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 2 

Abstract 19 

Background: With the improved life expectancy in people living with HIV, predicting 20 

individual frailty is important for clinical care. DNA methylation (DNAm) has emerged as 21 

a robust biomarker in precision medicine and has been previously linked to aging and 22 

mortality in non-HIV populations. Here, we aim to establish a panel of DNAm features 23 

selected from blood methylome to predict frailty in HIV-positive men from a veteran 24 

population, Veterans Aging Cohort Study (VACS).  25 

Methods: We used a well-established score, VACS Index, as a measure of frailty. 26 

Samples (ntotal=1,150) were divided into a training set (n=612) and a validation set 27 

(n=538). We first selected a panel of frailty-associated CpGs by conducting an 28 

epigenome-wide association analysis on the VACS index in the training set. We then 29 

applied four machine learning methods to build models to predict high and low frailty 30 

individuals in the training set. The prediction models were tested in the validation set. A 31 

methylation score constructed from the selected CpGs was tested an associated with 32 

mortality by performing survival analysis. To assess the biological relevance of the 33 

selected CpG sites, we performed a gene ontology enrichment analysis.  34 

Results: A panel of 119 CpGs were identified from the training set (False Discovery 35 

Rate <0.2) that showed excellent performance on predicting high frailty individuals with 36 

Area Under Curve (AUC) of 0.835 (95%CI: 0.792, 0.879) and balanced accuracy of 37 

0.693. The same panel showed good performance on predicting low frailty individuals 38 

with AUC of 0.735 (95%CI: 0.688-0.782) and a balanced accuracy of 0.528. The 39 

methylation score from the 119 CpGs was significantly associated with 5-year and 10-40 

year mortality with hazard ratio of 1.40 (95% CI:1.033, 1.897 p=0.03) and 1.48 (95%CI: 41 
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1.10, 2.02; p=0.01) respectively. These 119 CpGs were located within or near 73 genes 42 

that were significantly enriched in 9 biological pathways relevant to immune and 43 

inflammation response. 44 

Conclusions: We identified a panel of predictive DNAm features associated with frailty 45 

and mortality among HIV-positive population. These DNAm features may serve as 46 

biomarkers to discriminate high and low frailty people who live with HIV.   47 

 48 

Keywords: DNA methylation, HIV-positive, frailty, mortality, DNA methylation score, 49 

machine learning prediction 50 

 51 
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Background 53 

Combination antiretroviral therapy has significantly improved life expectancy 54 

among HIV-positive individuals. The prolonged life expectancy increases frailty risk in 55 

the HIV population. The prevalence of frailty in people living with HIV is significantly 56 

higher and onset of frailty occurs at an earlier age compared to the general population 57 

(1). High frailty is characterized by marked vulnerability and is associated with increased 58 

mortality. Thus, prediction of frailty is important to identify vulnerable group and deliver 59 

clinical care to highly vulnerable HIV-positive patients. At present, frailty is usually 60 

defined by clinical symptoms (e.g., Fried's frailty phenotype, Rockwood and Mitnitski's 61 

Frailty Index) or a combination of lab tests that indicate organ damage such as the 62 

Veterans Aging Cohort Study index (VACS index) (2). No biomarkers available to 63 

capture the early stage of the frailty to predict individual vulnerability in HIV-positive 64 

patients.  65 

A large body of evidence has demonstrated that epigenetic modification adapts 66 

internal and external environmental changes and that is associated with  early stage of 67 

pathophysiological processes (3-6). DNAm, one type of the most widely studied 68 

epigenetic marks, is strongly related with aging (7-9), substance use (e.g. cigarette 69 

smoking and alcohol consumption) (10-16), and a variety of diseases (3-6, 17, 18). 70 

Because DNAm is relatively stable and easy to detect from body fluids biospecimen 71 

through non-invasive procedure, DNAm marks have emerged as  robust biomarkers for 72 

cancer diagnosis (19), disease subtype classification (20, 21) and treatment response 73 

monitoring (22, 23).  74 
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DNAm may play an important role in frailty among HIV-positive individuals. Frailty 75 

is associated with elevated inflammation markers such as IL-6 and hsCRP in HIV-76 

positive individuals (24). Genes involved in immune and inflammation processes are 77 

also subject to epigenetic modification in immune cells. We previously reported 78 

association of two CpG sites in the promoter region of NLRC5 with HIV infection (25), 79 

and NLRC5 gene is a major transcriptional activator of MHC class I gene. DNAm was 80 

also linked to HIV comorbid medical diseases such as HIV-positive diabetes and kidney 81 

function (26, 27). Furthermore, aging, a critical contributor to frailty, is significantly 82 

associated with thousands of CpGs in the epigenome, and the epigenetic clock and 83 

DNAm age are becoming widely recognized (7-9). DNAm age is significantly correlated 84 

with physical frailty in HIV-negative individuals (28) and HIV-positive individuals (29). In 85 

HIV-positive individuals, the average DNAm age is accelerated 5 to 10 years faster than 86 

HIV-negative individuals (30-33) and 10 years faster in the HIV-positive frailty 87 

individuals in comparing to HIV-positive non-frailty individuals (29). These age-related 88 

DNAm signatures are predictive of mortality (34-38). Additional CpGs in blood have 89 

been identified to predict all-cause mortality (34, 39).  Therefore, we hypothesize that 90 

DNAm is associated with frailty and that DNAm signatures in blood can serve as 91 

biomarkers to predict frailty and mortality among HIV-positive individuals. 92 

 In this study, our goal is to identify DNAm marks that can serve as biomarkers 93 

on frailty and to link frailty-associated DNAm to mortality among HIV-positive 94 

individuals. We also evaluated biological relevance of the identified CpG sites. We used 95 

a well-established frailty score, VACS index, as a measure of frailty in the HIV-positive 96 

population. The VACS index is a composite score constructed by a sum of pre-assigned 97 
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points on age, CD4 count, HIV-1 RNA, hemoglobin, platelets, aspartate and alanine 98 

transaminase (AST and ALT), creatine, estimated glomerular filtration rate (eGFR), and 99 

viral hepatitis C infection (40). Findings from this study provide a set of DNAm 100 

biomarkers to predict frailty for future clinic use and new insights into the epigenetic 101 

mechanism of frailty and mortality in HIV pathology. 102 

 103 

Methods 104 

As an overview, our analytical procedure is shown in the flowchart in Figure 1. 105 

Our sample was divided into the training set (n=612) and the validation set (n=538) 106 

which DNA methylation were processed at different time and using two different 107 

platforms. We first selected a panel of CpG sites relevant to frailty based on EWAS 108 

results in the training set. Then, we applied four commonly used machine learning 109 

classification methods to develop prediction models: random forest, Extreme Gradient 110 

Boosting Tree (XGBoost), Lasso and Elastic-Net Regularized Generalized Linear 111 

