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Abstract: 
Objectives  
This in vitro study compares mechanical (MHV) and bioprosthetic (BHV) heart valves for high amplitude 
short duration regional flow velocities (RFV) near valve closure. 
 
Background  
We previously tested several clinical and prototype valves and observed RFV at levels which may be 
related to a dimensionless thrombogenic potential (TP).   
 
Methods  
A total of four valves were tested in aortic and mitral sites under pulsatile circulation in a pulse 
duplicator. Valves included both clinical models and experimental prototypes. An optical approach 
measuring projected dynamic valve area (PDVA) to gauge valve motion was implemented. Pulsatile 
pressures and flow rates were measured by conventional techniques and a quasi-steady flow tester was 
used to measure valve leakage. RFV was derived using time-dependent volumetric flow rate/PDVA. 
Since flow velocity and fluid shear force are related through flow velocity gradient, TPs for valves that 
achieve near closure during the forward flow deceleration phase were determined as RFVs relative to the 
control mechanical valve RFV value of -126 m/s.   
 
Results 
TP is dimensionless and ranged between -0.45 and +1.0. Negative TPs arise when transient rebound of 
valve occluders is accompanied by water-hammer phenomena. Positive TPs occur during the decelerating 
forward flow. Bioprostheses had lowest TP transient of 0.15 with exception of a mock-transcatheter aortic 
valve (mTAVI) that incorporated by design a trivial perivalvular leak (~1.35 ml/s). This device 
demonstrated a remarkably high transient TP of 0.95. The control mechanical valves had the highest TP 
of 1.0. The study implicates TP transients near mechanical valve closure, and not forward or non-flow 
phases, as primary to shear induced activation of the coagulation cascade. 
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Conclusions 
 
Our data reveals distinct TP profile differences between valve models. If verifiable, the design of future 
valves may utilize currently available experimental tools to determine TPs resulting in advanced devices 
with significantly reduced TP. 

 
I. Introduction and Background 

 
Development of prosthetic heart valves is replete with innovative designs and materials intended to 
provide adequate hemodynamic performance and long term durability.  Although early ball-in-cage 
valves from Starr, Harken and Smeloff partially met these requirements, an incidence of thrombotic and 
thromboembolic events stimulated investigation into novel geometries and new materials. Carpentier, 
Hancock, Ionescu and others devised bioprosthetic valves that mitigated the incidence of thromboembolic 
complications albeit at the expense of extended durability. Progressive modifications in mechanical valve 
geometry and enhancements of tissue preservation methodology have not yet resolved these longstanding 
shortcomings that vex prosthetic valve technology nearly 60 years later. 
 
The earliest published data from investigation into sources of thrombogenicity in mechanical valves was 
the work of Davey [1] and Smeloff [2] in 1966, in which cyclic flow behavior was visualized by high-
speed cinematography in a pulse duplicator with a transparent chamber and a sheet of light flow technique 
using aluminum flow tracer particles in transparent test fluids.  Flow patterns adjacent to an early model 
Starr-Edwards valve ball occluder were identified and multiple retrograde impulses were observed at 
valve closure. Although the investigators speculated that these events were associated with high shear, 
equipment of that era was incapable of measuring the retrograde flow velocities associated with occluder 
rebound phenomena.  More recently, computational methods employed to examine flow patterns, flow 
velocities, and pressures associated with contemporary mechanical and bioprosthetic valve function have 
generated extensive information on flow but as yet have not proposed a development pathway to 
eliminate thrombogenicity in the former and extend durability in the latter [e.g. 3-5]. 
 
