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Summary 

Background: Stratifying the risk of colorectal cancer (CRC) based on polygenic risk scores (PRSs) 
within populations has the potential to optimize screening and develop targeted prevention strategies.  

Methods: A meta-analysis of eleven genome-wide association studies (GWAS), comprising 16 871 
cases and 26 328 controls, was performed to capture CRC susceptibility variants. Genetic models with 
several candidate PRSs were generated from Scottish CRC case–control studies (6478 cases and 11 
043 controls) for prediction of overall and site-specific CRC. Model performance was validated in UK 
Biobank (4800 cases and 20 287 controls). The 10-year absolute risk of CRC was estimated by 
modelling PRS with age and sex using the CRC incidence and mortality rates in the UK population.   

Findings: A weighted PRS including 116 CRC SNPs (wPRS116) showed the strongest performance. 
Deconstructing the PRS into multiple genetic risk regional scores or inclusion of additional SNPs that 
did not reach genome-wide significance did not provide any further improvement on predictive 
performance. The odds ratio (OR) for CRC risk per SD of wPRS116 in Scottish dataset was 1·46 
(95%CI: 1·41-1·50, c-statistics: 0·603). Consistent estimates were observed in UK Biobank (OR=1·49, 
95%CI: 1·44-1·54, c-statistics: 0·610) and showed no substantial heterogeneity among tumor sites. 
Compared to the middle quintile, those in the highest 1% of PRSs had 3·25-fold higher risk and those 
in the lowest 1% had 0·32-fold lower risk of developing CRC. Modelling PRS with age and sex in the 

general UK population allows the identification of a high-risk group with 10-year absolute risk ≥5%.  

Interpretation: By optimizing wPRS116, we show that genetic factors increase predictive 
performance but this increment is equivalent to the extraction of only one-tenth of the genetic 
susceptibility. When employing genetic risk profiling in population settings it provides a degree of 
risk discrimination that could, in principle, be integrated into population-based screening programs.  

Keywords: Colorectal cancer, genetics, prediction  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 29, 2019. ; https://doi.org/10.1101/19010116doi: medRxiv preprint 

https://doi.org/10.1101/19010116
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

Research in context 

Evidence before this study 

The recent progress in genome-wide association studies (GWASs) has discovered an increasing 
number of CRC-associated risk variants. Stratifying population risk of colorectal cancer (CRC) based 
on polygenic risk scores (PRSs) could improve screening and prevention strategies. 

Added value of this study 

Our study found that a PRS including 116 CRC susceptibility SNPs (wPRS116) was the optimal score, 
while deconstructing genetic risk into multiple regional scores or inclusion of additional SNPs above 
genome-wide significance threshold showed no further improvement on prediction performance. By 
optimizing wPRS116, we show that genetic factors in combination with age, sex and family history 
increase predictive performance but this increment is small, equivalent to only about one-tenth of the 
genetic information that could be extracted by the optimal polygenic score. In population settings, 
employing genetic risk profiling can achieve a degree of risk discrimination that is useful to inform 
the optimal design of population-based screening programs. 

Implications of all the available evidence  

It is expected that those identified to be at higher CRC risk by their genetic profile of wPRS116 might 
be more likely to participate in screening, thereby further increasing the screening uptake and 
detection rates. Implementation of PRS-based risk profiling in conjunction with quantitative fecal 
immunochemical test (qFIT) based screening would achieve a fine-tuned sensitivity/specificity of the 
qFIT test. The application of a high cut-off qFIT threshold in those at low genetic risk could avoid 
invasive tests and minimize adverse effects and cost.   
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INTRODUCTION  

Colorectal cancer (CRC) is one of the most common cancers, with 1·8 million new cases and almost 
0·8 million deaths globally in 2018.1 Substantial evidence showed that screening can reduce the CRC 
mortality by allowing early detection and removal of precancerous lesions.2 Policy makers and 
clinicians rely on risk classification to determine which individuals to screen. To date, these 
classification schemes are predominantly based on age and/or a simple classification of family history. 
Stratifying the average risk population into risk categories offers the potential of tailoring surveillance 
intensity, through which individuals at high risk could benefit from earlier or more frequent screening, 
whereas others at low risk could delay the onset or reduce the frequency of screening.  

