and Google searches
to make predictions. We assessed the predictive performance of each model when compared to
subsequent observations by healthcare-based disease surveillance systems. Details of model imple-
mentation can be found in the Methods section.

Evaluation Assuming Continuous Flow of Available Epidemiological Data. As a reality
check, our first series of models compare nowcasts 1- and 2-weeks ahead of the release of case
reports with the ground truth incidence available retrospectively in weekly epidemiological updates
produced by local health authorities. These models were trained and built with a strategy similar to
the one used in endemic and seasonal outbreaks to make sure our efforts could produce meaningful
disease estimates under the assumption that disease activity reports become available with delays
of one to two weeks and are continuously available. This assumption is not always satisfied in

4


https://doi.org/10.1101/19010470

medRXxiv preprint doi: https://doi.org/10.1101/19010470; this version posted November 2, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

emerging disease outbreaks. Fig. 2 shows these predictions over the full time series of each outbreak,
while Table 2 summarizes the out-of-sample predictive performance across models and countries
as captured by Pearson’s correlation (CORR), root mean squared error (RMSE), and relative root
mean squared error (rRMSE).

Assuming reporting delay of 1 week Assuming reporting delay of 2 weeks
Yellow Fever in Angola

— R

S
S

— ARGO
Ground tnuth

w
=)

New Cascs (Weekly)

Feb 16 Mar 16 Apr 10 May 160 Jun 16 Jul 16 Feb 16 Mar 16 Apr 1o May 16 Jun 16 Jul 16
Zika in Colombia

New Cases (Weskly)

Sepl5 Octl15 Novls Decl5 Janlo Feblo Marl6 Aprlo Maylo Junlo Jullo Sep15 Oct15 Nov 15 Decl15 Janlo Febl6 Marlo Aprl6 Mayle Junle Jul 1o
Ebola in the DRC

)
May 18 Jun 18 Jul 18 Aug 18 Sep 18 Oct 18 Nov 18 Dec 18 May 18 Jun 18 Jul 18 Aug 18 Sep 18 QOct 18 Nov 18 Dec 18

New Cases (Weekly)

Plague in Madagascar

o
3

New Cases (Daily)

0
Aug 17 Sep 17 Oct 17 Nov 17 Aug 17 Sep 17 Oct 17 Nov 17

Cholera in Yemen
50000
25000

0
Nov 16 Dec 16 Jan 17 Feb 17Mar 17 Apr I7May 17 Jun 17 Jul 17 Aug 17 Sep 17 Oct 17 Nov 17 Nov 16Dec 16 Jan 17 Feb [7Mar 17 Apr 17May 17 Jun 17 Jul 17 Aug 17 Sep 17 Oct 17 Nov 17

New Cases (Weekly)

Figure 2: Series of plots comparing the nowcasts produced by three digital epidemiological
models (available in real-time) to “ground truth” epidemiological data (available at a delay).
The left column shows how models perform assuming a 1-week reporting delay in the tradi-
tional surveillance system; the right columns shows model performance assuming a 2-week
reporting delay.
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Yellow Fever Zika Ebola Plague Cholera
Delay (weeks) 1 2 1 2 1 2 1 2 1 2
AR 0.879 0.54 0.92 0.78 0.57 0.19 0.91 0.88 0.98 0.93
CORR | @T 0.79 0.80 0.78 0.73 0.582 0.50 0.74 0.68 0.65 0.59
ARGO | 0.882 | 0.69 0.93 0.82 0.581 0.17 0.92 | 0.84 0.99 0.94
AR 17.60 62.65 644.24 1176.74 | 15.252 28.11 8.45 11.65 | 4224.88 9156.57
RMSE GT 17.66 17.63 | 997.45 1072.01 | 16.98 18.13 | 13.60 | 15.38 18532.22 | 19486.67

ARGO | 13.22 | 20.42 542.39 | 823.34 | 15.246 | 27.41 7.97 11.85 3973.06 | 8497.43

AR 0.55 2.10 0.31 0.54 0.81 1.40 0.45 | 0.53 | 0.23 0.48
rRMSE | GgT 0.56 0.59 0.58 0.50 0.90 0.90 72 0.70 1.01 1.03
ARGO | 0.42 | 0.69 0.26 0.38 0.81 1.37 0.42 | 0.54 0.22 0.44

Table 1: Evaluations of three computational models (AR, GT, and ARGO) across five
outbreaks, based on correlation (CORR), root mean squared error (RMSE), and relative root
mean squared error (rRMSE). The result of the best-performing model for each prediction
scenario and metric is bolded. It is important to note that the units of the error (RMSE)
are different given that the magnitude of each outbreak was different. The relative error,
however, is comparable across outbreaks.