In prior publications, [5-10] we hypothesized that mechanical valve occluder closing behavior was 
implicated in the thrombogenic discrepancy between mechanical and bioprosthetic valves. This work 
required innovative adaptations to our pulse duplicator to allow measurement of prosthetic valve dynamic 
area (PDVA). These adaptations provided crucial insight into the contribution of occluder oscillation, 
cavitation and occluder rebound that contribute in the complex genesis of valve thrombosis. Subsequent 
pulse duplicator adaptations in 2011 included a unique electro-optical subsystem that we referred to as 
Leonardo [6]. An unanticipated benefit of adding the Leonardo sub-system was that it facilitated 
determination of spatially averaged flow velocity in immediate proximity to a test valve. We found that 
transient RFVs occurred often near MHV closure and proposed it as a proxy for rapidly changing 
(transient) shear forces. Blood shear forces initiate multiple biochemical and functional reactions known 
to promote formation of micro-thrombi aggregates that may remain locally adherent or embolize [11-18]. 
Test results from this work provided stimulation to define geometry for a mechanical heart valve (MHV) 
with blood damage reduced to tissue valve levels and we subsequently extended this experimental 
methodology to study thrombogenic potential in transcatheter aortic valve replacement (TAVR) devices 
[8].  
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II. Methods 
A) Test Apparatus 

 
Since 2004, our valve testing has been conducted in an extensively cited commercial in vitro test flow 
system [6-10]. Typical simulation conditions included: pulse rate 70 beats/min; pressures ca.120/80 
mmHg; and cardiac output 5 litres/min. Basic test methodology is depicted in Figure 1. The current photo 
sensor/amplifier in use was upgraded in 2011 yielding improved specifications in subsequent reports [7-
10]. Valves were tested in pulsatile and quasi-steady pressure/flow systems and PDVA was obtained. 
Time-dependent RFV was derived by dividing the volumetric flow rate by the PDVA (volumetric flow 
rate/PDVA). A separate apparatus (model LT8991, ca. 2008) provided accurate measurement of small 
closed valve leakage rates under quasi-steady pressure/flow conditions. Such measures were used to 
estimate valve leakage area [8].  
 
The Leonardo modified pulse duplicator originally adapted in 2011 has innovative features to measure 
PDVA from backlit valves. This unique electro-optical prototype remains in current use with improved 
spatial and temporal resolution capability (i.e., 0.001 cm2 and 1μs) compared with that originally reported 
in 2004 [6]. Test results from this prototype system were recently used to compare numerical simulations 
for contemporary porcine tissue and bovine pericardial bioprosthetic heart valves and with data from a 
similar independent pulse duplicator in which excellent agreement was noted [4].  

A Visco-elastic Impedance Adapter (VIA model 7991, sn 44) was designed by Scotten in 1997 to model 
adjustable ventricle visco-elastic and isovolumetric functionality.  Jennings et al. reported use of VIA in 
the Leeds valve tester for studying stentless porcine valves [19]. This physiological trait coincides with 
valve opening and closure, and influences ventricular pressure rates (dp/dt), the propensity for 
microbubbles, high intensity transient signals (HITS), cavitation, acoustic emissions, and possible vortex 
formation. The test fluid used was saline (viscosity 1 mPa·s; density 1.0 g/ml). Blood analog fluids such 
as saline-glycerin are problematic requiring temperature control to maintain stable optical and viscous 
properties. Other authors, testing a St. Jude Medical, (SJM) RegentTM valve, have shown that fluid 
viscosities ranging from 1.1 - 3.1 mPa·s have a negligible effect on valve-closing PDVA, but reduce the 
backflow rate by ca.14%. 

Accurate measurement of closed valve leakage was obtained in a quasi-steady pressure/flow apparatus 
calibrated with known small orifice areas described previously [7-9]. Valve leakage areas assigned for 
pulsatile flow test data analysis were; 0.0178 cm2 (SJM); 0.003 cm2 (BV3D); and 0.012 cm2 (control 
valve -Edwards pericardial). 