Comprehensive information on genetic susceptibility could contribute importantly to CRC risk 
stratification, given that the heritability of CRC has been estimated to be around 16%-35%3 and the 
sibling recurrence risk ratio is about 2·0.4 We previously assessed the utility of CRC genetic risk 
profiling with a panel of 10 common genetic variants associated with CRC susceptibility.5 Although 
discrimination ability was low (c-statistic of 0·56), we showed that genotype data provides additional 
information to that from family history alone.5 Others have also showed that personalized screening 
using polygenic risk scores (PRSs) have the potential to optimize population screening for CRC and 
could identify subgroups most likely to benefit from targeted CRC prevention strategies.6 
Incorporating more complete genetic information is expected to improve the risk stratification and the 
combined effect of multiple risk loci has the potential to achieve a degree of risk discrimination that is 
useful for population-based prevention and screening programs.  

The recent progress in genome-wide association studies (GWASs) has discovered an increasing 
number of CRC-associated risk variants. These findings provide further insight into CRC 
susceptibility and enhance the prospects of applying genetic risk scores to both personalized and 
population-based screening and prevention. In this study, we aim to develop CRC prediction models 
and to assess model performance in both individual and population settings. We developed models by 
incorporating the genetic information of CRC and several markers that comprise potential CRC risk 
factors or complex traits co-occurring with CRC. To gauge the broader future potential of genetic risk 
modelling, we assessed the utility of genetic risk scores in categorizing risk subgroups within the 
general population by projecting the risk models to the UK population.  

METHODS 

Studies   

We made use of 11 previously published GWASs (i.e., CCRR1, CCFR2, COIN, CORSA, Croatia, 
DACHS, FIN, NSCCG-OncoArray, SCOT, UK1 and VQ58) to generate a list of genetic variants 
associated with CRC risk.7-17 A series of Scottish CRC case–control studies were used to test the 
predictive performance of polygenic risk scores (PRSs). The developed PRSs were further evaluated 
in an independent test dataset from UK Biobank. Standard quality control (QC) measures were 
applied to each of the datasets. After the QC process, a total of 16 871 cases and 26 328 controls were 
finally included for the derivation of genetic susceptibility SNPs, 6478 cases and 11 043 controls from 
the Scottish dataset were included for the validation of PRSs, and 4800 cases and 20 287 controls 
from the UK Biobank were included to further test the optimized PRSs. Details of these studies are 
described in appendix p 1 Supplementary Methods and appendix p 2 Table S1. 

Polygenic risk scores 
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Genome-wide polygenic score: We performed a meta-GWAS of 11 studies to obtain a list of genome-
wide significant SNPs (p<5×10-8) and their per-allele odds ratios (ORs) and standard errors for CRC 
risk. For completeness, we also included the genetic risk variants reported in early published CRC 
GWASs (appendix p 3 Table S2). A weighted genome-wide PRS (wPRS) was computed using both 
previously known susceptibility variants and independent variants identified by the meta-GWAS. 

Regional genetic scores: By using only the genome-wide significant SNP, some correlated 
informative signals that are independently associated with CRC may be excluded. Therefore, we 
constructed regional genetic scores by including SNPs associated with CRC and its risk factors (i.e., 
vitamin D [VD], C-reactive protein [CRP], body mass index [BMI], waist hip rate [WHR], and 
inflammatory bowel disease [IBD]).  Regional genetic scores were calculated by using the 
GENOSCORES library (https://pm2.phs.ed.ac.uk/genoscores/). This is similar to the approach used 
for LDpred,18 in which the correction for LD between SNPs was based on pre-multiplying the vector 
of weights by the generalized inverse of the correlation matrix estimated from 1000G reference panel 
of European ancestry.   

