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Abstract
Background. Machine learning (ML) can distinguish cases with
psychotic disorder from healthy controls based on magnetic
resonance imaging (MRI) data, with reported accuracy in the
range 60-100%. It is not yet clear which MRI metrics are the
most informative for case-control ML.

Methods. We analysed multi-modal MRI data from two inde-
pendent case-control studies of patients with psychotic disorders
(cases, N = 65, 28; controls, N = 59, 80) and compared ML accu-
racy across 5 MRI metrics. Cortical thickness, mean diffusivity
and fractional anisotropy were estimated at each of 308 corti-
cal regions, as well as functional and structural connectivity be-
tween each pair of regions. Functional connectivity data were
also used to classify non-psychotic siblings of cases (N=64) and
to distinguish cases from controls in a third independent study
(cases, N=67; controls, N = 81).

Results. In both principal studies, the most diagnostic metric
was fMRI connectivity: the areas under the receiver operat-
ing characteristic curve were 92% and 77%, respectively. The
cortical map of diagnostic connectivity features was replicable
between studies (r = 0.31, P < 0.001); correlated with replica-
ble case-control differences in fMRI degree centrality, and with
prior cortical maps of aerobic glycolysis and adolescent develop-
ment of functional connectivity; predicted intermediate proba-
bilities of psychosis in siblings; and replicated in the third case-
control study.

Conclusions. ML most accurately distinguished cases from
controls by a replicable pattern of fMRI connectivity features,

highlighting abnormal hubness of cortical nodes in an anatomi-
cal pattern consistent with the concept of psychosis as a disorder
of network development.
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Introduction
Several research studies have used machine learning (ML)
algorithms to detect or diagnose psychotic disorders or
schizophrenia based on MRI data (1–8). However, in 64 case-
control studies of schizophrenia, the ML performance accu-
racy ranged widely from 59% to 100% (1). Machine learning
has been described as a ‘black box’: data go in and a diag-
nostic decision comes out. It is not always clear which MRI
features are most influential diagnostically, and this makes it
difficult to validate the machine diagnostic process in terms
of what is already known from case-control MRI studies of
schizophrenia.
Case-control studies have repeatedly shown that correlations
and other symmetric measures of functional connectivity be-
tween regional fMRI time series are abnormal in psychotic
disorders (9–12). The frontal and temporal cortical hubs of
the anatomical connectome have higher probability of grey
matter volume deficit in schizophrenia (13), and the associa-
tion cortical hubs of morphometric similarity networks (from
multi-parametric MRI) have abnormal degree, i.e., more or
fewer connections to the rest of the brain than in healthy con-
trols, in three independent case-control studies of psychosis
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(14). The coupling between structural and functional connec-
tivity is reduced in cases of first episode psychosis compared
to controls (15). These and other results support the theory
that psychosis is a brain network disorder (16–18).
The primary aim of this study was to evaluate the accu-
racy and replicability of the same machine learning algo-
rithm applied to five different MRI metrics of brain structure
and function in case-control studies of psychotic disorders.
We considered the functional connectivity matrix between all
possible pairs of cortical nodes, estimated from resting state
fMRI data; and the structural connectivity matrix, estimated
from tractographic analysis of diffusion-weighted imaging
(DWI) data. We also considered three local or regional met-
rics: mean diffusivity (MD) and fractional anisotropy (FA),
two DWI markers of cortical microstructure; and cortical
thickness (CT), a macrostructural MRI measure. All five
metrics were estimated for 308 cortical regions in multimodal
MRI data available on participants in two independent case-
control studies, collated as part of the PSYSCAN programme
(19). Functional MRI connectivity was also evaluated in a
third independent, open, case-control study. We predicted
that connectivity metrics, compared to local metrics, would
support more accurate and replicable ML classification of
cases with psychotic disorders.
Our second aim was to ‘open the black box’ of machine
learning. Having demonstrated that fMRI connectivity met-
rics were most informative for ML, we further explored the
fMRI connectivity features that were most informative for
distinguishing cases from controls based on an individual
scan. We compared ML diagnostic feature maps to maps
of the group mean differences between cases and controls.
In view of evidence that psychotic disorders are related to
abnormal brain network development (16–18), we tested the
hypothesis that the diagnostic feature map for fMRI connec-
tivity would be co-located with a prior map of aerobic gly-
colysis, a metabolic pathway that is utilised specifically by
neurodevelopmental processes (20), and with a prior map of
change in functional connectivity during healthy human ado-
lescence and early adulthood (21). Finally, since psychosis
is heritable (22), we tested the hypothesis that fMRI data on
non-psychotic siblings of cases would be assigned interme-
diate probabilities of psychosis by the ML algorithm trained
on case and control data.

