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Abstract: Magnetic Resonance Imaging (MRI) provides three-dimensional anatomical and 7 

physiological details of the human brain. We describe the Integrated Voxel Analysis Method 8 

(IVAM) which, through machine learning, classifies MRI images of brains afflicted with early 9 

Alzheimer’s Disease (AD). This fully automatic method uses an extra trees regressor model in 10 

which the feature vector input contains the intensities of voxels, whereby the effect of AD on a 11 

single voxel can be predicted. The resulting tree predicts based on the following two steps: a K-12 

nearest neighbor (KNN) algorithm based on Euclidean distance with the feature vector to classify 13 

whole images based on their distribution of affected voxels and a voxel-by-voxel classification by 14 

the tree of every voxel in the image. An Ising model filter follows voxel-by-voxel tree-15 

classification to remove artifacts and to facilitate clustering of classification results which identify 16 

significant voxel clusters affected by AD. We apply this method to T1-weighted MRI images 17 

obtained from the Open Access Series of Imaging Studies (OASIS) using images belonging to 18 

normal and early AD-afflicted individuals associated with a Client Dementia Rating (CDR) which 19 

we use as the target in the supervised learning. Furthermore, statistical analysis using a pre-labeled 20 

brain atlas automatically identifies significantly affected brain regions. While achieving 90% AD 21 

classification accuracy on 198 images in the OASIS dataset, the method reveals morphological 22 

differences caused by the onset of AD. 23 

Introduction: Alzheimer’s Disease (AD) is a prevalent degenerative disorder in today’s society 24 

as the 7th leading cause of death in America (Speert et al., 2012). As the causes and inner 25 

mechanisms underlying AD-related brain abnormalities are not fully understood, no cure has yet 26 

been found; however, treatments such as pharmacology that inhibit acetylcholinerase have 27 

successfully prolonged the lifespan of affected individuals by slowing down the degeneration of 28 

acetylcholine-releasing neurons (Bianchetti et al., 2006). Other biomolecular phenomena 29 
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including the formation of beta-amyloid plaques and tao-fibrillary tangles have been implicated, 30 

but its relation to macroscopic mechanisms concerning brain regions is still nebulous. 31 

Computational methods for classification and segmentation can facilitate and supplement clinical 32 

diagnoses.  33 

In order to reveal these macroscopic mechanisms between brain regions, many current 34 

image classification and segmentation algorithms incorporate an essential step of feature extraction. 35 

For example, the widely used and effective Voxel-Based Morphometry (VBM) method is designed 36 

for feature extraction to determine specific anatomic patterns of cerebral atrophy (Ashburner and 37 

Friston, 2000). However, this method suffers from its dependence on a precise registration and 38 

warping of MRI images to a priori probability maps (Veress et al., 2013). Its high sensitivity to 39 

accurate registration creates a limitation because the templates inherently differ with various MRI 40 

images due to structural variance of brain shape. Additionally, its high computational complexity 41 

leads to complex implementation and long run-time. Other methods for segmentation such as the 42 

Hybrid Watershed Algorithm (HWA) and the skull-stripping Brain Extraction Methods (BEM and 43 

BEM2DE) rely on accurate iterative thresholding and on assumptions about brain shape that limit 44 

their practical use when analyzing variegated brain shapes belonging to subjects of various 45 

demographic groups (Fennema-Notestine et al., 2006). Fully automatic methods need to quickly 46 

and effectively account for individual differences in brain shape without human supervision.  47 

The essential steps that improve the results in these automatic methods are energy-based 48 

deformation fields which identify regions of interest, whereby a driving force pushes an objective 49 

function to convergence. Success of the energy methods can be attributed to the utilization of 50 
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information about local differences as well as about global trends of the image. 51 

