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ABSTRACT 

Caused by the tick-borne spirochete, Borrelia burgdorferi, Lyme disease (LD) is the most common 

vector-borne infectious disease in North America and Europe. Though timely diagnosis and treatment are 

effective in preventing disease progression, current tests are insensitive in early-stage LD, with a 

sensitivity <50%. Additionally, the serological testing currently recommended by the US Center for 

Disease Control has high costs (>$400/test) and extended sample-to-answer timelines (>24 hours). To 

address these challenges, we created a cost-effective and rapid point-of-care (POC) test for early-stage 

LD that assays for antibodies specific to seven Borrelia antigens and a synthetic peptide in a paper-based 

multiplexed vertical flow assay (xVFA). We trained a deep learning-based diagnostic algorithm to select 

an optimal subset of antigen/peptide targets, and then blindly-tested our xVFA using human samples 

(𝑁(+) = 42, 𝑁(−)= 54), achieving an area-under-the-curve (AUC), sensitivity, and specificity of 0.950, 

90.5%, and 87.0% respectively, outperforming previous LD POC tests. With batch-specific 

standardization and threshold tuning, the specificity of our blind-testing performance improved to 96.3%, 

with an AUC and sensitivity of 0.963 and 85.7%, respectively. 
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INTRODUCTION  

Lyme disease (LD) is the most common vector-borne infectious disease in both North America and 

Europe, causing ~300,000 infections annually in the United States1,2. It is caused by infection with the 

spirochete Borrelia burgdorferi (Bb) transmitted by black-legged ticks (Ixodes genus). Early disease is 

associated with a characteristic skin lesion, erythema migrans (EM) along with other symptoms3–5.  If not 

diagnosed and treated with appropriate antibiotics, the infection can disseminate to distal sites including 

the nervous system, heart, and joints causing an array of symptoms, including e.g., lymphocytic 

meningitis, cranial neuropathy, facial nerve palsy, radiculopathy, A/V node heart block 3,6,7, and 

arthritis4,8.  

Although a presenting EM is diagnostic, the characteristic lesion is absent in 10-20% of infected persons 

and is frequently atypical thus escaping recognition. This makes laboratory testing critical to confirm the 

diagnosis and guide treatment3,5,6,9 Despite recent advances in direct detection of Bb through e.g. Nucleic 

Acid Amplification Testing (NAAT), these methods remain inadequate due to the low concentration and 

transient presence of Bb in the blood. Culturing Bb is also not practical due the slow growth of the 

bacteria, as well as the need for specialized growth media 9–11.  Therefore, current testing methods work 

indirectly by detecting specific antibodies produced by the body’s immune response to the infection. 

The United States Center for Disease Control and Prevention (CDC) recommends a ‘two-tier’ testing 

method, where the first-tier consists of a sensitive Enzyme Immunoassay (EIA) or immunofluorescence 

assay (IFA). If the first-tier is positive or equivocal, a Western Blot (WB) is then recommended for 

confirming the presence of 2 of 3 Immunoglobulin M (IgM) antibodies and/or 5 of 10 Immunoglobulin G 

(IgG) antibodies targeting Bb associated antigens12. A number of reports have also showed the efficacy of 

a modified two-tier test (MTTT) format, where the WB is replaced by a second complimentary EIA, and 

as a result, the FDA has recently approved the use of some EIAs as viable tests for the second tier13–17. 

Despite being the standard for the laboratory diagnosis of LD, the two-tier serological testing method has 

multiple drawbacks. Although there is a high specificity (>98%) and sensitivity (70-100%) in late LD, the 

two-tier test has poor sensitivity in early-stage LD, seldom exceeding 50% at the time when most patients 

seek medical care6,9,14,18,19.  This is also the time when treatment is the least costly and most effective at 

preventing disease sequela. The poor sensitivity can be attributed to the underdeveloped immune response 

within the first weeks of infection in which a limited IgM antibody response is followed by an IgG 

antibody response. However, it is also exacerbated by the limited number of antigen-targets in the first 

tier test that may miss detection of antibodies produced during the earliest stage of infection.20 

Specifically, the earliest responses are to Flagellin B (FlaB) and p66 with responses to a number of 

additional antigens such as OspC (25kd), VlsE, BBK32, FlaA (37kd), BmpA (39kd) and DbpA proteins 

developing as B. burgdorferi disseminates20–23 .  

The two-tier testing method also suffers from slow turn-around time (>24 hours) and high costs 

(>$400/test), with estimated expenses exceeding $492 million annually just in the United States24. 

Additionally, the standard testing used in the two-tier format must be performed in a centralized testing 

facility by trained technicians, requiring bulky and expensive clinical analyzers. These drawbacks 

therefore limit accessibility to accurate LD testing, especially impacting populations far from clinical 

laboratories as well as populations in rural and forested areas where tick bites are common. Therefore, 

accurate and affordable LD testing methods for use at the point-of-care (POC) are in high demand13,18.  