Materials and Methods
Primary studies. We analysed data on three prior case-
control studies which had comparable 3T MRI data in one
or more MRI modalities for large sample sizes (total N>100
per study). Demographics, questionnaire scores on psychosis
symptoms, and measures of MRI quality and head motion,
are provided for all three studies in Table 1. All patients sat-
isfied DSM-IV diagnostic criteria for schizophrenia or other
non-affective psychotic disorders, and all participants gave
informed consent. The studies were ranked Dublin » Cobre
» Maastricht in terms of image quality (Table 1 and SI Table
S1). There were group differences in sex in Maastricht and
Dublin (cases were more likely to be male), and a group dif-

ference in age in Dublin (cases were older on average). We
therefore controlled for age and sex in all subsequent analy-
sis.

Macro-structural MRI. T1w MPRAGE images were pre-
processed by a prior pipeline (23), using the recon-all (24)
command from FreeSurfer (version 6.0). The surfaces were
parcellated into 308 cortical regions, using a template derived
from the Desikan-Killiany atlas and designed so that regions
have similar volumes (23, 25). Cortical thickness (CT) was
estimated for each region.

Micro-structural MRI. Diffusion-weighted images (DWI)
were acquired using echo-planar imaging (EPI) sequences
with b-value = 1000s/mm2. Maastricht images had either 76
volumes (43 controls, 44 cases) or 81 volumes (16 controls,
20 cases); Dublin images had 16 volumes. We estimated re-
gional cortical measures of mean diffusivity (MD) and frac-
tional anisotropy (FA) from these images, using FreeSurfer’s
trac-all command (26).

Functional MRI. All fMRI data were acquired using EPI se-
quences with the following parameters: Maastricht - 200 vol-
umes, acquisition time = 5 mins, 27 slices, TE = 30 ms, TR
= 1500 ms, voxel size = 3.5 × 3.5 × 4.0 mm3; Dublin - 180
volumes, acquisition time = 6 mins, 35 slices, TE = 30 ms,
TR = 2000 ms, voxel size = 3.5 × 3.5 × 3.5 mm3; Cobre -
150 volumes, acquisition time = 5 mins, 32 slices, TE = 29
ms, TR = 2000 ms, voxel size = 3 × 3 × 4 mm3.
The fMRI images were preprocessed using wavelet despik-
ing (27, 28) as part of a prior pipeline (27), which included
slice acquisition correction, rigid-body head motion correc-
tion, co-registration to the T1w image, a standard space trans-
form to the MNI152 template in Talairach space, spatial
smoothing and intensity normalisation. The time series were
band-pass filtered at wavelet scale 2 (29, 30), corresponding
to frequency range 0.083-0.17Hz in Maastricht and 0.0625-
0.125Hz in Dublin and Cobre. Regions with insufficient sig-
nal coverage in one or more participants were excluded from
case-control analysis of that study; leaving 248, 290 and 293
cortical regions in the Maastricht, Dublin and Cobre datasets,
respectively; see SI Section S1.1. Group differences in head
motion in all three datasets were mitigated by wavelet de-
spiking (27) and regression on 12 motion parameters (trans-
lations, rotations and their derivatives); see SI Section S2.3.