Models (GLMNET), and Support Vector Machines (SVM). The selected CpG sites were 112 

used as predictors to differentiate high and low frailty in the training set and each model 113 

was evaluated in the validation set. Additionally, the DNAm score was constructed 114 

based on the selected CpG sites and we conducted survival analysis to assess whether 115 

the DNAm score was associated with mortality in the HIV-positive samples. Lastly, we 116 

conducted a gene ontology enrichment analysis to reveal the underlying biological 117 

pathways of the selected CpG sites.  118 

Study population 119 
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All samples in the training and validating sets were from the VACS cohort. The 120 

VACS is a prospective cohort study of veterans focusing on clinical outcomes in  HIV 121 

infection (41). DNA samples were extracted from peripheral blood of 1,150 HIV-positive 122 

men from the VACS.  Demographic and clinical information on age, race, smoking 123 

status, CD4 count, viral load, HIV medication adherence, VACS index, and mortality by 124 

training set and validation set are presented in Table 1. The training set included slightly 125 

older individuals, more African Americans, and greater VACS index than the validation 126 

set. There was no significant difference in HIV medication adherence, CD4 count, or 127 

log10 HIV-1 viral load between the training set and the validation set.   128 

Table	1:	Study	sample	characteristics	 		 	

																				
Training	set	
(N=612)	

Validation	set	
(N=538)	 p	value*	

		Age	(year,	mean	+/-sd)	 49.4	(7.6)	 48.1	(7.8)	 0.005	
		Male	(%)	 		612	(100)	 			538	(100)	 	
		Race	(%)						 															 														 	
				Caucasian	 				58	(9.5)		 		48	(8.9)	 0.001	
				African	Americans	 			526	(85.9)		 	435	(80.9)	 	
				Other	 				28	(4.6)		 		55	(10.2)	 	
		Smokers	(%)	 			360	(59.4)		 309	(58.4)	 0.78	
		HIV	positive	(%)	 		614	(100)	 		538	(100.0)	 	
		HIV	treatment	adherence	
(%)	 			469	(78.4)		 407	(76.6)	 0.519	
		CD4	count	 428.97	(286.33)	 447.46	(279.27)	 0.287	
		log	10	HIV-1	viral	load	 2.61	(1.19)	 2.67	(1.23)	 0.423	
		VACS	index	(mean	+/-)	 		35.64	(21.99)		 30.78	(20.23)	 <0.001	
		Mortality	(%)	 162	(26.5)	 129	(24.0)	 0.367	
*t	test	is	used	for	continous	variables,	chi-square	test	is	used	for	categorical	variables	

 129 

Genome-wide DNAm profiling and quality control 130 

The DNA samples in the training set were profiled by Infinium Human Methylation 450K 131 

BeadChip (HM450K) and the DNA samples in the validation set were profiled by the 132 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 29, 2019. ; https://doi.org/10.1101/19010272doi: medRxiv preprint 

https://doi.org/10.1101/19010272


 8 

Infinium Human Methylation EPIC BeadChip. DNAm for the training and validation sets 133 

were evaluated using the same quality control (QC) protocol (42) in the R package minfi 134 

(43). In detail, CpG sites on sex chromosomes and within 10 base pairs of a single 135 

nucleotide polymorphism were removed. The detection p-value threshold was set at 10-136 

12 for both the training and validation sets. After QC, 408,583 shared CpG sites between 137 

HM450K and EPIC arrays were used for analysis to ensure the same coverage 138 

between two sets. Proportions of 6 cell types (CD4+ T cells, CD8+ T cells, Natural Killer 139 

T cells, B cells, monocytes and granulocytes) were estimated using the established 140 

method (Houseman et al., 2012) for all samples in the training and validation sets. 141 

Selection of CpG sites from EWAS on frailty in the training set  142 

 We performed an EWAS on VACS index in the training set using a two-step 143 

linear model approach as previously described (42). The analytical model was adjusted 144 

for systematic errors and clinical confounding factors. Here, log transformation was 145 

applied to VACS index to ensure normality distribution assumption for the linear model.  146 

 First, the following linear model was used to extract principal components (PCs) 147 

for potential confounding variables. Here, top 30 control PCs were derived from internal 148 

control probes in minfi: 149 

 Methylation β ~ age + race + smoking + self-reported HIV medication adherence 150 

+ log viral load + WBC + CD4T + CD8T + Gran + NK + B cell + Mono + 30 Control PCs 151 

 Second, the top 20 residual PCs were extracted in the model above to fully 152 

adjust for unmeasured confounding. The final EWAS model on VACS index was: 153 
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 log(VACS) ~ Methylation β + age + race + smoking + self-reported HIV 154 

medication adherence + log viral load + WBC + CD4T + CD8T + Gran + NK + B cell + 155 

Mono + 30 Control PCs + 20 Residual PCs 156 

To ensure a sufficient number of CpGs as predictors for the prediction model 157 

development, we selected CpG sites with false discovery rate (FDR) <0.2 in the EWAS 158 

as predictors.  159 

Additionally, to explore the underlying epigenetic mechanism of frailty, we also  160 

detected differentially methylated regions (DMRs) using bumpHunter (44) in the training 161 

set. DMRs with family-wise error rate (FWER)<0.2, which is equivalent to FDR<0.03, 162 

were considered significant. 163 

Developing machine learning prediction models for frailty 164 

 Based on the distribution of the VACS index in the entire sample (Figure S1) and 165 

clinical significance (45), high HIV frailty was defined as VACS index > 50, and low HIV 166 

frailty was defined as VACS index < 16. Models were developed to predict high frailty 167 

(VACS index >50 versus ⩽50) and low frailty (VACS index <16 versus ≥16). CpGs 168 

relevant to frailty were selected from EWAS as described above. The following steps 169 

were taken to develop separate prediction models on high and low frailty:  170 

 1) Model development in the training set: Four machine learning models, random 171 

forest, Extreme Gradient Boosting Tree (XGBoost), support vector machines(SVM), 172 

Lasso and Elastic-Net Regularized Generalized Linear Models (GLMNET), were 173 

separately applied to predict VACS index by using the R package caret (46). These four 174 

models are commonly used in the supervised learning on classification (47-50). Each 175 
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model was developed separately and 10-fold cross-validation was used in model 176 

training process to minimize data overfitting. 177 

2) Model evaluation in the validation set: All four models built in the training set 178 

were evaluated in the validation set. Area Under Curve (AUC) and balanced accuracy 179 

were used to assess the prediction performance. We used balanced accuracy for model 180 

evaluation because in the presence of imbalance samples in each class since there are 181 

228 subjects with VACS index greater than or equal to 50 and 916 subjects with VACS 182 

index less than 916. Balanced accuracy is defined as the average accuracy obtained on 183 

each class as shown in the following formula (51). Balanced accuracy was used in this 184 

study to avoid biased accuracy due to imbalanced samples (51). 185 

 186 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵	𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎187 

=
1
2

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇	𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹	𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  188 