Model development and evaluation 

We constructed prediction models in the Scottish dataset by incorporating genetic CRC risk in the 
form of either PRSs or regional genetic scores with adjustment for the first 10 genetic principal 
components (PCs). A sequence of logistic models was fitted for: (i) a weighted PRS of identified CRC 
GWAS SNPs; (ii) regional genetic scores for CRC; and (iii) regional genetic scores for CRC and other 
relevant traits. A series of stepwise backward logistic regressions was conducted on regional genetic 
scores to obtain an optimized set of scores determined by the Akaike information criterion (AIC). The 
discriminatory accuracy of the developed models was evaluated by the area under the receiver-
operating characteristic curve (known as c-statistic) with 10-fold cross-validation. These models were 
further stratified by anatomic tumor sites (i.e., proximal colon, distal colon and rectum). The PRS 
models with the best performance in Scottish dataset were evaluated in UK Biobank in terms of 
discrimination and calibration. Odd ratios (ORs) were then derived per SD increase in PRS for overall, 
and site-specific, CRC risk. To simplify the interpretation of PRS, we categorized it into percentiles 
based on its distribution in controls.  

Combined effect of PRS and family history 

To evaluate the incremental contribution of combining PRS and family history for prediction, we 
additionally calculated the expected information for discrimination (expected weight of evidence, 
denoted as Λ).19 Briefly, the expected information for discrimination is the expected log-likelihood 
ratio in favor of correct assignment as case or control, taken as the average of the value in cases and 
the value in controls. One advantage of using Λ is that the contributions of independent variables to 
predictive performance are additive on the scale of Λ. For a logistic regression model, the sampling 
distribution of Λ is asymptotically Gaussian. In this situation, the c-statistic can be viewed as a 
mapping of Λ, which takes values from 0 to infinity to the interval from 0·5 to 1.20 We then 
recalibrated the posterior probabilities by fitting a logistic regression model with the outcome as 
response variable and the logit of the posterior probability as the predictive variable.  

Estimation of absolute risk for developing CRC 

The absolute risk of CRC for individuals in each risk category (i.e. each percentile of PRS) was 
calculated after accounting for competing risks of dying from causes other than CRC by using the 
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formula described previously.21 Specifically, we obtained sex- and age-dependent UK CRC incidence 
and mortality rates for 2016 mid-year from the Office for National Statistics (http://www.ons.gov.uk/). 
The mortality rates for non-CRC causes were estimated by subtracting the age- and sex-specific CRC 
mortality rates from the overall mortality rates. Full details of these calculations are provided in 
appendix p 1 Supplementary Methods.  
 

RESULTS 

Deriving CRC susceptibility SNPs and creating polygenic risk scores  

The meta-analysis of 11 GWASs resulted in the identification of 1593 genetic variants that were 
associated with CRC at p<5×10-8. After adding SNPs reported in other GWASs and after excluding 
SNPs in LD, a list of 116 SNPs (appendix p 3 Table S2) were retained for the creation of weighted 
genome-wide polygenic risk score (wPRS116).  

We additionally created 35 regional genetic scores that included 1593 SNPs with p<5×10-8 (Table 1). 
We also used more liberal p-value thresholds and created 40 genetic scores comprising of 1837 SNPs 
at p<10-7 and 41 genetic scores comprising of 2712 SNPs at p<10-6. The genes harbored in these 
genomic regions were annotated and are presented in appendix p 4 Table S3.  We additionally created 
17 regional scores for CRP, 5 for VD, 85 for IBD, 69 for BMI and 48 for WHR with p-value threshold 
setting as 5×10-8. More liberal p-value thresholds (p<10-7 and p<10-6) were also applied for these traits, 
and the number of regional genetic scores created and SNPs included are present in Table 1 and Table 
2. 

Optimizing the PRSs for overall and site-specific CRC risk 

We set out to validate these derived scores and to choose the best score for further analysis by 
examining their discrimination in a Scottish dataset (appendix p 5 Table S4). Specially, the combined 
effect of 116 CRC SNPs in the form of wPRS116 was statistically significantly associated with CRC 
risk (OR=1·46, 95% CI: 1·41-1·50, p=1·71×10-116, 1 SD increase of wPRS116) (Table 3). The ORs per 
1 SD increase of the wPRS116 were 1·26 (95% CI: 1·19-1·33, p=1·47×10-17) for the proximal, 1·36 (95% 
CI: 1·30-1·45, p=3·46×10-29) for the distal and 1·37 (95% CI: 1·30-1·44, p=6·37×10-37) for the rectum. 
The c-statistic for the predictive ability of wPRS116 was 0·603, showing moderate discrimination. 
Calibration of the predictive model of wPRS116 is shown in appendix p 6 Figure S1. When stratifying 
the CRC status by tumor sites, the predictive ability of wPRS116 for cancer at proximal colon (c-
statistic=0·562), distal colon (c-statistic=0·587) and rectum (c-statistic=0·587) had less accuracy than 
that for overall CRC risk. 