Functional MRI connectivity and network analysis.
Sparse inverse covariance estimation was used to estimate
a functional connectivity matrix for each subject, from the
regional, normalised (Z-transformed) wavelet coefficients.
Sparse inverse covariance is an estimator of partial rather than
full correlations (31), meaning it detects only pair-wise spe-
cific connectivity between regional nodes, rather than con-
nectivity induced between them by their shared association
with a third node (32). The sparse inverse covariance esti-
mator forced the matrices to be symmetric positive definite
(SPD), which is advantageous for machine learning.
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To calculate degree centrality, we applied a hard threshold
to each covariance matrix so that only the top 10% most
strongly connected edges were retained in a binary graph.
Degree centrality was estimated by the number of edges con-
necting each node to the rest of the network. For sensitivity
analysis, nodal degree was also estimated for graphs thresh-
olded with 5% and 15% connection density; see SI Section
S3.7 and SI Section S7.

Structural connectivity and DWI tractography. We cor-
rected DWI images for movement, eddy current distortions
and susceptibility distortions. Parcellated T1w MRI images
were then registered to DWI images and a diffusion profile
was reconstructed for each voxel, using compressed sensing
techniques and robust tensor fitting approaches (33), before
white matter tracts were identified by deterministic stream-
line tractography (33). Edges in the DTI networks were
weighted by the number of streamlines between each pair of
regions and nodal degree was calculated by summing across
the rows (or columns) of the DTI connectivity matrix.

Machine learning. Supervised machine learning algorithms
were trained to classify cases and controls, using each of the
5 MRI features in turn. Classification was performed using
Gaussian processes (GPs), with a linear covariance function.
GPs provide several advantages over more widely used meth-
ods such as the support vector machine (SVM) (34) and the
linear covariance allows the calculation of feature weights
to aid interpretability. For fMRI-based ML, we first took
the matrix logarithms of the connectivity matrices, which
projects them into Euclidean space (exploiting their SPD
property) and has been shown to improve machine classifi-
cation of fMRI brain networks (35). Age and sex were re-
gressed using a GP based method (36), prior to classification,
using the GPML toolbox (37); see SI Section S3.1.
Consistent with previous studies (38, 39), we performed a
200-fold randomised cross-validation with 10% of subjects
allocated to testing and 90% to training, see SI Section S3.4.
We report results in terms of the area under the receiver oper-
ating characteristic curve (AUC), leave-one-out (LOO) bal-
anced accuracies, sensitivity, and specificity; see SI Section
S3.2. Per-subject predicted probabilities were calculated as
the mean probability of each subject to be classified as a case
across all test sets in which that individual was included. The
MRI features, e.g. each regional metric or each element of
the connectivity matrices, were each associated with a signed
ML weight, calculated (34) in each cross validation fold and
averaged across folds. For interpretability, fMRI and DTI
connectivity matrix feature weights were summed over the
edges to obtain regional ML weights.
Finally we performed cross-dataset validation, where we
used the Dublin dataset to train the ML classifier for the
Maastricht sample, and vice versa, after using the ComBat
software (40, 41) to mitigate spurious between-study differ-
ences, e.g., arising from different scanning protocols or data
quality.

Case-control analyses. For metrics which followed a Nor-
mal distribution (CT, MD, FA), we used a linear regression
model, with age, sex and age x sex as covariates, to estimate
t-statistics and corresponding P-values for a case-control dif-
ference in group means at each region. For functional and
anatomical network metrics of nodal degree, which did not
follow a Normal distribution, we used a Mann-Whitney U-
test to calculate a Z-score and corresponding P-value for
case-control difference at each regional node.
We quantified the replicability of the case-control differences
in two ways: (i) by correlating the regional case-control t-
statistics (or Z-scores) between the Maastricht and Dublin
datasets; and (ii) by calculating the number of regions where
there was a statistically significant case-control difference af-
ter combining the P-values from both datasets using Fisher’s
method and applying an FDR correction for multiple com-
parisons.