 
B) Leonardo 

 
Since only fleeting glimpses of prosthetic valve motion can be seen by the unaided eye, complex and 
costly high-speed imaging techniques are required to visualize quantitative details. Leonardo mitigates 
this problem through a simple solution that measures valve motion (see Figure 1). As an integral 
component of our model heart, a photo detector continuously measures the amount of light that transits 
the test valve (either aortic or mitral) during cyclic function. This approach provides important data about 
valve motion. An inherent advantage of monitoring valve motion (PDVA) with Leonardo is that all 
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signals are analog in close synchronization prior to acquisition with an analog to digital (A-D) converter 
[6]. 
 

C) Calibration 
 
Two types of light sensors are useful for measuring high speed PDVA data from valve experiments. Data 
collected here and previously [6-10] utilized an analog-type light sensor (photodiode) calibrated with 
circular reference orifice areas placed temporarily in the aortic or mitral test site. Measured output 
voltages had exceptional linearity vs. geometric orifice areas. Specification section lists typical 
calibrations per linear regression equation fit. Alternate methods have employed either CMOS or CCD 
digital image chips where area-to-chip pixel scaling estimates can be made to calibrate PDVA vs. time 
data [4, 20]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Optical approach gauges aortic (or mitral) prosthetic heart valve function with 

occluder motion quantified as projected dynamic valve area (PDVA). 
 

D) Specifications [7] 
 
• Temporal resolution (based on voltage step waveform response, rise time from 10% to 90% 

amplitude) ≈1.04 μs; 
• Bandwidth ≈ 0.35/risetime = 0.35/1.04μs = 337 KHz; 
• Spatial area resolution (closed valve), 0.001 cm2 (n=10 cycle average); 
• Telecentric lens maintains constant magnification ≈0.16 x; 
• Working distance ≈18 cm (AORTIC); ≈19 cm (MITRAL); 
• Perspective error <0.3% (depth 15 mm); 
• Spatial sensitivity variation <6%; 
• Typical site dependent linear regression calibrations are: 
   y=0.00128x, with R2 =0.99988 (AORTIC); 
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   y=0.00132x, with R2 =0.99959 (MITRAL); 
• LED back light source (diffuse red): 

Wavelength 625±15 nm 
Uniformity 99.24% 
Luminance 5,780 cd/m2 

 
E) Regional Flow Velocity and Shear Force 

 
Regional flow velocity magnitude shown in Figure 3 can be considered a shear force surrogate associated 
with valve TP. Since flow velocity and fluid shear are related through flow velocity gradient, a proxy for 
valve thrombogenic potential may be inferred by flow velocity. Although TP cannot be assumed to 
increase linearly with flow velocity it is considered proportional to the inferred regional flow velocity 
(m/s) and independent of fabrication materials. The regional flow velocity determined by Leonardo must 
be appreciated as an estimated spatial average quantity (m/s) and not a site specific quantity. Since flow 
velocity gradients cannot be obtained with Leonardo, neither can shear force values (dyne/cm2) from 
measured RBVs (m/s).   
 

F) Derivations and PDVA Synchronization Adjustment 
 
Valve regional flow velocity (RFV) is equal to volumetric flow rate, divided by the PDVA (flow 
rate/PDVA) and is an estimate of the regional instantaneous spatial average. 
 
Analog signal bandwidth differences between PDVA and transvalvular volumetric flow rate were 0-337 
KHz vs. 0-100 Hz, respectively. As the PDVA signal preceded the other signals by -2.5 ms based on step 
signal response, a phase adjustment between the PDVA and the other signals was required. Accordingly, 
post experiment, we shifted the acquired PDVA signal 1 data acquisition interval of -3.4 ms [7]. 