We found that, based on RMSE and correlation, digital epidemiological models that incorporated
Google information (GT and ARGO) led to reasonable disease estimates that were within range
of the observed disease activity. Specifically, GT and ARGO outperformed a naive autoregressive
approach (AR) in all outbreaks and prediction horizons besides plague, in which a pure AR model
performed best for 2-week delays. In general, ARGO exhibited the lowest RMSE and highest cor-
relation in a majority of countries and prediction horizons, though Google data alone improved
predictions in the case of 2-week delays in two of the outbreaks (Yellow Fever and Ebola). We note,
however, that nowcast models were generally not skillful enough to track Ebola in the DRC, which
exhibited substantially lower predictive performance compared to the other countries (correlation
range: 0.17-0.58). Moreover, we observe that the ARGO method does not improve significantly
upon a naive autoregressive approach for tracking both Ebola in the DRC and Cholera in Yemen.

To assess the predictive power of the Google search terms used to nowcast cases each week and
visualize changes in predictive power over the course of the epidemic, the size of ARGO model
coefficients for each week of prediction are shown for each country in Figs. 3, S1-S5. Because the
models are dynamically trained on a 1-week expanding time window, the predictive power of the
variables are seen to fluctuate over the weeks of the outbreak, with many search terms appearing
most important for prediction in early stages of the outbreak.
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Feature Importances for Nowcasting Plague in Madagascar with ARGO (Assuming One Week Reporting Delay)
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Figure 3: Evaluating feature importances (coefficients in linear regression) in ARGO for
nowcasting Plague in Madagascar assuming a reporting delay of one week. Since the model
is trained dynamically, feature importances shift from week to week. Note that the autore-
gressive term is extremely important, but information from Google search trends is also used,
particularly early on in the outbreak.

Evaluation Based on Publicly Released Reports. The first evaluation approach assumes that
the ground truth (weekly cases) are reported accurately within 1-2 weeks of occurrence, which is
rarely the case in emerging outbreaks in which surveillance may be constrained by limited resources.

Here, we evaluate the performance of the same three models (AR, GT, and ARGO) under more
realistic conditions, using partial and unrevised case reports as they were released in real-time (Fig.
3). In contrast to the first approach, here models are trained on a potentially (and frequently)
unreliable ground truth, since future revisions of past disease activity may continually update case
reports that are released at any given point. We assessed the feasibility of these models in achieving
an estimate of disease activity when there are no epidemiological data available in real-time. This
analysis was performed on all 7-20 reports for each of the five disease outbreaks; a selection of case
studies are presented here and full charts are included in Figs. S6-S10.

As shown in Figure [d] we observed that, even in these realistic circumstances, ARGO produced
meaningful and within-range disease activity estimates filled the temporal gap introduced by de-
layed availability of epidemiological reports. Moreover, when compared to the GT and AR models,
ARGO appears to most closely estimate the cases that would eventually be reported throughout
each outbreak.
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Figure 4: Summary of evaluation approach based on the historical publicly released reports.
In each figure, the grey filled area is the ground truth data (available at, or after, the end
of the outbreak). The black line shows surveillance data released in the report at the time
of publication (the date of publication is denoted by the dashed black line), and the colored
lines show the real-time predictions of our three models. Here, figures are included for three
epidemiological situation reports for each outbreak; more plots with the same evaluation
task can be found in Figs. S9-12.
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Discussion

We have shown that machine learning techniques that combine real-time disease-related Google
search activity with (delayed and frequently incomplete) epidemiological information available dur-
ing emerging outbreaks can provide useful real-time insights on the likely trajectory of disease
transmission. By assessing model predictions in (i) a setting that assumes the continuous avail-
ability of delayed epidemiological information (reporting delays of 1-2 weeks with no case revision)
and (ii) a set of realistic historical settings where delayed information was unavailable or unreliable
(reporting delays of variable week lengths and with case revisions in subsequent epidemiological
reports), we demonstrate that incorporating disease-related Google search information improves
predictions across several disparate disease and country contexts.