Prior cortical maps of aerobic glycolysis and matura-
tional index. We tested the spatial correlation, or anatomical
co-location, of fMRI diagnostic feature maps with two prior
cortical maps: a PET-based map of glycolytic index (GI) and
an fMRI-based map of adolescent development of functional
connectivity (maturational index, −1<MI< 1) (21). These
prior maps were spatially co-registered with the diagnostic
feature maps and the correlation between maps was estimated
and tested by resampling procedures, including a permuta-
tion test controlling for the spatial correlation of metrics in
anatomically neighbouring cortical nodes (42).

Machine detection of MRI data on siblings. To calcu-
late the predicted probabilities of siblings being diagnosed
as cases, the GP classifier was trained on the control and pa-
tient data and applied to the sibling data. To explore whether
siblings also expressed intermediate levels of fMRI connec-
tivity, we used principal component analysis (implemented
in MATLAB) to summarise key systems of high (co)variance
in the cortical fMRI connectivity profile (248 nodal degrees)
for each of the 188 Maastricht participants; then we tested for
differences in the first principal component (PC1) between
cases, controls and siblings.

Data and code availability. The code and pre-processed
data used in these analyses will be shared via GitHub and
FigShare at the time of publication.

Results
Diagnostic accuracy of machine learning on five MRI
metrics. We trained machine learning classifiers on each of
the 5 MRI metrics estimated in each participant in each of
the Dublin and Maastricht studies. Receiver operating char-
acteristic curves are plotted for each metric in each study in
Figure 1; for more details see SI Table S5.
The ML accuracy varied considerably across all 5 metrics
and both studies, from ≈ 0.50 to ≈ 0.90. For each met-
ric, ML was more accurate in the Dublin study than in the
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Fig. 1. Machine detection of psychotic disorders. Receiver operating characteristic curves (ROCs) for machine learning of diagnosis informed by 5 MRI metrics in (a)
Maastricht and (b) Dublin case-control studies of psychotic disorders. An optimal classification will maximise the area under the curve (AUC = 1), so that all patients are
correctly diagnosed as cases (true positive rate = 1) when none of the healthy controls are falsely diagnosed as cases (false positive rate = 0). A poor classification will
perform at chance, with equal rates of true and false positive diagnosis, and the ROC will follow the (black) line of y = x. All metrics have closer-to-optimal curves in the
Dublin dataset; fMRI connectivity and cortical thickness curves are closer-to-optimal than FA and DWI connectivity curves, in both studies. c) Diagnostic feature maps of the
weights assigned to each regional feature for machine diagnosis of psychosis in the Maastricht, Dublin and Cobre datasets. d) Scatterplot of fMRI ML feature weights from
Maastricht (x-axis) and Dublin (y-axis); yellow line is fitted linear regression.

Maastricht study. The rank order of ML accuracy by differ-
ent MRI metrics was consistent across the two studies: fMRI
connectivity matrices informed the most accurate diagnostic
algorithms in both Maastricht and Dublin datasets (AUC=
0.77, LOO= 0.72 in Maastricht; AUC= 0.92, LOO= 0.83
in Dublin), followed by regional cortical thickness (AUC=
0.67, LOO= 0.63 in Maastricht; AUC= 0.87, LOO= 0.76
in Dublin). All other metrics (MD, FA, DWI networks) per-
formed worse in the Maastricht dataset, with accuracies close
to chance performance (0.5). In the better quality Dublin
dataset (as evidenced by the Euler number and temporal sig-
nal to noise ratio (Table 1)), MD informed machine diagnos-
tic accuracy close to the performance informed by CT (AUC
≈ 0.85). FA and DWI-connectivity performed less well, but
still much better than in the Maastricht dataset (AUC ≈ 0.75).
Combining the two most predictive MRI metrics (fMRI con-
nectivity matrices and CT) as inputs to the machine classifier
did not improve machine diagnostic accuracy compared to
using fMRI connectivity matrices alone; see SI Section S3.8.
Predicted probability of caseness was not correlated signifi-
cantly (PFDR < 0.05) with psychotic symptom scores, head
motion during fMRI, age, or sex; see SI Section S4.