To minimize the cost of adding noise from the inclusion of multiple regional scores that were not truly 
associated with CRC risk, we performed stepwise backward regression. The best set of regional scores 
included 31 CRC scores, 7 CRP scores, 2 VD scores, 25 IBD scores, 18 BMI scores and 7 WHR 
scores. This yielded a c-statistics of 0·595 (Table 2). When stratifying CRC risk by tumor sites and 
using them as different endpoints for stepwise regression, the best set of regional scores yielded a c-
statistic of 0·594 for proximal cancer, 0·585 for distal cancer and 0·583 for rectal cancer. Comparing 
to the wPRS116, the regional scores showed no further improvement on the prediction of CRC.  

Testing the polygenic risk scores in UK Biobank 
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Having derived the model of polygenic scores with the best discrimination, we next explored their 
predictive power in an independent dataset (appendix p 5 Table S4). The wPRS116 showed moderate 
discrimination ability and good calibration in UK Biobank: the c-statistic was 0·610 and the 
calibration plot is shown in appendix p 7 Figure S2. When assessing the predictive ability of wPRS116 
after tumor site stratification, it yielded a c-statistic of 0·614 for proximal, 0·605 for distal and 0·606 
for rectal. The best set of regional scores developed for site-specific CRC in Sottish dataset did not 
outperform the wPRS116 in UK Biobank dataset therefore the remaining analysis concentrated on the 
wPRS116 for simplicity.  

The ORs per 1 SD increase of the wPRS116 were 1·49 (95% CI: 1·44-1·54, p=6·67×10-128) for overall 
CRC, 1·51 (95% CI: 1·43-1·61, p=6×10-42) for proximal, 1·48 (95% CI: 1·41-1·55, p=1·25×10-54) for 
distal and 1·47 (95%CI: 1·39-1·55, p=6·73×10-41) for rectal (Table 4). For individuals in the lowest 1% 
of wPRS116, the OR compared with the middle quintile (40%-60%) was 0·32 (95%CI: 0·19-0·54, 
p=8·51×10-6). By contrast, for individuals in the highest 1% of the PRS distribution, the 
corresponding estimated OR was 3·25 (95%CI: 2·50-4·22, p=1·52×10-17). When considering CRC risk 
separately for proximal colon, distal colon and rectum, the corresponding ORs showed no substantial 
heterogeneity.  

Combined effect of PRS and family history 

We then assessed the incremental contribution of adding wPRS116 and family history to a baseline 
model that included age, sex and the first 10 genetic PCs as predictors. We found no statistical 
interaction between the wPRS116 and sex, age, or family history (Table 5, Pinteraction = 0·426 for 
multiplicative interaction with sex, Pinteraction = 0·688 with age, Pinteraction = 0·388 with family history), 
therefore we did not fit additional interaction terms in the model. A logistic regression on age, sex and 
the 10 PCs yielded a c-statistic of 0·527, and the corresponding estimate of Λ was 0·01 bits (Table 6). 
When adding family history alone, the c-statistic increased to 0·552 and the corresponding Λ was 0·02 
bits. Adding both family history and wPRS116 yielded c-statistic of 0·610 and an incremental value of 
0·10 bits, which showed significantly improvement over family history alone. When recalibrating the 
posterior probabilities, it showed no increases in the test log-likelihood and indicated the model 
(baseline + family history + wPRS116) was well-calibrated (Table 6). 