 189 

Association of a DNAm score for VACS index with mortality 190 

We constructed a DNAm score by the selected frailty-associated CpG sites. A 191 

survival analysis was conducted to assess whether the DNAm score was associated 192 

with 5-year and 10-year mortality respectively.   193 

DNAm score was constructed based on a previously reported method (12). We 194 

computed the DNAm score by normalizing the score with mean 𝛽𝛽 value (𝜇𝜇<) and 195 

standard deviation, 𝜎𝜎<, from subjects with VACS index <50 (control group). For selected 196 

𝑛𝑛 methylation sites, 𝑊𝑊< is 1 for a hypermethylated methylation site 𝑐𝑐, and -1 for a 197 
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hypomethylated site 𝑐𝑐, 𝛽𝛽<? is the 𝛽𝛽 value for subject 𝑖𝑖 and methylation site 𝑐𝑐. The 198 

methylation score for subject 𝑖𝑖 was constructed by the following formula: 199 

𝑀𝑀𝑀𝑀𝑡𝑡ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦	𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆? =
1
𝑛𝑛 𝑊𝑊<

𝛽𝛽<? − 𝜇𝜇<
𝜎𝜎<

D

<EF

 200 

The mean methylation score was 0, and samples were divided into high 201 

methylation score (>0) and low methylation score (⩽0) groups.  202 

We preformed Kaplan-Meier survival curves during 10-year follow-up to visualize 203 

the survival differences between high and low methylation score groups.  Survival 204 

analysis was conducted by cox proportional hazards model on 5-year and 10-year 205 

mortality comparing high and low methylation groups. We used age as time scale t, and 206 

our model was adjusted for race, smoking, self-reported HIV medication adherence, log 207 

10 of HIV viral load and CD4 count.  208 

 209 

ℎ 𝑡𝑡 = ℎG(𝑡𝑡)exp	(𝛽𝛽F	𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	 +	𝛽𝛽N	𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +	𝛽𝛽O	𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	210 

+	𝛽𝛽Q	𝐻𝐻𝐻𝐻𝐻𝐻	𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚	𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒	 +	𝛽𝛽U	logFG 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣	𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +	𝛽𝛽Y	𝐶𝐶𝐶𝐶4	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 211 

 212 

Biological interpretation of the predictive panel of CpG sites on frailty 213 

We performed gene ontology (GO) enrichment analysis using Database for 214 

Annotation, Visualization and Integrated Discovery (DAVID) (52). To avoid redundancy 215 

in pathway names, we only used level 4 GO terms defined in DAVID in the enrichment 216 

analysis. Genes with at least one frailty-associated CpG site was used for GO analysis. 217 

We considered biological pathways with FDR <0.05 as statically significant pathways.  218 

 219 
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Results 220 

Selection a panel of 119 frailty-associated CpG sites by EWAS in the training set 221 

In the training set, we conducted an EWAS on VACS index (Figure 2; λ=1.038) and 222 

selected 119 CpGs with FDR<0.2 to ensure sufficient number of predictors (Table 2).  223 

Eighty out of 119 CpGs were negatively associated with VACS index, while 39 out of 224 

119 CpGs were positively associated with VACS index. The majority of CpGs were 225 

located within or near known genes, except for 19 CpGs that were intergenic. Only 40 226 

CpGs were located in gene bodies, while 79 CpGs were located in promoter regions, 227 

first exons, or 3’ UTR.  Thirty-two CpGs were located in CpG islands.  228 

Notably, 22 out of 119 CpGs reached epigenome-wide significance (FDR<0.05), 229 

including 16 CpG sites negatively associated with the VACS index and 6 CpG sites with 230 

positive associations. These 22 CpGs were located on 17 genes, including 13 of 22 231 

CpGs located in promoter regions, 6 CpGs in gene body, and 3 CpGs in 3’UTR. Among 232 

these genes, some harbored more than one significant CpG. For example, three CpGs 233 

were annotated within or near PSMB8  (cg01309328, p=4.44×10-9; cg08099136, 234 

p=4.63×10-9; cg00533183, p=3.18×10-7), two CpGs were located near PARP9 235 

(cg08122652, p=2.18×10-7; cg22930808, p=6.78×10-7), two CpG sites were located 236 

near IFITM1 (cg03038262, p=5.83×10-7; cg23570810, p=1.58×10-6), and the rest of the 237 

significant CpG sites were annotated to 13 genes including MX1, TAP1, ZNF32, 238 

NLRC5, IFI44L.  239 

We found 9 significant DMRs in the training set (Table S1). Methylation β values 240 

between high and low frailty ranged from -0.15 to 0.05 in these regions. As examples, 3 241 

All rights reserved. No reuse allowed without permission. 
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which wasthis version posted October 29, 2019. ; https://doi.org/10.1101/19010272doi: medRxiv preprint 

https://doi.org/10.1101/19010272


 13 

region plots showing DMRs in the MX1, PARP9, and IFI44L genes are shown in Figure 242 

3.  243 

Machine learning prediction on frailty by the selected 119 CpGs 244 

Table	3:	Performance	of	machine	learning	model	predicting	frailty	in	an	HIV-infected	population	 	

Method	

High	frailty	(VACS	index	>50	vs.	≤50)	 Low	frailty	(VACS	index	>16	vs.	≤16)	
Training	 Validation	 Training	 Validation	

AUC	
Balanced	
Accuracy	 AUC	

Balanced	
Accuracy	 AUC	

Balanced	
Accuracy	 AUC	

Balanced	
Accuracy	

Random	
Forest	 0.775	 0.622	 0.835	(0.792,0.879)	 0.693	 0.774	 0.509	 0.735	(0.688,0.782)	 0.528	

XGBoost	 0.760	 0.624	 0.830	(0.786,0.874)	 0.684	 0.820	 0.637	 0.716	(0.669,0.762)	 0.500	

GLMNET	 0.783	 0.642	 0.757	(0.701,0.813)	 0.668	 0.795	 0.589	 0.715	(0.667,0.763)	 0.503	

SVM	 0.759	 0.618	 0.744	(0.685,0.802)	 0.500	 0.756	 0.594	 0.501	(0.442,0.560)	 0.492	
AUC:	Area	Under	Curve	 	      
VACS:	Veteran	Aging	Cohort	Study	 	     
XGBoost:	Extreme	Gradient	Boosting	Tree	 	     
GLMNET:	Lasso	and	Elastic-Net	Regularized	Generalized	Linear	Models	 	  
SVM:	Support	Vector	Machines	 	     

 245 

 In the training set, we developed our prediction models based on the selected 246 

119 CpGs in the training set using four commonly used machine learning classification 247 

models: XGBoost, random forest, SVM and GLMNET (47-50). Performances of four 248 

prediction models are presented in Table 3. We found that AUCs ranged from 0.756 to 249 

0.820 and balanced accuracies ranged from 0.509 to 0.642, suggesting that the 119 250 

CpGs had good to excellent predictive performance on frailty. The performances of four 251 

models were mostly comparable. For predicting high frailty, GLMNET outperformed the 252 

three other models (AUC=0.783, balanced accuracy=0.642) while SVM performed 253 

slightly worse (AUC=0.759, balanced accuracy = 0.618). For the prediction of low frailty, 254 
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XGBoost performed the best among the four models (AUC=0.820, balanced 255 

accuracy=0.637) while SVM performed worst (AUC=0.756, balanced accuracy =0.594).  256 