Sensitivity analysis of machine detection based on
fMRI connectivity. To further investigate the diagnostic
value of fMRI connectivity, we compared ML accuracy based
on the full connectivity matrix to ML accuracy based on a
308-length vector of regional degrees. Accuracy remained
similar in the Maastricht study (AUC= 0.75; LOO= 0.70);
and was somewhat lower in the Dublin study (AUC= 0.85;
LOO= 0.76). These results indicate that most of the diag-
nostic information represented by the full connectivity matrix
was captured by the degree centrality or hubness of each node
in the fMRI network. For additional independent validation,
we also evaluated the ML accuracy in the Cobre dataset based

on the fMRI connectivity matrix (AUC= 0.81; LOO= 0.76)
or the fMRI network degree vector (AUC= 0.72; LOO=
0.67).
The accuracy of machine detection could be improved for
the Maastricht dataset by excluding the patients who did not
have a diagnosis of schizophrenia. On this post-hoc subset of
40 patients with schizophrenia, the accuracy increased from
AUC= 0.77 (LOO= 0.72) to AUC= 0.81 (LOO= 0.72) for
the fMRI connectivity matrix and from AUC= 0.75 (LOO=
0.70) to AUC= 0.77 (LOO= 0.71) for ML based on fMRI
degree. Excluding non-symptomatic patients from the Maas-
tricht study also increased the ML accuracy, see SI Section
S3.9.
As a further check for replicability, we performed cross-
dataset validation. For the Maastricht sample diagnosed by
a Dublin-trained algorithm the AUC was 0.77 (LOO= 0.56);
and for the Dublin sample diagnosed by a Maastricht algo-
rithm AUC was 0.76 (LOO = 0.69); see SI Section S3.10.

Diagnostic feature maps of machine learning weights.
The feature weights from the ML algorithm trained on fMRI
data were mapped onto a cortical surface to form a diagnos-
tic feature map for each study; Figure 1. A strong positive
ML weight means high fMRI connectivity in that region in-
creased the probability of classification as a case; whereas
a strong negative ML weight means low fMRI connectivity
in that region increased the probability of psychosis. ML
weights were high in association cortex and in the default
mode network and low in primary sensory cortex; see SI Sec-
tion 8. The cortical maps of ML weights for fMRI connec-
tivity were significantly correlated between the Dublin and
Maastricht studies (r = 0.31, df = 245, P < 0.001). The
cortical map of ML weights for the Cobre dataset was also
correlated with the corresponding diagnostic feature maps of
the Maastricht (r = 0.26, df = 246, P < 0.001) and Dublin
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(r = 0.31, df = 280, P < 0.001) studies.
Equivalent diagnostic feature maps for CT, MD, FA and
DTI connectivity metrics were not significantly correlated
between Dublin and Maastricht studies (all r < 0.1, P > 0.1),
except for DWI connectivity which was weakly correlated
(r = 0.17, df = 306, P = 0.003); see SI Figures S4-S7.

Replicable case-control differences and machine de-
tection. We estimated case-control group mean differences
in each of the 5 metrics for each of the principal studies; see
SI Table S15, SI Table S16 and SI Section S6. Normalised
difference in fMRI degree (Z-score) was the metric of case-
control difference that was most strongly, positively corre-
lated between the Maastricht and Dublin datasets (r = 0.62,
df = 245, P < 0.001, Figure 2 a). In both studies, cases
had relatively decreased degree in superior temporal and post
central cortical areas and increased degree in frontal and in-
ferior parietal cortical areas and the precuneus (Figure 2).
Combining P-values over both studies by Fisher’s method, 76
regions showed significant case-control differences in fMRI
degree (Figure 2, SI Table S16); anatomical details of sig-
nificantly different regions are provided in SI Dataset S1.
The case-control fMRI Z-values were also strongly corre-
lated with the diagnostic feature maps for fMRI; for Maas-
tricht r = 0.67, df = 246, P < 0.001, for Dublin r = 0.85,
df = 288, P < 0.001.
To confirm the replicability of these results, we estimated
cortical case-control Z-values for the Cobre dataset, which
were strongly correlated with the corresponding Z-values in
the Maastricht and Dublin datasets: r = 0.68, df = 246,
P < 0.001 and r = 0.60, df = 278, P < 0.001, respec-
tively. The Cobre case-control Z-values were also strongly
correlated with the Cobre diagnostic feature map for fMRI;
r = 0.74, df = 291, P < 0.001.