Absolute risk of developing CRC by levels of PRS with age and sex 

To gauge the potential public health impact of applying such risk prediction model in the general 
population, we estimated the 10-year absolute risk of the general UK population (Figure 2, appendix p 
8 Table S5). We observed that the estimated absolute CRC risk for individuals at the highest 1% of 
PRS began exponentially to increase after 45 years old, and reached a threshold of 22·1% risk in men 
and 14·4% risk in women by 75 years of age. As 50 years of age is the recommended starting age of 
screening in the UK, we used the average risk at this age as the reference threshold (0·48% for man 
and 0·33% women). Individuals in the top 10% of wPRS116 would reach or exceed this level of risk at 
45 years old, which is 5 years earlier than the average risk population; in contrast, individuals in the 
bottom 10% of PRS would stay below this average risk until 60 years old. The age lag to reach the 
same level of risk could be as much as 15 years.  If we considered individuals with 10-year absolute 

risk ≥5% as high risk group, with risk strata by wPRS116 in population settings, we will able to 

identify 10% men and 5% women meriting intensive screening at 65 years old.  
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DISCUSSION 

In this study we describe a systematic approach to derive, validate and test a number of candidate 
genetic risk scores with incorporating information from hundreds to thousands of common genetic 
variants to predict polygenic susceptibility of CRC. We evaluated the predictive performance of both 
a genomic risk score and a series of regional genetic scores that were built based on the summary 
statistics from multiple GWASs. Our study shows that a weighted genomic risk score including 116 
CRC susceptibility SNPs is the optimal score with the strongest performance, while deconstructing 
genetic risk into multiple regional scores or inclusion of additional SNPs above the genome-wide 
significance threshold showed no further improvement on prediction performance. By implementing 
the optimal PRSs, we show that the inclusion of genetic factors into a baseline model of age, sex and 
family history results in a significant improvement of predictive power and opens up the potential for 
targeted screening for CRC risk. 

The first objective of this study was to capture all CRC susceptibility SNPs and estimate the weights 
of the corresponding SNPs by meta-analyzing 11 studies with more than 42 710 individuals. The 
majority of the 116 SNPs had previously been identified but were further validated in this meta-
GWAS without inclusion of study samples used for model development and evaluation. Although 
each variant individually exerts only modest effects on CRC risk (106 of 116 have per-allele odds 
ratio <1·20), the joint effect of SNPs as wPRS strengthens the association with an observed OR of 
1·46 in Scottish dataset and 1·49 in UK Biobank dataset for per 1 SD increase of wPRS116. 

ROC analysis of the genetic model that included wPRS116 showed an improved but still modest 
discriminative performance (c-statistic: 0·603 in Scottish dataset, 0·610 in UK Biobank dataset). To 
our knowledge, the best predictive performance achieved by PRS along with age and family history 
was 0·692 and 0·603 for Korean men and women,22 but the SNPs were chosen from the same dataset 
used to generate the model, and therefore the reported c-statistics are likely inflated. Other genetic 
models showed consistently low to modest discriminatory abilities. We previously developed a model 
including family history and 10 common genetic variants yielding a c-statistic of 0·56.5 Hsu et al 
developed sex-specific models by using family history and 27 common genetic variants with 
adjustment of endoscopy history and obtained a discrimination ability of 0·59 for men and 0·56 for 
women.23 Similarly, Smith et al reported a c-statistic of 0·57 for genetic risk model combing 41 CRC 
susceptibility SNPs.24 The most recent genetic model for CRC was developed by Jeon et al including 
63 CRC susceptibility SNPs and achieved a very slightly improved predictive accuracy with a c-
statistic of 0·59.25 This modest level of test performance is consistent across study populations, 
suggesting that risk assessment algorithms based on independent SNPs reaching genome-wide 
significance level have similar performance characteristics in European populations.  

With the expectation of improving the predictive power of common genetic variants, we additionally 
derived a set of SNPs associated with CRC risk with liberal p-value thresholds to allow the 
contribution of signals from additional susceptibility SNPs that have not been discovered or validated 
in previous GWAS efforts. Any correlations between SNPs were addressed by creating LD-adjusted 
regional scores. However, with inclusion of thousands of SNPs, the predictive capacity did not 
improve but showed a lower c-statistic in the range of 0·58 to 0·59, which is probably due to the cost 
of adding noise from SNPs that were not truly associated with CRC. To assess if the genetic 
susceptibility of known risk factors of CRC would further contribute to CRC prediction, we 
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developed prediction models, which incorporated genetic information of several known risk factors, 
but the c-statistic remained close to 0·60.  