 In the validation set, for the prediction of high frailty, random forest and XGBoost 257 

showed the best performance. AUC of random forest model was 0.835 (95%CI: 0.792, 258 

0.879) and XGBoost was 0.830 (95%CI: 0.786, 0.874) for predicting high frailty. 259 

Balanced accuracy was 0.69 and 0.68, respectively, for random forest and XGBoost 260 

(Figure 4). For the prediction of low frailty, XGBoost and random forest models also 261 

outperformed GLMNET and SVM. AUC was 0.735 (95%CI: 0.688, 0.782) for the 262 

random forest and 0.716 (95%CI: 0.669, 0762) for the XGBoost. The balanced accuracy 263 

was 0.528 and 0.500 for the random forest and XGBoost, respectively.  264 

These results suggest that the selected panel of 119 CpG sites were able to 265 

predict frailty, and the prediction models performed better at predicting high frailty than 266 

predicting low frailty.  Among four machine learning methods, SVM showed poor 267 

performance of predicting frailty in our samples.  268 

 269 

DNAm score by 119 CpGs was significant associated with mortality 270 

 We constructed DNAm score based on the selected 119 CpGs, and we further 271 

assessed whether VACS index-related DNAm score were associated with mortality. In 272 

Figure 5, the Kaplan Meier curves during 10-year follow-up showed that the individuals 273 

with high DNAm score were at higher risk of mortality than those with low DNAm 274 

scores. After adjusting for confounding factors, our cox proportional hazards regression 275 

model showed that the hazard ratio of 5-year and 10-year mortality comparing high and 276 

low DNAm score groups were 1.40 (95%CI: 1.03-1.90, p=0.03) and 1.48 (95%CI: 1.10-277 
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2.02, p=0.01) respectively. In conclusion, we found that the DNAm score constructed 278 

from the 119 selected CpGs was significantly associated with mortality. 279 

Biological interpretations of 119 CpGs by gene ontology enrichment analysis 280 

 The selected panel of 119 CpGs were located within or near 73 genes.  Gene 281 

ontology enrichment analysis using these 73 genes resulted in 9 significant pathways 282 

with FDR<0.05 (Figure 6, Table 4). These pathways included response to type I 283 

interferon response (FDR=1.05×10-7), innate immune response (FDR=3.45×10-5),  284 

cytokine response (FDR=3.69×10-3) and defense response to virus (Figure 6). Our 285 

findings suggested that the selected 119 CpG sites are biologically relevant to HIV 286 

pathogenesis and progression.  287 

Table	4:	Gene	ontology	term	enrichment	analysis	of	the	selected	CpG	sites	that	predict	frailty	in	an	HIV	
infected	population		

Term		 	N		 %	 Genes	
Fold	

Enrichment	 P	value	 FDR	

GO:0034340~response	to	type	
I	interferon	 10	 11.8	

OAS2,	IFITM1,	IFIT3,	
MX1,	NLRC5,	HLA-F,	
XAF1,	HLA-E,	IRF7,	
PSMB8	

28.1	 6.62E-11	 1.05E-07	

GO:0045087~innate	immune	
response	 19	 22.4	

TRIM22,	MAP4K2,	
IFITM1,	TRIM25,	
MX1,	GFI1,	IFIT5,	
XAF1,	LY86,	PSMB8,	
TRIM14,	PARP9,	
PLSCR1,	OAS2,	IFIT3,	
NLRC5,	HLA-F,	HLA-E,	
IRF7	

5.0	 2.17E-08	 3.45E-05	

GO:0051607~defense	
response	to	virus	 11	 12.9	

TRIM22,	PLSCR1,	
OAS2,	IFITM1,	
TRIM25,	IFIT3,	MX1,	
IFI44L,	NLRC5,	IFIT5,	
IRF7	

10.5	 7.55E-08	 1.20E-04	

GO:0051707~response	to	
other	organism	 18	 21.2	

TRIM22,	PDE4B,	EPO,	
IFITM1,	NOTCH1,	
TRIM25,	MX1,	GFI1,	
IFIT5,	IFI44L,	LY86,	
PLSCR1,	OAS2,	IFIT3,	

4.8	 1.17E-07	 1.85E-04	
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 288 

Discussion 289 

 In this study, we present evidences that DNAm marks in blood are predictive of 290 

frailty and are associated mortality in an HIV-positive population. We identified a panel 291 

of 119 CpG sites that were highly predictive for high frailty and moderately predictive for 292 

low frailty. We also found that the DNAm score constructed by these 119 CpGs was 293 

strongly associated with mortality in the HIV-positive population. More importantly, these 294 

CCDC88B,	NLRC5,	
HLA-E,	IRF7	

GO:0016032~viral	process	 19	 22.4	

TRIM22,	IFITM1,	
TFRC,	NOTCH1,	
TRIM25,	MX1,	PPIB,	
GFI1,	IFIT5,	IFI44L,	
TAP1,	PSMB8,	
TRIM14,	PLSCR1,	
OAS2,	SLC1A5,	IFIT3,	
NLRC5,	IRF7	

4.3	 1.93E-07	 3.07E-04	

GO:0009615~response	to	
virus	 11	 12.9	

TRIM22,	PLSCR1,	
OAS2,	IFITM1,	
TRIM25,	IFIT3,	MX1,	
IFI44L,	NLRC5,	IFIT5,	
IRF7	

7.7	 1.27E-06	 2.02E-03	

GO:0098542~defense	
response	to	other	organism	 13	 15.3	

TRIM22,	PLSCR1,	
OAS2,	IFITM1,	
TRIM25,	IFIT3,	MX1,	
CCDC88B,	IFIT5,	
NLRC5,	IFI44L,	HLA-E,	
IRF7	

5.8	 1.94E-06	 3.09E-03	

GO:0034097~response	to	
cytokine	 16	 18.8	

TRIM22,	EPO,	
IFITM1,	TRIM25,	
MX1,	GFI1,	XAF1,	
PSMB8,	PARP9,	
PLSCR1,	OAS2,	IFIT3,	
NLRC5,	HLA-F,	HLA-E,	
IRF7	

4.4	 2.32E-06	 3.69E-03	

GO:0034341~response	to	
interferon-gamma	 8	 9.4	

TRIM22,	OAS2,	
IFITM1,	TRIM25,	
NLRC5,	HLA-F,	HLA-E,	
IRF7	

10.9	 7.95E-06	 1.26E-02	
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clinically informative 119 DNAm features lied in genes involved in HIV pathogenesis and 295 

progression. Thus, we discovered a panel of 119 DNAm biomarkers that add knowledge 296 

to the epigenetic mechanisms underlying frailty and mortality among people living with 297 