 52 

Figure 1: A flowchart outlining the Integrated Voxel Analysis Method (IVAM) with cross-sections 53 

resembling certain steps. The preprocessing step incorporates spatial normalization and (not shown) 54 

skull-stripping to create a dataset applicable to sampling for IVAM. The machine learning section 55 

utilizes a K-Nearest Neighbor (KNN) classifier which takes as input the voxel-by-voxel classified 56 

brain from an extra-randomized regressor tree. 57 

We propose a multifaceted algorithm that utilizes methods for decision-tree learning to 58 

robustly and automatically classify AD affected brains as well as cluster and segment classification 59 

results of individual voxels to yield severely affected brain regions (Figure 1). First, the method, 60 

termed the Integrated Voxel Analysis Method (IVAM), skull-strips each test and training MRI 61 

image and spatially normalizes to the MNI152 brain-masked, i.e. skull-stripped, template. At the 62 
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center of our framework of integrated processes is a trained extra-randomized trees regressor 63 

known to be highly effective for supervised learning of complex data (Geurts et al., 2006). The 64 

trained model is used to estimate the distribution of Alzheimer affected voxels, which are sampled 65 

from the MRI. A second model placed on top of the distributions predicts the CDR of the whole 66 

brain. The aggregated learning model can also automatically relay information about specifically 67 

affected brain regions allowing for novel insights into the inner neurological workings of AD 68 

tailored to accurately diagnose AD in its early stages. 69 

Methods: 70 

A. Data Set. 71 

We obtain 233 anonymous MRI images from the Open Access Series of Imaging Studies 72 

(OASIS) (Buckner et al., 2004). Their age range is from 18-96 years with a mean of 53 years with 73 

each clinically diagnosed with a Client Dementia Rating (CDR) which rates subjects based on 6 74 

criteria: memory, orientation, judgment and problem solving, function in the community, home 75 

and hobbies, and personal care (Buckner et al., 2004). The values range from 0 to 3 where 0 76 

indicates no dementia while 0.5 and 1 indicate very mild and mild dementia respectively. In order 77 

to specifically analyze the onset of AD and due to the sparsity of the dataset of images labeled 78 

with a CDR > 1, we use images labeled with a CDR of 0, 0.5, and 1. All images are T1-weighted 79 

prepared rapid echo-gradient and obtained on a 1.5-T vision scanner by the OASIS study. (Buckner 80 

et al., 2004). Acquisition matrix was [256 256] with 128 contiguous saggital slices of thickness of 81 

1.25 mm.  82 

B. Skull-Stripping 83 
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 84 

Figure 2: (A) Left panel illustrates the raw rendering of the 3D image obtained from OASIS. 85 

Right panel illustrates a brain with its skull image removed leaving behind gray and white 86 

matter in the image. 87 

We perform two gray-level thresholds on the raw MRI images using Matlab. Then, we 88 

dilate the image with a ball structuring image, perform a third gray-level threshold, and isolate the 89 

main part of the head by taking the largest connected component in 3D.   90 

C. Spatial Normalization. 91 

One of the most essential components to accurate analysis of MRI images is the spatial 92 

normalization of the dataset. Through co-registration, processing of MRI images can be compared 93 

across multiple subjects, especially important for brain Region of Interest (ROI) analysis in 94 

pinpointing the affected regions. The images were normalized to the template provided by the 95 

Montreal Neuroimaging Institute known as the MNI152 template built by averaging across 152 96 

brains. The images were first converted to the same voxel resolution of 1mm x 1mm x 1mm and 97 

symmetrically zero-padded to transform to the same dimensions. Next, each image was registered 98 

to the MNI152 template using a one plus one evolutionary optimizer to maximize the mutual 99 

information metric provided by David Mattes (Mattes et al., 2001). 100 
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D. Feature Selection 101 

Feature selection algorithm relied on the assumption that the level of Alzheimer’s projected 102 

at a voxel depends on the surrounding voxels as well as the three-dimensional coordinate of the 103 

voxel. Our feature vector included the values of all voxels around the voxel of interest with a preset 104 

radius and the appended 3D coordinates of the voxels of interest as well as the gender of the subject 105 

as male and female brain anatomy have been shown to exhibit structural differences (Ritchie et al. 106 