 
G) Violin Plots with Relative Flow Velocity Scaling 

 
Although “Violin” plots have not previously been utilized for presentation of in vitro valve test results, 
they attracted our attention as a powerful graphic technique to present voluminous quantitative or 
qualitative data. Sample Figure 2 depicts TP data density near valve closure and reveals different peaks, 
their position, and relative amplitudes. Here, split-violin plots benefit from superior spatial efficiency 
compared to full violin plots.  
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Figure 2: Sample split-violin plot depiction of inferred dimensionless valve thrombogenic potential (TP). 
Shaded margin ΔY represents probability of recurrence of an inferred TP (relative to an RFV of -126 m/s). 
All data points can be reduced to a split-violin shape with each configuration representing an independent 

data set and coverage of all data points. Single data points with minimum density depict baseline data 
values. 

 
The broader split-violin region(s) convey greater recurrence of TP data values whereas narrower 
regions(s) contain fewer recurrences. TPs for valves during the forward flow deceleration phase on the 
verge of closure were determined as RFVs relative to a control mechanical valve RFV value of -126 m/s.  
RFV was derived using time-dependent volumetric flow rate/PDVA. Since flow velocity and fluid shear 
force are related through flow velocity gradient, TP of valves may be a useful surrogate for transfer of 
shear forces to blood cells and for coagulation activation potential. 

 
I)  Valve thrombogenic potential is consistent by multiple determinations  

 
Since 2011, our investigations utilizing Leonardo have compared TP of test valves to controls. Over time, 
alternate metrics for assessing TP evolved (Table I). For example, a widely used clinical MHV (SJM) has 
consistently exhibited high TP compared with controls regardless of determination method [6-10].  Figure 
3 shows that the inferred TP for the SJM aortic valve is high (1.0) for all the determination methods listed 
in Table I. All determinations utilized valve motion as a component metric for obtaining TP [6-10].   

Table I: Determination of TP for SJM aortic test valve -example. 

Thrombogenic Potential (TP) Quantity References 
Peak Backflow Velocity, m/s -235 6 
Thrombogenic Potential Index, TPI 3.9 10 
Split violin, maximum TP  1.0 (Present study) 
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Figure 3: Inferred dimensionless TP of valves (based on near closure RFVs relative to -126 m/s). 
Illustrated valve BV3D shown in full open and closed positions. Negative data includes water hammer 
phenomena and occluder rebound RFVs except for valve BV3D. This early prototype valve is currently 
pending fabrication using refined prototype materials and geometry. Over the valve closing period (~495 
ms, milliseconds), a total of 150 RFV data points for each of 10 consecutive cycles were acquired per 
experiment. Vioplot R software analyzed 10,500 data values to create full-violin plots. Subsequently, 
Visio software was used to trace, scale, and cut-in-half the full violin plots produced by Vioplot R to 
create the split-violin plots shown here. 
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Vioplot R* software package and Visio 2002 ** have been utilized to create the split-violin plots used in 
this study. Observers will appreciate that wider violin shape regions demonstrate show more probable 
flow velocities than those in the narrower zones.  
*R Core Team (2019) R: A language and environment for statistical computing. R Foundation for 
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ 
** Microsoft, Redmond, WA USA 
 

III. Results and Discussion 
 
Flow dynamics near valve closure cause rapidly changing PDVA and interrelated flow profiles to 
progressively constrain regurgitation (analogous to greater valve stenosis) before the complete motionless 
closed valve condition. This may stimulate cellular responses before that condition occurs.  Over time our 
primary focus evolved into development of insights into thrombogenic factors specific to the valve 
closing phase. During brief crucial moments of valve closure, localized prothrombotic microenvironments 
may be relevant to generation of high velocity leakage jets, flow unsteadiness, valve flutter, cyclic 
variability of PDVA, turbulence, and excessive shear forces that may induce blood element damage [21-
23]. The various influences mentioned previously may be relevant to multiple valve types for: 

• conduction abnormalities 

• reduced mobility of valve leaflets or occluders 
• silent cerebral micro-infarction  
• sub-clinical valve thrombosis 
• potential for pannus formation 
• acute and sub-acute embolic stroke and other adverse cerebrovascular events including TIA 
• cavitation and high intensity trans-cranial signals (HITS) [6] 