HIV.  298 

 We demonstrated the utility of using DNAm marks to predict frailty in HIV-positive 299 

individuals. We took the several steps to avoid overfitting in developing the prediction 300 

models: 1) model development and evaluation were conducted separately in training set 301 

and validation set. DNAm in two sets were profiled in different time with different 302 

platforms; 2) 10-fold cross validation were performed during training in each model. The 303 

performances of four machine learning methods were in general consistent except that 304 

the SVM did not perform well for low frailty. Our results suggested that this panel of 305 

CpG sites was relatively stable and robust although performances of predictive models 306 

differed using different methods. Of note, SVM showed the worst performance in 307 

predicting high and low frailty that highlights the importance of choosing appropriate 308 

machine learning method for model development.  Compared to our previously reported 309 

a panel of 698 smoking-associated CpGs that are moderately predictive of frailty (15), 310 

the panel of 119 CpG sites in the present study includes fewer CpGs (119 CpGs) and 311 

shows greater prediction performance on frailty (AUC=0.73 for smoking-associated 312 

CpGs and AUC 0.83 for the VACS index-associated CpGs), suggesting that the panel 313 

of 119 CpG sites has greater clinical utility for frailty among people living with HIV. The 314 

improvement of prediction performance on frailty in the present study may be due to 315 

different strategies of CpG selections. In this study, the 119 CpGs are selected from the 316 
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entire blood methylome and may be more informative than the smoking-associated 317 

CpGs in our previous report.  318 

  We also found that the VACS index-related DNAm score derived from the 119 319 

CpGs is strongly associated with mortality. This result provides further knowledge of 320 

epigenetic profile into previous report that VACS index is predictive of mortality in 321 

people who live with HIV (53). The result is also consistent with previous literature 322 

showing that DNAm marks in blood predict mortality in the general population (39). 323 

Interestingly, we found no overlapped CpG between our predictive panel and the 324 

previously identified CpGs for all-cause mortality that included CpGs associated with a 325 

variety of diseases such as diabetes and cancer(39). The discrepancy suggest that 326 

methylation-based prediction of mortality may be relevant to causal disease. A recent 327 

study reports a significant overlap of mortality-associated CpGs and aging-associated 328 

CpGs (Lund et al, 2019). We found no overlapped CpG site between our mortality-329 

related 119 CpG panel and aging-related 353 CpGs in epigenetic clock (7), suggesting 330 

that epigenetic mechanisms in HIV-related mortality differ from aging-related mortality.   331 

  Most importantly, this panel of 119 CpG sites are biologically meaningful and 332 

may shed light on our understanding of the biological mechanisms of frailty for HIV-333 

positive individuals. The majority of the 119 CpG sites were located within or near 334 

genes that are involved in known HIV pathology and progression. The results from DMR 335 

analysis are corresponding to some of the significant genes for frailty. For example, 336 

cg26312951, cg22862003 and cg21549285 from the 119 CpG sites are located in the 337 

MX1 gene (Interferon-Induced GTP-Binding Protein Mx1) and were negatively 338 

associated with frailty. A DMR on MX1 also showed a significant with frailty.  MX1 339 
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encodes a GTP-metabolizing protein induced by interferon I and II and is involved in 340 

interferon gamma signaling and Toll-like signaling pathway. Multiple CpGs near the 341 

HLA-F and HLA-E genes are part of the predictive panel, and these two genes are 342 

actively involved in immune response (54). Our previously reported HIV-associated 343 

CpG site, cg07839457 in the NLRC5 gene is also a member of the predictive panel on 344 

frailty (25). Other interesting gene regions reveled by DMR analysis include PARP9 and 345 

IFI44L, which both genes are involved in HIV pathogenesis. The biological relevance of 346 

these 119 CpG sites was further supported by the gene ontology enrichment analysis. 347 

The top enriched pathways such as type I interferon response and cytokine response 348 

may point out important biological pathways that leads to frailty and increased risk of 349 

mortality among people living with HIV.    350 

 We acknowledge several limitations in this study. The generalizability of the 351 

selected CpG sites may be limited since our samples were predominantly middle-aged 352 

men, which may not generalize to frailty in a different age group. All samples in our 353 

study are HIV-positive and the identified CpGs have a limited application to HIV-354 

negative population as we discussed above. Future studies in diverse populations is 355 

warranted to validate the selected methylation features. Lastly, the prediction of low 356 

frailty is moderate due to imbalanced sample distribution in our present study. We 357 

expect that including more samples with low frailty will improve the predictive 358 

performance.  359 

 360 

Conclusions 361 
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We identified a panel of 119 predictive DNAm features in blood that are associated with 362 

frailty and mortality among people living with HIV. These DNAm features may serve as 363 

biomarkers to discriminate high and low frailty groups and may help to prioritize genes 364 

to better understand the mechanisms of frailty in HIV-positive population. These DNAm 365 

features have potential to serve as biomarkers to monitor HIV progression in future 366 

clinical care.   367 

  368 
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Legends 369 

Figure 1: Flowchart of analytical procedures on selection of CpG sites in peripheral 370 

blood methylome, machine learning prediction models to predict frailty, DNA 371 

methylation score to assess mortality, and gene ontology enrichment analysis 372 

Figure 2: Manhattan and quantile-quantile plots on Veteran Aging Cohort Study (VACS) 373 

index (λ=1.038) in the training set; blue line indicates False Discovery Rate (FDR)=0.05 374 

Figure 3: Differentially methylation regions (DMRs) are associated with frailty, 375 

measured by Veteran Aging Cohort Study (VACS) index. a: MX1 regional plot showing 376 

methylation beta value among subjects with VACS index > 50 and VACS index ≤ 50 in 377 

the training set.  b: IFI11L regional plot showing methylation beta value among subjects 378 

with VACS index > 50 and VACS index ≤ 50 in the training set. c: PARP9 regional plot 379 

showing methylation beta value among subjects with VACS index > 50 and VACS index 380 

≤ 50 in the training set  381 

Figure 4: Receiver operating characteristic curve by XGBoost prediction model on HIV 382 

frailty; a) Predicting high HIV frailty (VACS index >50 vs. ≤50), Area Under Curve 383 

(AUC): 0.830 (95% CI: 0.786,0.874); b) Predicting low HIV frailty (VACS index >16 vs. 384 

≤16), AUC: 0.735 (95% CI: 0.688,0.782) 385 

Figure 5: Kaplan-Meier curves comparing high and low HIV frailty methylation score 386 

groups. Methylation score is calculated by 119 selected probes. High methylation score 387 

group has methylation score >=0, while low methylation score group <0. 388 

Figure 6: Gene ontology enrichment analysis of 119 CpG probes (FDR<0.05) for 389 

prediction 390 
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Figure S1: Distribution of Veteran Aging Cohort Study index (VACS index) between 391 

training set and testing set 392 

 393 

Table 1: Study sample characteristics 394 

Table 2:  A panel of 119 CpG sites in blood that predicts high and low frailty in a HIV-395 

positive veteran population 396 

Table 3: Performance of machine learning model predicting high and low frailty in an 397 

HIV-positive population 398 

Table 4: Gene ontology term enrichment analysis of the selected 119 CpG sites that 399 

predict frailty in an HIV-positive population 400 

Table S1: Differentially methylated regions between high and low frailty in training set 401 