Most previous efforts mainly focused on the predictive ability of PRS to capture the overall risk of 
CRC.5,6,23-25 However, there is compelling evidence suggesting that genetic risk factors may differ by 
anatomic locations.26,27 We therefore specifically aimed to improve prediction of site-specific CRC by 
deconstructing the commonly used genomic risk score into several regional scores, allowing 
susceptibility signals through multiple/different mechanisms to influence genetic predisposition to 
site-specific CRC.  Using proximal, distal and rectal cancer as distinct disease endpoints, we derived a 
subset of regional scores influencing cancer at each anatomic site, but their predictive performance 
still showed modest discriminative ability. Better annotation and characterization of these clusters of 
genomic regions on a biologically mechanistic basis would be helpful to capture genetic heterogeneity 
in site-specific CRC, but it is beyond the scope of the present study.  

An extrapolation to the UK population led to the conclusion that 10% of the general population will 
have a 10-years absolute risk approaching 5% after 65 years old on the basis of quantifiable genetic 
risk alone and who will merit intensive screening. A 5% threshold of absolute risk has clinical and 
public health impact since it exceeds the highest risk at any age in the general population and it is 10-
fold greater than the risk of a 50-year old person who is eligible to enter the population-based 
screening programs. Additionally, the modelling shows individuals at different levels of the wPRS116 
will reach the same risk estimate at different ages, supporting the notion that using genetic profiling in 
combination with age will lead to more effective routine screening.   

Estimates of absolute risk derived from our analysis may help to refine recommendations regarding 
the age at screening initiation. Although CRC family history allows identification of a small 
proportion of high risk individuals, there is considerable potential for recall bias and it does not allow 
any differentiation of risk among the vast majority of people without family history. Profiling CRC 
susceptibility by genetic testing would overcome such shortcomings and provides additional 
inheritable information that is not captured by family history. In addition, given that the screening 
participation rate in Scotland is ~60%,28 it is possible that those identified to be at higher CRC risk by 
their genetic profile might be more likely to participate in screening, thereby further increasing the 
screening uptake and detection rates.29,30 Currently in Scotland the bowel screening programme uses 
the quantitative fecal immunochemical test (qFIT).28 Implementation of qFIT-based screening in 
conjunction with PRS-based risk profiling would achieve a fine-tuned sensitivity/specificity of the 
qFIT test. The application of a high cut-off qFIT threshold in those at low genetic risk could avoid 
invasive tests and minimize adverse effects and cost. Conversely, for high genetic risk groups, the 
sensitivity of qFIT can be increased by adjusting the cut-off concentration to a lower value.  

By exploiting a wealth of data available to us, we conducted a rigorous 3-stage study with score 
derivation, optimization and evaluation in multiple datasets. We reduced the dimensionality of the 
prediction task from millions of common variants to a hundred CRC susceptibility SNPs and multiple 
regional genetic scores to develop models for both overall and site-specific CRC. It should be noted 
that the optimal GRS derived in this study was mainly based on the tagging variants in meta-GWAS, 
while application of underlying functional or causal variants with potentially stronger effect may 
further improve the risk discrimination. For site-specific models, although we treated proximal, distal 
and rectal cancer as distinct endpoints to generate the best set of regional scores respectively, the 
weights used for score calculation were derived from the coefficient estimates for overall CRC. 
Although we have increased the number of CRC susceptibility SNPs significantly (to >100 SNPs), the 
contribution to individualized risk profiling is limited. For the purposes of personal profiling, the 
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optimal PRS needs to be combined with information on the external (e.g., lifestyle) and internal 
environment (e.g., microbiome) and with realistic measures of clinical status (e.g., biomarkers) to 
provide an integrated description of individual trajectories from different dimensions.  

Figure legends 

Figure 1. Schematic representation of the study design. 

Figure 2. 10-year absolute risk of developing CRC in men and women.  Absolute risks were 
calculated based on the UK incidence and mortality rates and using the wPRS116 relative risk 
estimated as described.   
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Table 1. Comparison of methods for deriving the genetic scores: Results from Scottish dataset (SOCCS).    
 

* C-statistics were estimated from the 10-fold cross-validation 
 
 
Table 2. Stepwise regression of LD-adjusted regional scores for CRC and related traits with varying p-value thresholds (SOCCS). 