Neurodevelopmental maps and machine detection.
The map of glycolytic index (GI) was negatively correlated
with the map of maturational index (MI) (Spearman’s ρ =
−0.54, P < 0.001 (21)). The GI map was positively corre-
lated with the fMRI diagnostic feature maps from the Maas-
tricht, Dublin and Cobre datasets, with (r = 0.19, df = 246,
P = 0.0025), (r = 0.24, df = 288, P =< 0.001) and (r =
0.34, df = 291, P < 0.001), respectively; see Figure 3. In
other words, in regions with high GI, high connectivity in-
creased the probability of classification as a case, whilst in
regions with low GI, low connectivity increased the proba-
bility of classification as a case. The correlations with the
Dublin and Cobre datasets were robust to spatial permutation
tests (Pspin < 0.05), although the correlation with the Maas-
tricht dataset was not (Pspin = 0.090).
The MI map was negatively correlated with the fMRI diag-
nostic feature maps from the Maastricht, Dublin and Cobre
datasets, with (r= −0.42, df = 241, P < 0.001), (r= −0.64,
df = 271, P < 0.001) and (r= −0.38, df = 277, P < 0.001),
respectively; see Figure 3. In other words, in regions with
MI > 0, located in primary motor and sensory cortex, low
fMRI connectivity increased the probability of classification

as a case; whereas in regions with MI < 0, located in asso-
ciation cortex, high connectivity increased the probability of
classification as a case. These results were robust to spatial
permutation tests (all Pspin < 0.001).

Machine detection of siblings. The predicted probability
of psychosis for non-psychotic siblings of cases was inter-
mediate between, and significantly different to, the (higher)
probability of the cases (two-sided t-test; P < 0.001) and
the (lower) probability of the controls (two-sided t-test; P =
0.04); Figure 3.
Principal component analysis of fMRI connectivity matrices
from all participants in the Maastricht study summarised 39%
of the total (co)variance in terms of the first principal compo-
nent (PC1). The cortical map of PC1 loadings is plotted in
SI Figure S12, and was correlated with the Maastricht fMRI
diagnostic feature map (r = 0.35, P < 0.001). Siblings had
PC1 scores that were intermediate between cases and con-
trols, and significantly different to, the (higher) PC1 scores of
the cases (two-sided t-test; P < 0.001) but not significantly
different to the (lower) PC1 scores of the controls; Figure 3.

Discussion
Functional MRI informs machine detection of psy-
chosis. Our primary aim was to evaluate how accurately and
replicably different MRI metrics could be used to inform ma-
chine classification of psychosis. Of the 5 candidate metrics,
the most informative was fMRI connectivity, which could be
used to classify cases and controls with relatively high ac-
curacy (AUC= 0.92 in Dublin, 0.81 in Cobre, and 0.77 in
Maastricht).
This performance is comparable to the highest accuracies
previously reported by other large case-control studies (N >
100) (1, 5, 44, 45). Importantly, the most diagnostically in-
formative fMRI features, with high positive or negative ML
weights, were replicable across three independent studies,
with different clinical samples, scanning protocols and ge-
ographical locations.
Machine learning accuracies for other MRI metrics were
lower, and the diagnostic features were less replicable for
structural MRI and DWI metrics. This is a similar pat-
tern to that observed recently (45), which ranked major
MRI modalities by classification accuracy for psychosis as
fMRI»sMRI»DTI.