 402 
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Table	2:		A	panel	of	119	CpG	sites	in	blood	that	predicts	high	and	low	frailty	in	a	HIV-
infected	veteran	population	 	  

CpG	 Chr	 Position	 Gene	 Gene	group	
Relation	
to	CpG	
Island	

Effect	
size	 SE	 P	value	 FDR*	

cg01309328	 6	 32811253	 PSMB8	 Body	 N_Shore	 -5.30	 0.888	 4.44E-09	 9.32E-04	

cg08099136	 6	 32811251	 PSMB8	 Body	 N_Shore	 -4.77	 0.800	 4.63E-09	 9.32E-04	

cg26312951	 21	 42797847	 MX1	 TSS200;5UTR	 N_Shore	 -2.46	 0.417	 6.40E-09	 9.32E-04	

cg08818207	 6	 32820355	 TAP1	 Body	 N_Shore	 -3.40	 0.627	 9.17E-08	 1.00E-02	

cg08122652	 3	 12228193
9	 PARP9	 5UTR;TSS1500	 N_Shore	 -1.79	 0.341	 2.18E-07	 1.45E-02	

cg07352001	 10	 44144445	 ZNF32	 TSS200;TSS1500	 Island	 -
14.30	 2.730	 2.31E-07	 1.45E-02	

cg07325529	 6	 6613762	 LY86	 Body	 	 20.70	 3.980	 2.77E-07	 1.45E-02	

cg16242615	 19	 4059988	 ZBTB7
A	 5UTR	 Island	 -6.27	 1.200	 2.85E-07	 1.45E-02	

cg00533183	 6	 32810742	 PSMB8	 Body	 N_Shore	 -5.81	 1.120	 3.18E-07	 1.45E-02	

cg12649038	 10	 11628253
4	

ABLIM
1	 5UTR	 	 5.03	 0.973	 3.32E-07	 1.45E-02	

cg08926253	 11	 614761	 IRF7	 Body	 Island	 -2.91	 0.571	 4.94E-07	 1.96E-02	

cg03038262	 11	 315262	 IFITM1	 3UTR	 N_Shore	 -2.86	 0.565	 5.83E-07	 2.12E-02	

cg07839457	 16	 57023022	 NLRC5	 TSS1500	 N_Shore	 -1.99	 0.396	 6.55E-07	 2.12E-02	

cg22930808	 3	 12228188
1	 PARP9	 5UTR	 N_Shore	 -1.54	 0.306	 6.78E-07	 2.12E-02	

cg03607951	 1	 79085586	 IFI44L	 TSS1500	 	 -2.00	 0.398	 7.41E-07	 2.16E-02	

cg08260450	 6	 34993987	 ANKS1
A	 Body	 	 6.35	 1.270	 8.43E-07	 2.30E-02	

cg03917473	 17	 38764244	 	   9.10	 1.840	 1.04E-06	 2.67E-02	

cg18234224	 1	 17291785
1	 	   6.59	 1.350	 1.34E-06	 3.22E-02	

cg06188083	 10	 91093005	 IFIT3	 Body	 	 -2.02	 0.414	 1.40E-06	 3.22E-02	

cg23570810	 11	 315102	 IFITM1	 Body	 N_Shore	 -2.31	 0.475	 1.58E-06	 3.41E-02	

cg03816851	 22	 18324769	 MICAL
3	 Body	 Island	 10.30	 2.120	 1.64E-06	 3.41E-02	

cg20676542	 17	 54991456	 TRIM2
5	 TSS200	 Island	 -3.02	 0.629	 2.10E-06	 4.17E-02	

cg05019807	 9	 13941039
3	

NOTCH
1	 Body	 N_Shore	 5.97	 1.260	 2.70E-06	 5.07E-02	

cg03753191	 13	 43566902	 EPSTI1	 TSS1500	 S_Shore	 -5.39	 1.140	 2.88E-06	 5.07E-02	

cg01971407	 11	 313624	 IFITM1	 TSS1500	 N_Shelf	 -3.53	 0.745	 2.90E-06	 5.07E-02	

cg03359362	 19	 47289611	 SLC1A
5	

TSS1500;Body;5
UTR	 N_Shore	 -

12.60	 2.670	 3.13E-06	 5.10E-02	

cg22116398	 5	 196162	 	  S_Shore	 5.15	 1.090	 3.15E-06	 5.10E-02	

cg26922780	 16	 88769443	 RNF16
6	 Body	 N_Shelf	 4.27	 0.907	 3.28E-06	 5.12E-02	

cg15748006	 2	 9772375	 YWHA
Q	 TSS1500	 S_Shore	 4.45	 0.949	 3.45E-06	 5.20E-02	
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cg22862003	 21	 42797588	 MX1	 TSS1500;5UTR	 N_Shore	 -1.66	 0.356	 3.88E-06	 5.65E-02	

cg21366673	 6	 30459512	 HLA-E	 Body	 S_Shore	 -4.19	 0.900	 4.04E-06	 5.69E-02	

cg05588757	 2	 95825608	 ZNF51
4	 TSS1500	 Island	 -

19.40	 4.220	 5.25E-06	 6.64E-02	

cg06872964	 1	 79085250	 IFI44L	 TSS1500	 	 -1.92	 0.416	 5.26E-06	 6.64E-02	

cg06376949	 10	 91173811	 IFIT5	 TSS1500	 N_Shore	 -3.21	 0.698	 5.29E-06	 6.64E-02	

cg01154505	 2	 11294040
9	 FBLN7	 Body	 S_Shore	 6.16	 1.340	 5.32E-06	 6.64E-02	

cg01871595	 13	 39336304	 FREM2	 Body	 	 6.90	 1.500	 5.59E-06	 6.78E-02	

cg05696877	 1	 79088769	 IFI44L	 5UTR	 	 -1.21	 0.265	 6.01E-06	 6.94E-02	

cg24497541	 1	 55352819	 DHCR2
4	 1stExon;5UTR	 Island	 -9.81	 2.150	 6.12E-06	 6.94E-02	

cg11829870	 22	 50988451	 KLHDC
7B	 3UTR;1stExon	 S_Shore	 -3.63	 0.795	 6.28E-06	 6.94E-02	

cg13720750	 5	 11230916
7	 	  N_Shelf	 7.28	 1.600	 6.37E-06	 6.94E-02	

cg18255813	 6	 7195966	 RREB1	 Body	 	 9.38	 2.060	 6.76E-06	 6.94E-02	

cg21549285	 21	 42799141	 MX1	 5UTR	 S_Shore	 -1.01	 0.224	 7.08E-06	 6.94E-02	

cg14945867	 14	 54908007	 CNIH	 1stExon	 Island	 -
29.70	 6.550	 7.16E-06	 6.94E-02	

cg09026253	 11	 313267	 IFITM1	 TSS1500	 S_Shore	 -3.48	 0.768	 7.25E-06	 6.94E-02	