 

 

 

 

 

 

 

 
* C-statistics were estimated from the 10-fold cross-validation 
 
 
 
 
 

 

 

 

 

 

 

SNPs selection SNPs included for 
creation of scores 

Scores entering model 
(n) 

CRC overall Proximal Distal Rectal 
Scores 
selected (n) 

C-
statistics 

Scores 
selected (n) 

C-
statistics 

Scores 
selected (n) 

C-
statistics 

Scores 
selected (n) 

C-
statistics 

Genome-wide significant SNPs        
CRC GWAS SNPs 116 One weighted PRS 1 0·603 1 0·562 1 0·587 1 0·587 
Stepwise regression of CRC LD-adjusted regional scores with varying p-value thresholds  
< 5×10-8  1593 35 scores 35 0·584 16 0·583 21 0·584 23 0·586 
<10-7 1837 40  scores 36 0·584 19 0·585 23 0·587 25 0·587 
<10-6 2712 41  scores 36 0·586 19 0·589 25 0·590 26 0·591 

SNPs selection SNPs included for creation of scores Scores entering model (n) Scores selected by the model (n) C-statistics*  

< 5×10-8 
1593 CRC SNPs + 870 CRP SNPs + 521 VD 
SNPs + 3217 UC SNPs + 4814 CD SNPs + 
1501 BMI SNPs + 708 WHR SNPs  

35 CRC scores + 17 CRP scores + 5 VD 
scores + 35 CD scores + 50 UC scores + 69 
BMI scores + 39 WHR scores 

31 CRC scores + 7 CRP scores + 2 
VD scores + 25 IBD scores + 18 
BMI scores + 7 WHR scores 

Overall: 0·595 
Proximal: 0·594 
Distal: 0·585 
Rectal: 0·583 

<10-7 
1837 CRC SNPs + 911 CRP SNPs + 540 VD 
SNPs + 3464 UC SNPs + 5168 CD SNPs + 
1622 BMI SNPs + 811 WHR SNPs 

40 CRC scores + 17 CRP scores + 6 VD 
scores + 39 CD scores + 50 UC scores + 74 
BMI scores + 48 WHR scores 

35 CRC scores + 6 CRP scores + 2 
VD scores + 26 IBD scores + 20 
BMI scores + 11 WHR scores 

Overall: 0·596 
Proximal: 0·597 
Distal: 0·589 
Rectal: 0·585 

<10-6 
2,712 CRC SNPs + 1,152 CRP SNPs + 656 VD 
SNPs + 4899 UC SNPs + 6690 CD SNPs + 
2359 BMI SNPs + 1178 WHR SNPs 

41 CRC scores + 18 CRP scores + 7 VD 
scores + 40 CD scores + 51 UC scores + 76 
BMI scores + 49 WHR scores 

35 CRC scores + 6 CRP scores + 1 
VD scores + 31 IBD scores + 16 
BMI scores + 9 WHR scores 

Overall: 0·598 
Proximal: 0·593 
Distal: 0·595 
Rectal: 0·586 
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Table 3: The association between wPRS116 and CRC risk in SOCCS and UKBB. 

 
 
 
 
 
 

* C-statistics were estimated from the 10-fold cross-validation 

 

Table 4. Association between the percentiles of wPRS116 and CRC risk in different sites: Odds ratios and 95% Confidence Intervals (UKBB). 

Allele 
count 
percentile 

 Overall CRC Proximal Distal Rectal 
P 

heterogeneity  N 
control 

N case OR (95%CI) P N 
case 

OR (95%CI) P N 
case 

OR (95%CI) P N 
case 

OR (95%CI) P 

<1% 234 16 0·32 (0·19 - 0·54) 8·51×10-6 4 0·30 (0·11 - 0·81) 0·018 6 0·34 (0·15 - 0·78) 0·011 4 0·28 (0·10 - 0·77) 0·012 0·956 

1-5% 912 92 0·48 (0·38 - 0·60) 1·04×10-10 20 0·38 (0·24 - 0·61) 3·56×10-5 33 0·49 (0·34 - 0·70) 1·05×10-4 33 0·60 (0·41 - 0·87) 0·008 0·326 

5-10% 1120 135 0·57 (0·47 - 0·69) 1·17×10-8 37 0·58 (0·41 - 0·82) 0·003 45 0·54 (0·39 - 0·74) 1·56×10-4 39 0·58 (0·41 - 0·81) 0·002 0·941 