2018). For each MRI image we enumerate all coordinates where the surrounding points are not all 107 

zeros. For each voxel we selected features as described above. Because of the sheer size of MRI 108 

images, we added a variable step constant throughout the whole aggregated model. Instead of 109 

enumerating every point, the step dictates step incrementation in the coordinates for the voxel of 110 

interest.  111 

E. Building the Model. 112 

The label of each feature vector is simply the CDR rating of respective patient. Once we 113 

built the data-set, we randomly sampled half of the data and used that to train a the ensemble, Extra 114 

Random Trees Regressor (Geurts et al., 2006) using the popular sklearn library (Pedregosa et al., 115 

2011). Although traditionally combined with an ensemble method such as Random Forests, these 116 

Extra Random Tree Regressors (ERTR) tend to exhibit losses in accuracy observed through 117 

computational trials we conducted compared to the ERTR alone. The ERTR now predicts the CDR 118 

rating of single voxels in the MRI image. 119 

F. Predicting the CDR.  120 

Our method for predicting the CDR arises from our axiomatic assumption that the severity 121 

of Alzheimer’s disease in a patient, will be represented by the distribution of individual CDR 122 
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regressed voxels. Our first intuition was to use the Kullback-Leibler divergence as a tool to 123 

compare the distributions. Although this gave us promising results, the utilization of K-Nearest 124 

Neighbor (Bentley, 1975) achieved much greater accuracy than the Kullback-Leibler divergence. 125 

Voxel sampling from the brain proceeded in the same way as feature selection, using the same 126 

function. After sampling, the regression model predicted the CDR of each individual voxel. The 127 

label or target for the KNN algorithm arises as a function of the CDR of the respective patient. 128 

The accuracy will be introduced at the Discussion section below.  129 

G. Identifying Severely Affected Brain Regions.  130 

The process of pinpointing severely affected brain regions from MRI’s can be seen as a 131 

pipelining process. A sagittal half-brain slice of a normalized MRI image compares to the 132 

following CDR classified image: the classified image depicts the results of the denoising model 133 

applied to the CDR voxel predictions. Black, grey, and white correspond to CDR predictions of 0, 134 

0.5, and 1 respectively.  135 

H. Denoising via Ising Model 136 

Using Murphy’s derivation of the Ising model, we define the probability of the update as  137 

log 𝑝(𝑦) = − ∑ 𝑦𝑠𝑤𝑠𝑡𝑦𝑡𝑠≠𝑡  (1) 138 

(Murphy, 2012).  139 

The weight wst signifies the amount we attribute to the difference between the two pixels 140 

from each 2D slice and y𝑛 represents the intensity value of voxel y. To simplify the calculations, 141 

we modify our equation to:  142 

log 𝑝(𝑦) =
1

2
y𝑇Wy (2), 143 
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where W is a Toeplitz matrix. We define our objective function as 144 

argmax p(y, x)  =  p(x)p(y|x) (3).  145 

Continuing, by Murphy’s derivation, the unnormalized prior develops as follows:  146 

p(x) =
1

Z0
e−E0(x)  =

1

𝑍0
e∑ ∑ 𝑊𝑖𝑗𝑥𝑖𝑥𝑗𝑗∈𝑛𝑏ℎ𝑑(𝑖)𝑖  (4), 147 

where nbhd denotes the immediate neighborhood of the two-dimensional pixel j. The Z0 is not 148 

needed since we are using the unnormalized prior. On the other hand, our unnormalized posterior 149 

will be:  150 

p(x|y) =
p(y|x)p(x)

p(x,y)
 =

1

Z
 e∑ 𝐿𝑖(𝑥𝑖)𝑖 −𝐸0(𝑥) (5). 151 

For the mean field update, we need to compute (see Murphy section 21.3.1 for details)  152 

log qj (xj)  =  E−q𝑗
 [log p̃(x)]  +  const (6). 153 

and since  154 

E−𝑞𝑗
(f)  =  ∑ 𝑞(𝑥𝑗 , 𝜇𝑗|𝑥𝑗)𝑓(𝑗)𝑘≠𝑗 = ∑ 𝑞(𝜇𝑗)𝑓(𝑗)𝑘≠𝑗  (7), 155 

we have  156 

q𝑖(x𝑖)  ∝  𝑒𝑥𝑖 ∑ 𝑊𝑖𝑗𝜇𝑗+𝐿𝑖(𝑥𝑖)𝑗∈𝑛𝑏ℎ𝑑  (8). 157 

which yields the important theoretical step. Murphy derives an actual update. In Murphy’s 158 