Closure dynamics therefore raise provocative questions about valve thrombogenic impact including: 

1. Dynamics of valve closure that may mimic well studied pro-thrombotic aspects of forward valve flow 
(e.g., valve stenosis) and arterial flows (e.g., arterial sclerosis)   

2. Valve closure dynamics may reflect combined biomechanical and biochemical responses sufficient to 
exacerbate risk for pathologic thrombus formation and propagation 

3. Valve rebound and water-hammer -the SJM valve in the mitral position consistently manifested 
leaflet rebound observed as a momentary post closure partial re-opening driven by water-hammer 
power (transvalvular pressure × volumetric flow rate). This has been previously reported with 
magnified examples of high-resolution PDVA rebound data [7]. 

Figure 3 compares several contemporary and prototype cardiac valves near closure extending over the 
~495 ms each cycle of 10 consecutive cycles gathered.  One hundred fifty (150) RFV data points were 
collected for every cycle and 10 consecutive cycles were collected for each valve. The time increment 
was ~3.4 ms which was the interval used to collect data over the total cycle time of 867 ms (cycle rate 
=70 per minute). Inferred dimensionless TP of the test valves (X axis) is referenced to an RFV of -126 
m/s, the peak observed for the SJM aortic MHV. 
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A) Study outcomes (previous and present reports) [7-9, 11]: 
 

1. High amplitude RFVs and resultant supra-physiologic shear forces originating in small intra- and 
para-valvular leakage (PVL) gaps are mechanistic initiators of the clotting cascade. 

2. Platelet activation is induced by high shear even with short exposure time [23, 24] 
3. The disparity in closing dynamics between MHV vs. bioprosthetic valves is chronically overlooked as 

a primary indicator of valve TP. 
4. Current MHVs have overt RFV transients at closure relating to occluder non-response to flow 

deceleration and residual PDVA. 
5. A mock TAVR valve with trivial PVL generated high magnitude short duration RFVs.  
6. An unintended consequence of reducing significant PVL to trivial PVL produces high RFVs and 

increased valve TP. 
7. For a given volumetric backflow rate near valve closure, the smaller the total residual leakage area, 

the greater the magnitude of RFVs. 
8. The highest recorded RFVs were generated by the SJM valve compared to the tissue control valves 

(Edwards pericardial). 
9. Rapid prototype valve BV3D produced RFVs similar to the tissue control valves. 
10. A spatial average of RFVs in immediate proximity to prototype valves may be a practical indicator in 

qualitative screening for valve TP. 
11. Test data from valve BV3D strongly suggest that specific MHV leaflet geometries generate a closure 

force during forward flow deceleration and prior to flow reversal, a potentially beneficial “soft 
closure” response. 

12. Since the motion of heart valves is too fast to see and too important to ignore, Leonardo provides a 
simple rapid means to pre-calibrate, record, and perform quantitative valve motion analysis. 

13. Our technology enabled RFVs to be resolved and focused attention on overt RFVs previously 
overlooked and hidden due to brevity, small PVL gaps, and limited instrumentation resolution 
capability. 

14. Our results infer shear damage to formed blood elements and a resultant continuous thrombogenic 
response constitute a mechanistic explanation for observed thrombogenic disparity in prosthetic valve 
types and designs now broadened to include observations of TAVI related thromboembolic events. 

15. For MHVs, cyclic RFVs appear to be related to a prothrombotic state requiring chronic anti-
coagulation. This risk is much less recognized in bioprosthetic heart valves which appear not to 
generate a pro-thrombotic closing phase but TAVI prostheses with trivial PVL may generate 
pathologic RFVs similar to those observed in MHVs.  

16. Promising prototype MHVs were designed and tested in vitro with dimensions optimized to provide 
minimum TP relative to BHV controls thereby attenuating potential of hemodynamic biomechanical 
forces and biochemical pathways known to initiate and amplify thrombus formation. 