In particular, we demonstrate, for the first time, how a digital nowcast model like ARGO would
be deployed in real-time during multiple distinct emerging disease outbreaks with reporting delays
and surveillance revisions. We show specifically the insights that would have been accessible in
real-time should our approaches have been implemented during the emergence of these outbreaks.
Consider, for example, the real-time disease predictions for the 2017 plague outbreak in Mada-
gascar shown on the right-middle panel in Fig. 4. The black line, which indicates the number of
known reported cases at the time of release of an epidemiological report (Oct. 16, 2017), suggests
a sharp decline in cases in October. By the end of the outbreak, it would become clear that there
was no decrease in cases in October (ground truth cases produced at the end of the outbreak are
shown in gray shading), an insight which was not available in real-time, but which was captured by
the Google-based model (GT, green line). At the very least, our predictions have the potential to
signal to health officials when outbreaks are not yet over, when cases may be increasing, and when
cases may be decreasing, supporting key decision-making on large-scale treatment and prevention
measures. We find that the pattern demonstrated in Madagascar generalizes to other diseases and
regions: in all five of the diseases we analyze, we find that epidemiological data can be effectively
supplemented in real-time with digital epidemiological methods.

In addition to showing the potential utility of real-time predictions trained on unreliable or incom-
plete epidemiological data, our analysis confirms the findings of other digital epidemiology studies
that demonstrate the added value of combining Google-based predictions with autoregressive case
information [13| (18] [16], 28]. Indeed, the ARGO coefficient heatmaps in Figs. 3, S1-S4 reveal that
the epidemiological case information from previous weeks has consistently strong predictive power
over the course of the outbreak, while the importance of Google predictors fluctuates over time
and appears to be most useful in the earlier stages of the studied outbreaks. The phenomenon
that past cases are intrinsically linked to future cases is a common feature of infectious disease
outbreaks: here, we leverage this fact to improve the accuracy of our predictions, evidenced by the
fact that ARGO generally outperforms the Google-only and autoregressive models across diseases
and prediction horizons. Further, our findings suggest that the relative feature importance of au-
toregressive information and GT data is dependent on the timescale of disease transmission (serial
interval). Specifically, we find that GT data appears to posses greater predictive power in diseases
with short serial intervals like influenza, and less predictive power in diseases like Cholera, where
transmission time-scales are typically longer.
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While there are many promises of using Google data to track and predict outbreaks, there are
several limitations to using Google data for epidemiological purposes. In the context of emerging
outbreaks, these include bias in the sample of Google users and the bias introduced as a results
of media coverage. Google users are a non-random sub-sample of the population, and this bias
is particularly significant in the context of most emerging outbreaks, which occur in developing
regions where Internet penetration is relatively low and in which there are significant rich-poor and
urban-rural divides in Internet access. As a result, it is possible that much of the disease-related
Google search activity may occur in a country’s capital, while cases of the disease may occur all
over the country or in a specific region with low internet penetration. Similarly, which search terms
are and are not selected could bias affect performance. Exploration of Google search activity on
sub-national levels could help provide insight into this issue. This bias will likely become less rele-
vant as global internet penetration in rural regions increases.

Additionally, media coverage may confound the interpretation of our models. In using Google
query volumes as a proxy for disease activity, it may be the case that queries come from individuals
who are infected or suspect infection. However, we inevitably also receive signals resulting from
high media coverage (often pervasive during novel and unexpected outbreaks), which prompts large
numbers of people in the affected country to search for disease-related terms out of curiosity, seeking
news articles. Consider the graph of search volumes for the term “peste” (French for “plague”) in
Madagascar in Fig. 1: there is a sharp spike in volumes in mid-October, which appears anomalous
to the incidence curve. It is very reasonable to hypothesize that this spike is the result of the first
media coverage of that outbreak.