(Murphy, 2012) derivation (page 738), note that it uses  159 

L +  i ≡  Li(+1) and L −  i ≡  Li(−1) (9). 160 
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which are the log likelihood functions centered at each of these two values. The variance in the 161 

likelihood controls the strength of the prior. This is the final update, which also incorporates a 162 

damping term: 163 

µ𝑖
𝑡  =  (1 − λ)µ𝑖  + λ tanh (x𝑖  ∑ W𝑖𝑗µ𝑗

𝑗∈𝑛𝑏ℎ𝑑

+ 0.5(L𝑖
+ − L𝑖

− ))  (10) 164 

To convert this algorithm into a tertiary denoiser, we introduced this function to convert CDR to 165 

Ising denoiser values, 166 

(2 ∗  CDR) –  1 (11). 167 

I. Clustering and Segmentation Model. 168 

Our clustering and segmentation model bases on Ward’s method (Ward, 1963). We input 169 

the connectivity matrix of the denoised image into Ward’s hierarchical clustering method. The 170 

connectivity matrix can be defined as a matrix where each sample is defined through the 171 

neighboring samples following a given structure of the data. The connectedness structure of the 172 

data consisted of the one-voxel neighborhood of each voxel.  173 
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Results: 174 

 175 

Figure 3: Shown are three sagittal cross-sections of brains afflicted by Alzheimer’s Disease with 176 

a CDR of 0.5. Two brains show high severity near the hippocampus while all three show moderate 177 

to severe severity near the inferior sagittal sinus. OASIS 339 illustrates how many brains afflicted 178 

by Alzheimer’s Disease show severity near the cortices separating brain lobes. 179 

The hippocampus, heavily involved in memory storage, appears highly affected at both 0.5 180 

and 1.0 CDR according to IVAM. In a sagittal cross-section, the streak above the hippocampus 181 

known as the inferior sagittal sinus appears slightly less but still highly affected by early 182 

Alzheimer’s Disease. 183 

To automate the finding of affected brain regions, we downloaded the Talairach labeled 184 

database and registered it to the MNI template, then through a series of 90 degree 3D rotations, 185 

matched it to the orientation of 3D classified brains. Testing the difference between brain regions 186 

of CDRs of 0 (n = 51) and 0.5 (n = 11), the results are shown in Table 1. 187 
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Table 2: Significances between brains with CDR of 0 (n = 51) and 0.5 (n = 11). 