 B) Caveats 
 
While not a site specific quantity, we submit that RFVs are useful surrogates for flow induced blood cell 
damage potential. To infer valve TP directly from derived maximum flow velocities is an over 
simplification considering the complexity of blood coagulation factors recently reviewed by Rana and 
associates [26]. For example, the difference between laminar and turbulent flow and their respective 
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impact on blood component damage awaits experimental evidence to validate numerical simulations [27]. 
In contrast to laminar, turbulent fluid flow is characterized by chaotic flow/pressure fluctuations with 
sufficient shear forces to activate blood clotting mechanisms [28]. 
 
Development of advanced valves with clinical potential requires detailed and accurate prototypes with 
improved geometric leakage flow path area (GAP) control for final optimization and definitive laboratory 
testing prior to animal and durability testing. 

 
IV. Conclusions 

 
Importance – Promising MHVs have been designed and tested in vitro with dimensions optimized to 
provide minimum TP relative to BHV controls and thereby attenuating in vivo hemodynamic 
biomechanical forces and biochemical pathways known to initiate and amplify thrombus formation. 

Current valve designs and manufacturing efforts focused on valve open phase performance largely 
exclude consideration of dynamic flow conditions during the closing phase. Although events close to 
valve closure involve multi-factorial influences, our prior work found that valve motion and flow velocity 
constituted a primary contribution to valve TP and that closure-related functional deficit is a common 
shortcoming of current MHVs [10].  
 
In this study, dimensionless TP was used to rank valve thrombogenic potential based on in vitro 
measurements that determine spatially averaged regional flow velocities relative to a maximum (-126 
m/s) obtained for the SJM mechanical valve (TP=1.0). TP ranged from -0.45 to 0 +1.0 with the clinical 
bioprosthetic control valve (Edwards PerimountTM) having the least (TP = 0.17). These results are 
consistent with extensive qualitative clinical experience of thrombogenic disparity between these classes 
of valves. SJM recipients require life-long anticoagulants whereas bioprosthetic devices typically impose 
minimal increased thrombogenic risk.  
 
 Progress beyond the limitations of current prosthetic valves will require innovative MHV designs with 
substantially reduced TP confirmed by in vitro dynamic testing results indistinguishable from control 
tissue valves. This requires appreciation of valve closure as a crucial factor since very high flow short 
duration RFVs near valve closure result in transient or continual blood cell damage and initiation of the 
coagulation cascade [23].  
 
Additionally, results suggest that designing a MHV with reduced TP comparable to clinically well 
established tissue valves is achievable with current technology. The objective is to produce a MHV that 
will not increase recipient thrombogenic risk. On a cautionary note, device manufacturers preoccupied 
with modifications of catheter delivered valves to minimize residual leak assume that reducing a major 
leak to a minor (trivial) one diminishes patient risk. However, we consistently observe smaller volume-
metric paravalvular leaks (PVL) to associate with higher magnitude RFVs and counter-intuitively; that 
larger PVLs result in lower RFVs and shear forces. This is consistent with recently reported clinical 
experience where independent predictors of late leaflet thrombosis up to 3 years post implant were male 
sex and PVL less than mild [18].  
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In vitro, a tissue valve-like “soft” closing profile along with either complete sealing or optimized closed 
leakage area are important for minimizing water-hammer driven rebound and subsequent RFVs and may 
be an essential dynamic characteristic for low thrombogenic function. Bioprosthetic valves benefit from 
minimal volumetric backflow rates (VBRs) and a propensity to be fully competent when closed resulting 
in negligible RFVs.  
 
Perhaps the most consequential outcome of our work is development of a practical method to screen 
valves for inferred thrombotic potential by determination of RFVs. In the case of MHVs, blood flow is 
disrupted predominantly by valve closure dynamics that produce elevated shear forces and stagnant low 
flows which trigger pro-thrombotic response. 
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