Diagnostic feature maps of psychosis. Our secondary
aim was to open the “black box” of machine classifica-
tion by identifying and contextualising the features that most
strongly informed the superior performance of ML based on
fMRI connectivity metrics.
First, we found that the machine diagnostic feature maps for
fMRI connectivity were strongly correlated with maps of the
case-control group mean difference in functional connectiv-
ity. This result might seem trivial, however the feature map
that decides diagnosis in an individual case is not necessarily
co-located with the map of mean differences between cases
and controls (1). The high degree of co-location we found
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difference in fMRI connectivity
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Dublin and Cobre datasets. b)
The mean Z-value map for nodes
with significant case-control dif-
ference in fMRI degree defined
by combining regional P-values
from the Maastricht and Dublin
datasets and using the false dis-
covery rate (FDR = 5%) to con-
trol for multiple comparisons. c)
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mean case-control differences in
degree at each regional node,
averaged across the Maastricht,
Dublin and Cobre studies (y-
axis), versus the mean fMRI ML
feature weights averaged across
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studies (x-axis); yellow line is fit-
ted linear regression.
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Fig. 3. Neurodevelopmental maps, and machine diagnosis of siblings. a) Mean cortical map of psychosis ML weight from fMRI connectivity (averaged across Maastricht,
Dublin and Cobre datasets). b) Cortical map of glycolytic index, which measures aerobic glycolysis (20). c) Cortical map of maturational index in healthy adolescence and early
adulthood (N=520 fMRI scans, from 298 participants aged 14-26 years) (21). d) Glycolytic index is positively correlated with fMRI diagnostic feature map. e) Maturational
index is negatively correlated with the fMRI diagnostic feature map. f) and g): Predicted probabilities of psychosis and PC1 scores (indicative of whole brain functional
connectivity) for cases, controls and siblings of cases in the Maastricht dataset. Siblings were assigned intermediate probabilities of psychosis, and had intermediate PC1
scores, compared to cases and controls. Figure created using the RainCloudPlots package (43).

suggests that the machine diagnostic process is most likely to
classify individuals as cases if their functional connectivity
profile is more similar to the abnormal connectivity profile of
cases “on average”.

Second, we found that functional connectivity patterns most
informative of machine diagnosis of psychosis were co-
located with brain systems that are known to be develop-
mentally active during adolescence. The glycolytic index
(GI) is a measure of aerobic glycolysis, a metabolic pathway
that is utilised specifically by neurodevelopmental processes
(20, 46). Maturational index (MI) is a novel measure of ado-
lescent change in functional connectivity measured in a lon-
gitudinal fMRI study of healthy young people: MI < 0 indi-

cates a region that has “disruptively” increased connectivity
during adolescence and early adulthood (14-26 years) from
a low baseline level at age 14 (21). Both maps were corre-
lated with the machine diagnostic feature map for psychosis,
which is compatible with the theory that psychotic disorders
result from aberrant brain network development (16–18).

Third, since psychosis is heritable, and MRI markers have
been validated as intermediate phenotypes in studies of non-
psychotic siblings (47), we predicted that siblings classi-
fied by an ML algorithm trained on case and control fMRI
data should be assigned probabilities of psychosis less than
the cases but more than the controls. This prediction was
supported empirically. Moreover, siblings had intermediate
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scores on a standard multivariate measure of whole brain
functional connectivity (PC1). Taken together, these findings
suggest that machine-based detection of psychosis may be
sensitive to familial risk of psychosis represented by contin-
uous variation in brain systems of fMRI connectivity.

Caveats. The accuracy and between-centre reliability of ma-
chine detection of psychotic disorder is not yet good enough,
even for the best-performing fMRI connectivity metrics, to be
“rolled out” to clinical applications immediately. Improve-
ments in fMRI data acquisition and analysis are expected to
improve reliability and accuracy in future. For example, ML
performance could be enhanced by a more multivariate and
longitudinal approach, combining more, different variables,
measured at more than one point in time, and mapping indi-
viduals to a more multi-dimensional space than case-control
binarization (48). It will also be important to evaluate fMRI-
based ML for more clinically critical questions than broad-
brush diagnosis of psychotic disorder. For example, how ac-
curately does fMRI connectivity at first episode of psychosis
inform ML prediction of clinical outcome?
Case-control designs are vulnerable to the confounding ef-
fects of uncontrolled variables and not all the primary studies
were well-matched for age and sex. Many other potentially
confounding factors, e.g. medication or drug use, were ei-
ther not measured at all, or not measured consistently across
studies. It seems unlikely that the replicable case-control
differences reported here are attributable to a replicable but
unknown confounding factor that is nothing to do with psy-
chosis. However, more extensive socio-demographic, clinical
and cognitive/behavioural data will be important to inform
and control fMRI-based ML of psychosis in future.