 Region Name p-value 

1 'Left Cerebrum.Limbic Lobe.Inferior Temporal Gyrus.White Matter.*' 0.047568 

2 'Left Cerebrum.Frontal Lobe.*.*.*' 0.041913 

3 'Right Cerebrum.Frontal Lobe.*.*.*' 0.035739 

4 'Left Cerebellum.Anterior Lobe.Pyramis.Gray Matter.*' 0.010867 

5 

'Right Cerebrum.Limbic Lobe.Fusiform Gyrus.Gray Matter.Brodmann 

area 20' 0.025399 

6 'Right Cerebrum.Limbic Lobe.Fusiform Gyrus.White Matter.*' 0.027071 

7 

'Right Cerebrum.Frontal Lobe.Orbital Gyrus.Gray Matter.Brodmann 

area 47' 0.045191 

8 'Right Cerebrum.Frontal Lobe.Middle Frontal Gyrus.*.*' 0.00947 

9 

'Left Cerebrum.Limbic Lobe.Parahippocampal Gyrus.Gray 

Matter.Amygdala' 0.037748 

10 'Left Cerebrum.Frontal Lobe.Medial Frontal Gyrus.*.*' 0.03215 

11 

'Left Cerebrum.Occipital Lobe.Fusiform Gyrus.Gray Matter.Brodmann 

area 19' 0.032959 

12 'Left Cerebrum.Frontal Lobe.Subcallosal Gyrus.*.*' 0.02893 

13 'Right Cerebrum.Frontal Lobe.Subcallosal Gyrus.White Matter.*' 0.042401 

14 

'Right Cerebrum.Frontal Lobe.Subcallosal Gyrus.Gray 

Matter.Brodmann area 47' 0.028412 

15 'Right Cerebrum.Occipital Lobe.Middle Occipital Gyrus.*.*' 0.043875 

16 

'Right Cerebrum.Occipital Lobe.Parahippocampal Gyrus.Gray 

Matter.Brodmann area 37' 0.018895 

17 'Left Cerebrum.Sub-lobar.Third Ventricle.Cerebro-Spinal Fluid.*' 0.021665 

18 

'Right Cerebrum.Temporal Lobe.Sub-Gyral.Gray Matter.Brodmann area 

13' 0.035569 

19 'Left Cerebrum.Frontal Lobe.Extra-Nuclear.*.*' 0.045111 

20 

'Right Cerebrum.Frontal Lobe.Superior Frontal Gyrus.Gray 

Matter.Brodmann area 10' 0.047755 

21 '*.*.Sub-Gyral.*.*' 0.049801 

22 'Right Cerebrum.Sub-lobar.Caudate.Gray Matter.Caudate Head' 0.025211 

23 

'Right Cerebrum.Sub-lobar.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 47' 0.006871 