To evaluate how media coverage may skew Google search volumes, we qualitatively compare signals
in Google searches and news report volumes with epidemiological time series. Figure 5 compares
the volume of news articles (obtained from the GDELT Global Knowledge Graph [29]), Google
search trends, and reported cases side by side for each outbreak. Based on this analysis, it is
plausible that ARGQO’s weaker performance on Ebola in the DRC and on Cholera in Yemen are
caused by premature spikes in Google searches. These premature spikes are correlated with early
spikes in news coverage, and these early spikes are not found for the other outbreaks where ARGO
had better performance. It is likely that hype caused by media coverage biases predictions based
on Google search volumes in these analyses.
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Comparing Epidemiological, GT, and News Alert Signals
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Figure 5: Comparison of signals in ground-truth epidemiological data, Google search query
volumes, and news alerts data from the GDELT Global Knowledge Graph. Note how media
coverage (as captured in the news alerts time-series) may bias predictions based on the GT
data.

Here we have shown how Internet-based data streams can be mined to monitor the progression
of emerging outbreaks in low-income settings where traditional surveillance may lag substantially
or be rendered inaccurate due to backfilling. We have shown that digital epidemiological methods
like ARGO perform well for nowcasting plague in Madagascar, Yellow Fever in Angola, and Zika
in Colombia, but are less effective at tracking Cholera in Yemen and Ebola in the DRC. The poor
performance for the Ebola and Cholera outbreaks could be linked to a combination of low internet
coverage, intense response to news alerts, and rapid shifts in disease dynamics due to population
unrest and violence. Future work should focus on the pathogen and population conditions (digital
coverage, symptoms specificity, serial interval, mode of transmission, behavior changes, and health
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interventions) that can make or break digital surveillance in low-income settings, and how to adjust
digital surveillance signals for intense media coverage and other exogenous forces.

Materials and Methods

Data Sources

We digitized daily or weekly national case counts from epidemiological situation reports for out-
breaks of Yellow Fever in Angola (Jan. 3 - July 31, 2016), Zika in Colombia (Aug. 9, 2015 - July
10, 2016), Ebola in the Democratic Republic of the Congo (April 30 - Dec. 31, 2018), Pneumonic
Plague in Madagascar (Aug. 1 - Nov. 2016), and Cholera in Yemen (Oct. 30, 2016 - Nov. 26,
2017). We also downloaded country-specific time-series of Google query volumes from the Google
Trends API for the same time periods.

Epidemiological Data — The following table summarizes the sources of epidemiological data
and key descriptive statistics on the epidemiological dataset for each of the five outbreaks analyzed.
For each dataset, we consider the final epidemiological report to be the “ground truth” recording
the true onset date for each of the cases in the outbreak; the earlier reports are considered es-
timates and subject to revision. Note that this assumption requires a larger leap for Ebola and
Cholera than for the other outbreaks analyzed, as these outbreaks were ongoing at the time of data
collection whereas the other outbreaks were completed. Finally, note that, due to issues of data
availability, in certain outbreaks the dataset consists of only laboratory-confirmed cases, while in
other outbreaks the dataset contains both confirmed and probable (or suspected) cases.

Table 2: Epidemiological Data Sources

Outbreak Time Period Temporal Total Cases Reports Source
Granularity

Yellow Fever in  Jan. 3 - July Weekly 879 (confirmed) 11 Digitized from plots in PDF situation

Angola 31, 2016 reports released by WHO [5]

Zika in Colom- Aug. 9, 2015 -  Weekly 91,156 (suspected) 7 Digitized from plots in PDF epidemio-

bia July 10, 2016 logical updates published after Feb. 17
(only updates with Colombia-specific
data are included) [6]

Ebola in the Apr. 30 - Dec.  Weekly 628 (suspected) 17 Digitized from plots in PDF situation

DRC 31, 2018 reports released by the WHO [7]

Pneumonic Aug. 1 - Nov. Daily 1,857 (confirmed) 12 Digitized from plots in PDF situa-

Plague in 25, 2016 tion reports released by the IPM [9]

Madagascar and WHO [8] (only reports containing
case counts specifically for Pneumonic
Plague are included)

Cholera in  Oct. 30, 2016 - Weekly 973,802 (sus- 13 Digitized from plots in PDF situation