cg14651616	 11	 64563992	 MAP4
K2	 Body	 	 -6.98	 1.540	 7.27E-06	 6.94E-02	

cg24082730	 3	 12607636
6	 KLF15	 TSS200	 Island	 -

10.90	 2.410	 7.31E-06	 6.94E-02	

cg16302816	 11	 16834800	 PLEKH
A7	 Body	 	 6.50	 1.440	 7.49E-06	 6.96E-02	

cg01765174	 9	 10088096
0	

TRIM1
4	 Body	 N_Shore	 -4.47	 0.993	 8.35E-06	 7.60E-02	

cg10552523	 11	 313478	 IFITM1	 TSS1500	 N_Shelf	 -3.14	 0.702	 9.42E-06	 8.40E-02	

cg19025187	 3	 19580825
5	 TFRC	 5UTR	 N_Shore	 -6.73	 1.510	 1.07E-05	 9.16E-02	

cg21081878	 21	 38334730	 HLCS	 5UTR	 N_Shelf	 3.49	 0.785	 1.08E-05	 9.16E-02	

cg14299044	 10	 19972179	 	   5.32	 1.200	 1.09E-05	 9.16E-02	

cg24871132	 3	 14968884
6	 PFN2	 TSS200	 Island	 -

21.70	 4.900	 1.17E-05	 9.55E-02	

cg27294701	 16	 88107336	 BANP	 Body	 Island	 7.04	 1.590	 1.18E-05	 9.55E-02	

cg09296453	 6	 29692035	 HLA-F	 Body	 Island	 -3.24	 0.735	 1.31E-05	 1.04E-01	

cg16400434	 11	 73882363	 PPME1
;C2CD3	 TSS200;TSS1500	 Island	 -

25.60	 5.850	 1.46E-05	 1.13E-01	

cg16656286	 17	 4981603	 ZFP3	 TSS200	 Island	 22.40	 5.130	 1.52E-05	 1.13E-01	

cg26480543	 19	 55629279	 PPP1R
12C	 TSS1500	 S_Shore	 -7.33	 1.680	 1.52E-05	 1.13E-01	

cg19371652	 12	 11341588
3	 OAS2	 TSS1500	 	 -3.59	 0.822	 1.52E-05	 1.13E-01	

cg09597638	 17	 3907349	 	  N_Shore	 -5.48	 1.260	 1.56E-05	 1.14E-01	

cg00994629	 14	 22694547	 	   -7.44	 1.710	 1.62E-05	 1.16E-01	
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cg02314339	 10	 91020653	 	   -4.35	 1.010	 1.86E-05	 1.29E-01	

cg21468416	 9	 12701991
4	 NEK6	 1stExon;TSS150

0;5UTR	 N_Shore	 6.61	 1.530	 1.89E-05	 1.29E-01	

cg12149905	 3	 61547208	 PTPRG	 TSS200	 Island	 -
12.20	 2.820	 1.89E-05	 1.29E-01	

cg20927242	 6	 29692011	 HLA-F	 Body	 Island	 -7.14	 1.660	 1.97E-05	 1.32E-01	

cg03332034	 16	 1823786	
EME2;
MRPS3

4	
TSS1500	 Island	 -

12.30	 2.870	 2.12E-05	 1.36E-01	

cg05489271	 12	 12387169
5	 SETD8	 Body	 N_Shelf	 7.83	 1.820	 2.13E-05	 1.36E-01	

cg25843003	 6	 31431312	 HCP5	 3UTR	 	 -3.29	 0.768	 2.19E-05	 1.36E-01	

cg14090510	 7	 64839023	 ZNF92	 5UTR;Body	 Island	 -
14.70	 3.440	 2.21E-05	 1.36E-01	

cg25467833	 1	 21233506
1	 	   4.86	 1.140	 2.28E-05	 1.36E-01	

cg03725115	 6	 30458102	 HLA-E	 Body	 Island	 -5.09	 1.190	 2.29E-05	 1.36E-01	

cg15620384	 6	 34164405	 	  Island	 -6.69	 1.570	 2.34E-05	 1.36E-01	

cg08450404	 19	 58326441	 ZNF55
2	 TSS200	 S_Shore	 -8.37	 1.960	 2.35E-05	 1.36E-01	

cg06927297	 12	 11717588
9	 RNFT2	 TSS200;TSS1500	 Island	 -

27.60	 6.460	 2.36E-05	 1.36E-01	

cg21684411	 6	 31431573	 HCP5	 3UTR	 	 -6.71	 1.570	 2.40E-05	 1.36E-01	

cg20998539	 17	 62208374	 ERN1	 TSS1500	 S_Shore	 -7.32	 1.720	 2.42E-05	 1.36E-01	

cg25138854	 1	 9555557	 	  Island	 -7.03	 1.650	 2.45E-05	 1.36E-01	

cg13250752	 4	 13828199
2	 	   -6.09	 1.430	 2.46E-05	 1.36E-01	

cg26562691	 16	 23850404	 PRKCB	 Body	 S_Shelf	 6.87	 1.620	 2.47E-05	 1.36E-01	

cg23677352	 4	 14971567
5	 	   -7.92	 1.860	 2.49E-05	 1.36E-01	

cg22107533	 15	 45028083	 TRIM6
9	 TSS1500	 	 -3.14	 0.739	 2.53E-05	 1.36E-01	

cg06412917	 12	 12485884
4	 NCOR2	 Body	 S_Shelf	 6.47	 1.520	 2.57E-05	 1.37E-01	

cg01190666	 20	 62204908	 PRIC28
5	 5UTR	 N_Shore	 -3.47	 0.818	 2.67E-05	 1.40E-01	

cg11977562	 13	 11484529
7	 RASA3	 Body	 N_Shelf	 7.05	 1.660	 2.70E-05	 1.40E-01	

cg13304609	 1	 79085162	 IFI44L	 TSS1500	 	 -1.54	 0.364	 2.72E-05	 1.40E-01	

cg01537765	 19	 42914828	 LIPE	 Body	 Island	 22.00	 5.210	 2.75E-05	 1.40E-01	

cg08275025	 11	 314493	 IFITM1	 Body	 N_Shore	 -4.98	 1.180	 2.78E-05	 1.40E-01	

cg05362517	 13	 37393368	 RFXAP	 5UTR;1stExon	 Island	 -
13.80	 3.260	 2.92E-05	 1.42E-01	

cg21145248	 5	 17681667
9	

SLC34
A1	 Body	 	 6.04	 1.430	 2.94E-05	 1.42E-01	

cg07537655	 6	 16141561
2	

MAP3
K4	 Body	 S_Shelf	 1.77	 0.419	 2.95E-05	 1.42E-01	

cg26912671	 1	 66458803	 PDE4B	 1stExon	 	 10.70	 2.540	 3.01E-05	 1.42E-01	
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 403 