Conclusions. Machine learning most accurately and reli-
ably categorised individuals as psychotic disorder cases or
healthy controls based on a contextually and theoretically
plausible anatomical pattern of dysconnectivity between cor-
tical nodes in resting state fMRI networks. Functional con-
nectomics is a priority candidate for further evaluation as a
clinical MRI biomarker of psychosis.
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Dataset Maastricht Dublin Cobre
Modality CT/fMRI/MD/FA/DWI CT/fMRI MD/FA/DWI fMRI only
Group Controls Cases Siblings Controls Cases Controls Cases Controls Cases
Sample size 59 65 64 80 28 82 33 81 67
Age (years) 29.2±10.3 28.1±6.6 29.3±8.6 28.2±9.0 39.9±11.3 33.5±12.6 42.2±11.7 38.9±9.0 36.0±12.7
Sex (M) 23 (39.0%) 43 (66.2%) 37 (57.8%) 38 (47.5%) 22 (78.6%) 35 (42.7%) 24 (72.7%) 58 (71.6%) 56 (83.6%)
No. of cases with a diagnosis of schizophrenia N/A 40 (61.5%) N/A N/A 25 (89.3%) N/A 29 (87.9%) N/A 58 (86.6%)
Medication (AP/DN/NA) N/A 63/0/2 N/A N/A 21/0/7 N/A 24/1/8 N/A 51/2/14
Euler number ± SD −96±44 −94±59 −95±35 −31±19 −29±15 −35±18 −33±21 −65±34 −65±31
Temporal SNR ± SD 133±23 134±22 134±19 186±27 171±24 N/A N/A 164±34 165±38
Spike % ± SD 2.1±1.0 2.3±1.1 1.8±0.59 1.3±0.9 2.5±1.5 N/A N/A 2.5±1.6 3.1±1.7
Framewise displacement, mean ± SD 0.19±0.07 0.22±0.08 0.19±0.06 0.22±0.09 0.30±0.14 N/A N/A 0.35±0.16 0.40±0.17
PANSS positive N/A 9.4±3.8 N/A N/A 12.7±2.9 N/A 14.5±4.2 N/A 15.0±4.7
PANSS negative N/A 10.3±5.4 N/A N/A 11.4±5.9 N/A 12.5±5.5 N/A 15.3±5.5

Table 1. Sample characteristics in three independent case-control studies of psychotic disorder: the Maastricht GROUP dataset (49), the Dublin dataset scanned in the Trinity College Institute of Neuroscience as part of a Science
Foundation Ireland-funded neuroimaging genetics study (‘A structural and functional MRI investigation of genetics, cognition and emotion in schizophrenia’), and the Cobre dataset (50). The standing ethics committee of Maastricht
University Medical Center approved the Maastricht GROUP study. The St. James Hospital and the Adelaide and Meath Hospital Dublin Incorporating the National Children’s Hospital (AMNCH) joint ethics boards approved the Dublin
study. In the Dublin dataset, a different subset of patients had DWI data (82 controls and 33 patients) compared to those with fMRI data (80 controls, 28 patients); see SI Section S1.3. Medication is given as either AP (on antipsychotic
medication), DN (drug naive) or NA (not available). Euler number is a QC metric for MRI data (51): more negative numbers indicate poor image quality. Temporal signal to noise ratio (SNR) is a QC metric for fMRI time series: higher tSNR
indicates better quality. Spike percentage and mean framewise displacement (FD) are both measures of head movement during scanning: higher values indicate greater movement effects on fMRI time series (27).
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