10-20% 2163 346 0·76 (0·66 - 0·87) 6·46×10-5 77 0·62 (0·48 - 0·81) 4·43×10-4 137 0·85 (0·69 - 1·05) 0·136 99 0·76 (0·60 - 0·96) 0·026 0·182 

20-40% 4206 810 0·91 (0·82 - 1·01) 0·093 174 0·72 (0·59 - 0·88) 0·002 315 1·00 (0·85 - 1·18) 0·993 219 0·86 (0·72 - 1·04) 0·132 0·044 

40-60% 4143 874 1·00 -- 237 1·00 -- 309 1·00 -- 250 1·00 -- -- 

60-80% 3882 1138 1·39 (1·26 - 1·53) 6·06×10-11 261 1·18 (0·98 - 1·41) 0·089 421 1·45 (1·25 - 1·70) 1·82×10-6 318 1·36 (1·14 - 1·61) 5·32×10-4 0·233 

80-90% 1918 589 1·46 (1·29 - 1·64) 4·28×10-10 152 1·39 (1·12 - 1·71) 0·003 216 1·51 (1·26 - 1·81) 1·02×10-5 164 1·42 (1·16 - 1·74) 9·53×10-4 0·825 

90-95% 893 362 1·92 (1·67 - 2·22) 4·23×10-18 97 1·90 (1·48 - 2·43) 3·60×10-7 136 2·04 (1·65 - 2·53) 4·71×10-11 94 1·74 (1·36 - 2·24) 1·21×10-5 0·637 

95-99% 666 336 2·39 (2·06 - 2·78) 9·88×10-23 73 1·92 (1·46 - 2·52) 3·72×10-6 137 2·76 (2·22 - 3·43) 2·20×10-16 87 2·17 (1·67 - 2·80) 3·05×10-9 0·103 

>99% 149 102 3·25 (2·50 - 4·22) 1·52×10-17 27 3·17 (2·06 - 4·87) 8·15×10-8 32 2·88 (1·93 - 4·29) 1·30×10-7 29 3·23 (2·12 - 4·90) 1·78×10-8 0·916 

P Trend 1·75×10-203 2·34×10-45 4·92×10-65 2·57×10-41  
OR, Odds Ratio; Confidence Intervals, CI; 

 

  

Tumor sites 
Validation dataset (SOCCS) Test dataset (UKBB)  
OR (95% CI) P C-statistics* OR (95% CI) P C-statistics * 

CRC overall 1·46 (1·41-1·50) 1·71×10-116 0·603 1·49 (1·44-1·54) 6·67×10-128 0·610 
Proximal 1·26 (1·19-1·33) 1·47×10-17 0·562 1·51 (1·43-1·61) 6·00×10-42 0·614 

Distal 1·36 (1·30-1·45) 3·46×10-29 0·587 1·48 (1·41-1·55) 1·25×10-54 0·607 
Rectal 1·37 (1·30-1·44) 6·37×10-37 0·587 1·47 (1·39-1·55) 6·73×10-41 0·606 
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Table 5. Interactions between PRS with age, sex and family history (FH). 

 

 

 

 

 

 

Table 6. Incremental contribution of genetic factors to CRC detection compared with family history (UKBB). 

Models Crude  
C-statistics 

Model-based   
C-statistics 

Crude Λ  
(bits) 

Model-based 
Λ (bits) 

Incremental  
Difference in 

Test log-
likelihood (nats) 

Difference in log-
likelihood after  

Recalibration (nats) 

Baseline only 0·527 0·527 0·01 0·01 -- -- 2 

Baseline + FH 0·552 0·553 0·03 0·03 0·02 70 1 

Baseline + wPRS116 0·610 0·611 0·11 0·11 0·10 281 0 

Baseline + wPRS116 + 
FH 

0·610 0·611 0·11 0·11 0·10 281 0 

Baseline + regional 
scores 

0·597 0·598 0·09 0·09 0·08 108 2 

 

 UK Biobank (n = 25 087) 

 beta se p 

PRS 0·056 0·003 <2×10-16 

PRS*sex 0·004 0·005 0·426 

PRS*age 0·0001 0·0004 0·689 

PRS*FH -0·004 0·006 0·471 
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