 404 

cg11905821	 6	 31770932	 LSM2	 Body	 N_Shelf	 11.80	 2.800	 3.05E-05	 1.42E-01	

cg06202053	 11	 64109021	 CCDC8
8B	 Body	 N_Shore	 -5.84	 1.390	 3.09E-05	 1.42E-01	

cg13794687	 7	 12330239
9	

LMOD
2	 Body	 	 6.73	 1.600	 3.11E-05	 1.42E-01	

cg23892836	 6	 29692085	 HLA-F	 Body	 Island	 -3.19	 0.759	 3.12E-05	 1.42E-01	

cg15331332	 6	 29692111	 HLA-F	 Body	 S_Shore	 -3.53	 0.840	 3.12E-05	 1.42E-01	

cg15804432	 15	 64454965	 PPIB	 Body	 Island	 -4.27	 1.020	 3.15E-05	 1.42E-01	

cg09251764	 17	 6659070	 XAF1	 TSS200	 	 -5.73	 1.370	 3.23E-05	 1.44E-01	

cg20893717	 7	 10031819
0	 EPO	 TSS1500	 Island	 13.80	 3.290	 3.26E-05	 1.44E-01	

cg08159663	 16	 57022486	 NLRC5	 TSS1500	 N_Shore	 -3.44	 0.821	 3.29E-05	 1.44E-01	

cg10019429	 19	 32836659	 ZNF50
7	 1stExon;5UTR	 Island	 -

17.20	 4.120	 3.55E-05	 1.54E-01	

cg11791770	 11	 611791	 PHRF1	 3UTR	 Island	 -6.52	 1.560	 3.64E-05	 1.56E-01	
cg11653134	 2	 66805547	 	  S_Shore	 -4.24	 1.020	 3.81E-05	 1.61E-01	

cg06981309	 3	 14626095
4	 PLSCR1	 5UTR	 N_Shore	 -1.96	 0.471	 3.84E-05	 1.61E-01	

cg07168939	 8	 14376341
2	 PSCA	 Body	 	 -5.88	 1.420	 3.88E-05	 1.61E-01	

cg04611649	 2	 15268124
0	 ARL5A	 5UTR	 N_Shelf	 7.42	 1.790	 4.04E-05	 1.66E-01	

cg16297569	 1	 92952517	 GFI1	 TSS1500;TSS200	 Island	 -8.34	 2.020	 4.16E-05	 1.70E-01	

cg01518846	 6	 26246970	 HIST1H
4G	 1stExon	 Island	 -

17.50	 4.240	 4.41E-05	 1.74E-01	

cg26852894	 4	 11157341	 	   6.31	 1.530	 4.42E-05	 1.74E-01	

cg06811183	 3	 48510438	 SHISA5	 3UTR	 	 -8.23	 2.000	 4.42E-05	 1.74E-01	
ch.10.130520

3R	 10	 63407435	 	   -8.63	 2.090	 4.43E-05	 1.74E-01	

cg12461141	 11	 5710654	 TRIM2
2	 TSS1500	 	 -3.40	 0.829	 4.79E-05	 1.87E-01	

cg13149600	 21	 43374220	 C2CD2	 TSS1500	 S_Shore	 -9.35	 2.280	 4.83E-05	 1.87E-01	

cg12660813	 1	 3192343	 PRDM
16	 Body	 N_Shelf	 7.28	 1.780	 4.96E-05	 1.89E-01	

cg24447788	 19	 795310	 	  N_Shore	 11.30	 2.760	 5.02E-05	 1.89E-01	

cg13861758	 9	 13814809
9	 	  N_Shelf	 5.08	 1.240	 5.02E-05	 1.89E-01	

cg09950208	 10	 13084123
5	 	   -4.99	 1.220	 5.24E-05	 1.95E-01	

cg01482620	 19	 48835971	 TMEM
143	 3UTR	 N_Shore	 18.40	 4.500	 5.28E-05	 1.95E-01	

cg03634735	 7	 1992524	 MAD1
L1	 Body	 S_Shore	 6.19	 1.520	 5.37E-05	 1.97E-01	

*FDR:	False	discovery	
rate	 	        
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Table	S1:	Differentially	methylated	regions	between	high	and	low	fraity	in	training	set	 	  

chr	 start	 end	 value	 area	
Number	
of	CpG	 p.value	 fwer	 Gene.Symbol	 FDR	 CpG	

3	 122281881	 122281975	 -0.068	 0.203	 3	 2.30E-07	 0.001	 DTX3L,PARP9	 1.03E-04	
cg00959259;
cg08122652;	
cg22930808	

12	 11700321	 11700489	 -0.054	 0.162	 3	 1.61E-06	 0.006	 LINC01252	 3.60E-04	
cg06202470;
cg18232235;	
cg19651115	

1	 79088769	 79118191	 -0.039	 0.154	 4	 1.17E-05	 0.049	 IFI44,IFI44L	 1.75E-03	

cg00458211;
cg01079652;	
cg05696877;
cg07107453	

21	 42797588	 42797847	 -0.046	 0.092	 2	 2.41E-05	 0.081	 MX1	 2.68E-03	 cg22862003;
cg26312951	

1	 79085162	 79085765	 -0.034	 0.168	 5	 2.99E-05	 0.122	 IFI44L	 2.68E-03	

cg00855901;
cg03607951;	
cg06872964;
cg13304609;	
cg17980508	

11	 319555	 319718	 -0.036	 0.109	 3	 4.73E-05	 0.166	 IFITM3	 2.80E-03	
cg20045320;
cg09122035;	
cg17990365	

11	 312518	 313624	 -0.023	 0.230	 10	 4.89E-05	 0.194	 IFITM1	 2.80E-03	

cg01886988;
cg01971407;	
cg04582010;
cg05432003;	
cg09026253;
cg10552523;	
cg11694510;
cg20566897;	
cg22963452;
cg27032101	

11	 314493	 317767	 -0.021	 0.228	 11	 5.01E-05	 0.195	 IFITM1	 2.80E-03	

cg12047941;
cg15013527;	
cg25050332;
cg27331665;	
cg03038262;
cg08000731;	
cg08275025;
cg16379091;	
cg18434560;
cg21686213;	
cg23570810	

21	 42798747	 42799141	 -0.041	 0.083	 2	 5.95E-05	 0.197	 MX1	 2.96E-03	 cg08924203;
cg21549285	
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List of abbreviations 406 

AUC: Area Under Curve  407 

CI: Confidence interval 408 

DMR: differentially methylated region 409 

DNA: Deoxyribonucleic acid 410 

DNAm: DNA methylation 411 

DAVID: Database for Annotation, Visualization and Integrated Discovery  412 

EWAS: epigenome-wide association study 413 

FDR: False discovery rate 414 

FWER: Family-wise error rate 415 

GLMNET: Lasso and Elastic-Net Regularized Generalized Linear Models 416 

GO: Gene ontology  417 

HIV: Human immunodeficiency virus 418 

HM450K: Human Methylation 450K BeadChip 419 

NK: Natural killer  420 

PC: Principal component 421 

QC: Quality control  422 

SVM: Support Vector Machines 423 

VACS: Veterans Aging Cohort Study 424 

VACS index: Veterans Aging Cohort Study index  425 

XGBoost: Extreme Gradient Boosting Tree 426 
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