Yemen Nov. 26, 2017 pected) reports released by WHO AFRO [10]
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Google Search Trends Data — Time-series downloaded from Google search trends [30] describe
the number of people searching for a specific keyword, in a specified geographic region, each day,
week, or month (normalized to a 0 - 100 range). Google search trends data was extracted for each
outbreak for the same time period as the epidemiological data, on the same temporal granularity as
the epidemiological data, and limited to searches in the country of the outbreak. To avoid forward-
looking bias, it is standard to select keywords by using Google correlate to find search terms that
correlate well with the epidemiological time-series in a training period (which is then not included
in the evaluation period) [13| [I8] 28]. However, since Google correlate data is not available for any
of the countries we analyze, we select a few simple keywords for each outbreak that are clearly
related to the disease in question. In certain cases, there is not enough Google search information
to yield meaningful results in the sample available through Google search trends: for example, we
identified “fievre hémorragique” and “fievre hemorragique” as relevant search terms for Ebola in
the DRC, but were unable to include them due to a lack of available search signal. Similarly, we
experimented with including “diarrhea” and the Arabic versions of “cholera” and “diarrhea” for the
outbreak of Cholera in Yemen, but did not find an improvement in signal over using only “cholera”
in English.

Table 3: Search Terms by Outbreak

Outbreak Search Terms

Yellow Fever in Angola  ‘yellow fever’, ‘febre amarela’

Zika in Colombia ‘zika’, ‘zika sintomas’, ‘el zika’, ‘sintomas del zika’, ‘virus zika’, ‘zika colombia’, ‘el zika sintomas’,
‘el sica’

Ebola in the DRC ‘ebola’

Plague in Madagascar ‘plague’; ‘pesta’, ‘peste’, ‘peste pulmonaire’, ‘peste madagascar’

Cholera in Yemen ‘cholera’

News Alert Data — News alert data was obtained from the GDELT Global Knowledge Graph
in the form of fractions of daily raw article counts that are relevant to a query. GDELT is a large
and regularly updated open database and platform that monitors the world’s news media in over
100 languages [29].

Models

We explored three simple data-driven nowcasting models, emphasizing model simplicity as there
is often not enough data available in emerging outbreaks to train a more complex model.

Linear Autoregression (AR) — An autoregressive model uses a linear combination of past
observations of disease incidence (“autoregressive terms”) to provide an estimate for synchronous
incidence. Here, we choose for simplicity to use only the single most recently observed autoregressive
term, so the linear autoregression is a univariate linear regression:

Y = Byr—n + « (1)

The linear regression is optimized over available training observations to minimize mean squared
error loss. The time horizon of prediction i depends on the reporting delay in each outbreak; for
instance, if there is a two-week reporting delay in a surveillance system, the autoregressive term
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will be the 2-week lag, so h = 2.

Regression on Google Query Volumes (GT) — Our second model is a multivariate regres-
sion mapping synchronous data on Google query volumes for selected search terms to estimated
synchronous incidence. Depending on the number of search terms selected for each outbreak, this
regression contains 1-8 variables.

Yt = YgeaBgg + (2)

We adopt a L1 regularization to prevent overfitting and provide automatic feature selection,
with the regularization parameter selected via 5-fold cross validation on the training set from
{1075,1074,1073,1072,10~!}. The LASSO regression is optimized over available training obser-
vations to minimize mean squared error loss.

Autoregression and Regression on Google Query Volumes (ARGO) — ARGO combines
the AR and GT methods in a single multivariate regression including both a single autoregressive
term (the most recently observed incidence value) and a set of synchronous Google query volumes.

Yt = Bytfh + ZgeGﬁgg +a (3)

As in GT, ARGO is made more robust with L1 regularization, with the regularization parameter
selected via 5-fold cross validation on the training set from {1075 ,107%,1073,1072,10!}. The
ARGO method used here is a somewhat simplified version of the linear regression on autoregressive
data and synchronous Google query data originally developed to nowcast influenza in the United
States [13].

Evaluation

We had access only to publicly released epidemiological situation reports, which are typically
released somewhat sporadically, exhibiting long reporting delays and gaps where no information is
available at all. To capture two possible data-access scenarios, (1) an ideal scenario in which final
case numbers are reported 1-2 weeks after they occur, and (2) a more realistic scenario in which
case numbers are reported with some delay and possibly corrected at a later date, we adopted two
separate methods of evaluation. The first evaluation method assumes a continuous flow of correct
epidemiological data and a set reporting delay of one to two weeks. The second method reflects
the reality of many epidemiological reporting systems by using the data presented in publicly
released epidemiological reports.