24 'Right Cerebrum.Frontal Lobe.*.Gray Matter.Brodmann area 10' 0.034613 

25 

'Right Cerebrum.Occipital Lobe.Inferior Temporal Gyrus.Gray 

Matter.Brodmann area 18' 0.043662 

26 'Right Cerebrum.Midbrain.Extra-Nuclear.White Matter.*' 0.025544 

27 'Left Cerebrum.Frontal-Temporal Space.Superior Temporal Gyrus.*.*' 0.049101 

28 

'Right Cerebrum.Frontal Lobe.Sub-Gyral.Gray Matter.Brodmann area 

10' 0.027311 

29 'Right Cerebrum.*.Cuneus.Gray Matter.*' 0.003708 

30 

'Right Cerebrum.Temporal Lobe.Lingual Gyrus.Gray Matter.Brodmann 

area 19' 0.033767 
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31 

'Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.*' 0.007284 

32 

'Right Cerebrum.Sub-lobar.Extra-Nuclear.White Matter.Medial Globus 

Pallidus' 0.000862 

33 

'Left Cerebrum.Sub-lobar.Inferior Frontal Gyrus.Gray Matter.Brodmann 

area 47' 0.017253 

34 'Left Cerebrum.Sub-lobar.Thalamus.Gray Matter.Pulvinar' 0.04674 

35 'Left Cerebrum.Sub-lobar.Inferior Frontal Gyrus.*.*' 0.037133 

36 

'Left Cerebrum.Limbic Lobe.Posterior Cingulate.Gray Matter.Brodmann 

area 30' 0.026286 

37 

'Left Cerebrum.Occipital Lobe.Middle Temporal Gyrus.Gray 

Matter.Brodmann area 19' 0.0116 

38 

'Right Cerebrum.Occipital Lobe.Middle Temporal Gyrus.Gray 

Matter.Brodmann area 39' 0.046534 

39 

'Right Cerebrum.Temporal Lobe.Superior Temporal Gyrus.Gray 

Matter.Brodmann area 39' 0.035883 

40 

'Left Cerebrum.Temporal Lobe.Transverse Temporal Gyrus.Gray 

Matter.Brodmann area 41' 0.009321 

41 

'Left Cerebrum.Sub-lobar.Transverse Temporal Gyrus.Gray 

Matter.Brodmann area 41' 0.009155 

42 

'Left Cerebrum.Sub-lobar.Thalamus.Gray Matter.Lateral Posterior 

Nucleus' 0.005067 

43 'Right Cerebrum.Temporal Lobe.Precentral Gyrus.White Matter.*' 0.031295 

44 'Left Cerebrum.Frontal Lobe.Insula.White Matter.*' 0.046733 

45 'Left Cerebrum.Limbic Lobe.Extra-Nuclear.*.*' 0.030946 

46 'Inter-Hemispheric.Limbic Lobe.Anterior Cingulate.*.*' 0.020917 

47 'Left Cerebrum.*.Middle Frontal Gyrus.*.*' 0.005934 

48 'Left Cerebrum.Limbic Lobe.Posterior Cingulate.Gray Matter.*' 0.013244 

49 'Right Cerebrum.Limbic Lobe.Posterior Cingulate.Gray Matter.*' 0.032718 

50 'Right Cerebrum.Parietal Lobe.Precentral Gyrus.*.*' 0.030813 

51 

'Left Cerebrum.Frontal Lobe.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 6' 0.045349 

52 'Left Cerebrum.*.Inferior Frontal Gyrus.*.*' 0.022252 

53 

'Right Cerebrum.Occipital Lobe.Precuneus.Gray Matter.Brodmann area 

18' 0.029092 

54 

'Left Cerebrum.Occipital Lobe.Superior Occipital Gyrus.Gray 

Matter.Brodmann area 19' 0.033095 

55 'Right Cerebrum.Temporal Lobe.Cuneus.White Matter.*' 0.017632 

56 'Right Cerebrum.Temporal Lobe.Inferior Parietal Lobule.*.*' 0.04041 

57 'Right Cerebrum.Parietal Lobe.Inferior Parietal Lobule.*.*' 0.026267 

58 

'Right Cerebrum.Parietal Lobe.Postcentral Gyrus.Gray 

Matter.Brodmann area 3' 0.048072 

59 'Inter-Hemispheric.*.Superior Frontal Gyrus.*.*' 0.026462 

60 'Right Cerebrum.Frontal Lobe.Inferior Parietal Lobule.White Matter.*' 0.010282 
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61 'Right Cerebrum.Limbic Lobe.Medial Frontal Gyrus.*.*' 0.038014 

62 'Left Cerebrum.Occipital Lobe.Angular Gyrus.*.*' 0.041118 

63 'Right Cerebrum.Occipital Lobe.Angular Gyrus.*.*' 0.029264 

64 'Left Cerebrum.Parietal Lobe.Precuneus.Gray Matter.Brodmann area 39' 0.040566 

65 

'Left Cerebrum.Parietal Lobe.Angular Gyrus.Gray Matter.Brodmann 

area 40' 0.041285 

66 

'Right Cerebrum.Parietal Lobe.Sub-Gyral.Gray Matter.Brodmann area 

40' 0.049041 

67 'Left Cerebrum.Frontal Lobe.Sub-Gyral.Gray Matter.Brodmann area 6' 0.044811 

68 

'Right Cerebrum.Frontal Lobe.Superior Frontal Gyrus.Gray 

Matter.Brodmann area 8' 0.027852 

69 'Left Cerebrum.Parietal Lobe.Superior Parietal Lobule.*.*' 0.028557 

70 

'Right Cerebrum.Parietal Lobe.Superior Parietal Lobule.Gray 

Matter.Brodmann area 7' 0.048063 

71 'Left Cerebrum.Frontal Lobe.Paracentral Lobule.*.*' 0.006011 

Table 2: Significances between brains with CDR of 0 (n = 24) and 1 (n = 8). 

 Brain Region P-Value 

1 'Right Cerebrum.Temporal Lobe.Insula.Gray Matter.*' 0.019939 

2 'Left Cerebrum.Frontal Lobe.Middle Frontal Gyrus.Gray Matter.*' 0.037358 

3 

'Right Cerebrum.Sub-lobar.Inferior Frontal Gyrus.Gray 

Matter.Brodmann area 45' 0.045422 

4 'Left Cerebrum.Sub-lobar.Transverse Temporal Gyrus.White Matter.*' 0.015406 

5 

'Right Cerebrum.Temporal Lobe.Transverse Temporal Gyrus.Gray 

Matter.Brodmann area 42' 0.018149 

6 

'Right Cerebrum.Limbic Lobe.Posterior Cingulate.Gray 

Matter.Brodmann area 31' 0.031017 

7 

'Left Cerebrum.Limbic Lobe.Posterior Cingulate.Gray Matter.Brodmann 

area 18' 0.040112 

8 'Left Cerebrum.Parietal Lobe.Postcentral Gyrus.*.*' 0.036241 

9 'Left Cerebrum.Parietal Lobe.Postcentral Gyrus.Gray Matter.*' 0.049764 

10 

'Left Cerebrum.Frontal Lobe.Postcentral Gyrus.Gray Matter.Brodmann 

area 4' 0.040556 

11 

'Right Cerebrum.Parietal Lobe.Postcentral Gyrus.Gray 

Matter.Brodmann area 3' 0.034089 

12 'Right Cerebrum.Occipital Lobe.Cuneus.Gray Matter.Brodmann area 31' 0.019641 

13 '*.*.Angular Gyrus.*.*' 0.031262 

14 'Left Cerebrum.Parietal Lobe.Sub-Gyral.Gray Matter.Brodmann area 2' 0.035837 

15 'Left Cerebrum.Parietal Lobe.Superior Parietal Lobule.*.*' 0.049594 

16 

'Right Cerebrum.Parietal Lobe.Paracentral Lobule.Gray 

Matter.Brodmann area 5' 0.037892 

17 

'Right Cerebrum.Parietal Lobe.Postcentral Gyrus.Gray 

Matter.Brodmann area 5' 0.015352 

The Python code is freely available on Github: https://github.com/mattonics/IVAM. 188 
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Conclusion: 189 

 We created the best performing algorithm to-date for classifying 3D images taken of 190 

patients of neurodegenerative and neuropsychiatric diseases. In addition, the accuracy for voxel-191 

by-voxel classification hovers around 83% as we labeled each voxel with the CDR of the brain. 192 

These diseases and disorders exhibit classification through many types of benchmarks that rate 193 

their severity. The IVAM code can be easily modified to accommodate different rating scales. 194 

Discussion: 195 

 The skull-stripping algorithm we developed performs extremely well visually as shown for 196 

a single MRI image (Figure 2) separating the cortices from the skull as well as the cerebellum and 197 

lower brain from the skull in most instances. It performed successfully on a lot of the 380 images. 198 

There are examples of a missing lower brain, but nevertheless the algorithm achieved up to 90.0% 199 

classification accuracy. Adjustment of the dimensions of the structuring element could improve 200 

the results as well as a more robust thresholding algorithm such as a modified IsoData algorithm. 201 

A previously running version of IVAM which ran on spatially normalized images performed by 202 

OASIS authors but not skull-stripped by us achieved 92.2%. These data were pre-processed as a 203 

non-linear warping to the MNI152 template by OASIS authors. 204 

After running IVAM on nearly 200 images in the OASIS dataset, we find that a single 205 

extra-randomized tree regressor predicts with 90.0% accuracy when trained on around 90% of the 206 

dataset and tested on around 10% of the dataset, which represents the highest accuracy reported 207 

to-date on structural MRI images of Alzheimer’s Disease patients, as a tertiary regression on CDRs 208 

of 0, 0.5, and 1 in early AD and 83.3% accuracy as a binary regression of 0 and any higher CDR. 209 

We also find that the extra-randomized trees regressor as a forest (a bag of trees) predicts with 210 
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89.7% accuracy as a tertiary regression and 83.8% accuracy as a binary regression. We found that 211 

the single extra-randomized regressor tree predicts better than a bag of them. Current state-of-the-212 

art prediction methods include a maximum of around 85% in binary classification as explained by 213 

Moscoso et al. 2019. 214 

 Next steps include improving the KNN part of the algorithm to accept non-integer values, 215 

i.e. CDR of 0.5, which should theoretically yield higher accuracy than the current tertiary 216 

classification, and improving identification of severely affected areas to a probabilistic map using 217 

the labeled MNI152 atlas which can be retrieved by installing MindBoggle. 218 
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