Evaluation Assuming Continuous Flow of Epidemiological Data — The first form of
evaluation uses only a single time-series of epidemiological data; the “ground truth” (taken as the
last epidemiological report on the outbreak publicly released). We assumed a h-week reporting
delay and experiment with h taking on values of 1 and 2. Thus this evaluation method represents a
near-ideal data access scenario in which case counts, once reported, are never adjusted or corrected.
We adopted dynamic training (also known as online learning or walk-forward validation) so that,
when predicting each week’s incidence, each of the models is trained on all the data available up to
that week. Models were then evaluated over the entire time-series based on Pearson’s Correlation
Coefficient (CORR), root mean squared error (RMSE), and relative root mean squared error
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Evaluation Based on Publicly Released Epidemiological Situation Reports — The

ideal data-access scenario described above is not always the case in emerging outbreaks, which
are characterized by reporting gaps and revisions of case counts after initial publication. The
second method of evaluation recognizes this challenge, and compares the accuracy and timeliness
of epidemiological reports that were publicized in each outbreak with the accuracy and timeliness
of our three digital epidemiological models. We first empirically estimated the average reporting
delay for each outbreak as the average number of days or weeks from initial reporting to a stable
count of cases for a given day or week of the outbreak in the epidemiological reports. To account
for small human errors in reporting and digitization of reports, we defined a “stable” case count as
one that does not change by more than 1% from one week to the next. In practice, we observed
a 2-week reporting delay for all five outbreaks presented. Note that while this empirical method
requires several weeks of published epidemiological reports, a healthcare system’s reporting delay
could likely be estimated a priori by its managers.

For each report released during each outbreak, we trained the three listed digital epidemiological
models on the data that was stable in the report (according to the calculated reporting delay).
We trained models for every time horizon between when stable data in the report ceased to be
available and when the next epidemiological report was posted (as a way to evaluate what utility
digital epidemiological models would have had at the time). Since in much of this period there was
no ground truth data available, there is no simple way to evaluate the quality of our models in
comparison to traditional surveillance methods for this evaluation scenario. However, we present
the graphs of this evaluation method for qualitative analysis.

Tools and Code Availability

All models and evaluation metrics are implemented in Python 3.6 with scikit-learn 0.19.1. All
scripts and data used in this study are publicly available at https://github.com/emilylaiken/
outbreak-nowcasting
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Figure S1: Feature importance heatmaps for nowcasting Yellow Fever in Angola with ARGO.
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Figure S2: Feature importance heatmaps for nowcasting Zika in Colombia with ARGO.
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Figure S3: Feature importance heatmaps for nowcasting Ebola in the DRC with ARGO.
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Figure S4: Feature importance heatmaps for nowcasting Plague in Madagascar with ARGO.
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Figure S5: Feature importance heatmaps for nowcasting Cholera in Yemen with ARGO.
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Additional Comparisons of Epidemiological Situation Reports and
Digital Epidemiological Models

Digital Epidemiological Models vs. Reported Values - Yellow Fever in Angola
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Figure S6: Comparing the accuracy and timeliness of publicly released epidemiological up-
dates from the outbreak of Yellow Fever in Angola to the accuracy and timeliness of our

digital epidemiological models.
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Digital Epidemiological Models vs. Reported Values - Zika in Colombia
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Figure S7: Comparing the accuracy and timeliness of publicly released epidemiological up-
dates from the outbreak of Zika in Colombia to the accuracy and timeliness of our digital
epidemiological models.
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Digital Epidemiological Models vs. Reported Valucs - Ebola in the DRC
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Figure S8: Comparing the accuracy and timeliness of publicly released epidemiological up-
dates from the outbreak of Ebola in the DRC to the accuracy and timeliness of our digital
epidemiological models.
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Digital Epidemiological Models vs. Reported Values - Pneumonic Plague in Madagascar
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Figure S9: Comparing the accuracy and timeliness of publicly released epidemiological up-
dates from the outbreak of Plague in Madagascar to the accuracy and timeliness of our
digital epidemiological models.
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Figure S10: Comparing the accuracy and timeliness of publicly released epidemiological
updates from the outbreak of Cholera in Yemen to the accuracy and timeliness of our digital
epidemiological models.
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