Paper-based lateral flow assays (LFAs), also known as Rapid Diagnostic Tests (RDTs), are appealing for 

POC serological analysis due to their low-cost, ease-of-use, and rapid nature25–27. These tests use e.g., 

colorimetric or fluorescent conjugates embedded in one-time-use cassettes to rapidly and cost-effectively 

detect the presence of antibodies specific to disease. LFAs however, are not conducive to the detection of 

multiple analytes due to their in-line geometry, measuring only one or two antibodies in a single test28. 
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This restrictive design inherently limits the potential sensitivity and specificity of traditional RDTs for 

LD. For example, tests that rely on single antibody measurements (like many EIAs in the first tier) can be 

less robust to false positive results due to antigens (p66 and FlaB in particular) which contain epitopes 

that are highly cross-reactive with epitopes found in multiple other bacteria29,30.  They can also have low 

sensitivity if the target antigen is mismatched with the underlying immunodominance. This paradigm is 

the reason that the performance of the two-tier algorithm can depend on which EIA is used in the first tier, 

as well as what strain of Bb the EIA test was designed against, B31 being the most common31.  

 

Therefore, to overcome this limitation, large-scale screening efforts alongside new epitope mapping and 

peptide synthesis are focused on developing a universal multi-antigen detection panel, with e.g. 5 to 10 

LD-specific antigen targets being suggested for improving diagnostic performance for early LD17,32,33. 

Consequently, we have a unique opportunity to leverage advances in computation and machine learning, 

to train novel serodiagnostic algorithms with these rich, multi-antigen measurements derived from well-

characterized clinical samples, to ultimately create new decision algorithms that outperform the 

traditional two-tier test32–34. Deep learning, which refers to the use of artificial neural networks with 

multiple hidden-layers, can be especially effective in developing nonlinear yet robust inference models 

from noisy data-sets with complex and confounding variables35–37.  

Here, we introduce a paper-based multi-antigen POC test powered by deep learning for serological 

diagnosis of early-stage LD. Our test is a multiplexed vertical flow assay (xVFA), composed of a stack of 

functional paper layers, which in contrast to the more common LFA, allows for a multi-antigen detection 

panel for measuring an array of LD-specific antibodies on a single sensing membrane. Containing 13 

spatially-separated immunoreaction spots, the sensing membrane is functionalized with Bb-specific 

antigens (OspC, BmpA, P41, DbpB, Crasp1, P35, Erpd/Arp37) as well as a peptide (Mod-C6) composed 

of a C6-like epitope linked to a specific p41 epitope. The xVFA can be operated in 15 min, after which 

the assay cassette is opened and the sensing membrane is imaged by a custom-designed mobile-phone 

based reader. Computational analysis then quantifies the colorimetric signals on the sensing membrane 

through automated image processing, and a neural network is used to automatically infer a diagnosis from 

the multiplexed immunoreactions. The diagnostic algorithm in this work was trained with 50 human 

serum samples (25 early-stage LD and 25 endemic controls), obtained from the Lyme Disease Biobank 

(LDB), run in duplicate for both IgM and IgG antibodies, resulting in 200 individually-activated xVFAs 

composing the training data-set. This training data-set was also used to computationally select a subset of 

detection antigens from the larger panel using a feature selection technique, improving the diagnostic 

performance and reducing the per-test cost. The computational xVFA was evaluated through blind testing 

of an additional 50 human serum samples (25 early stage LD and 25 endemic controls), obtained fully-

blinded by the LDB. Testing entirely early-stage LD samples, we achieved an AUC of 0.95, and by 

equally weighing the false positive and false negative results, we obtained a sensitivity and specificity of 

90.5% and 87.0% with respect to the gold-standard two-tier serological testing. By adjusting the 

diagnostic cut-off value to favor high-specificity during the training phase and incorporating batch-

specific standardization for the network inputs, our blind testing specificity improved to 96.3%, with a 

small drop in our sensitivity (85.7%) in relation to the gold-standard two-tier serological testing. 

There is currently a first tier POC LD test, but no FDA-approved POC test for LD that can serve as a 

replacement to the two-tier method28,38. However, development of a POC two-tier replacement test will 

allow for more rapid diagnosis and better treatment outcomes. This is especially important as LD is 

projected to increase over the next decades as the geographic areas of tick-populations continue to expand 
39–41. Although multi-target POC sensing approaches for LD have been explored in the literature, the 

methods proposed either exhibited poor performance or have not undergone validation with a clinical 

study28,42. We believe our platform demonstrates a leapfrog improvement over existing POC LD testing 

approaches, reporting a cost-effective and rapid (15 min) paper-based multiplexed assay powered by deep 

learning for serological diagnosis of early-stage LD at the POC. 
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MATERIALS AND METHODS 

 

The multiplexed vertical flow assay (xVFA) 

 

Overview 

  

Our multi-target vertical flow assay (xVFA) is composed of a stack of functional paper layers and a 

sensing membrane contained within a 3-D printed plastic cassette. The cassette is divided into a top and 

bottom-case which can be separated through a twisting mechanism, revealing the multiplexed sensing 

membrane on the top layer of the bottom-case. The sensing membrane contains 13 immunoreaction spots 

defined by a black wax-printed barrier, where each spot is pre-loaded with a different capture-antigen or 

antigen epitope-containing peptide as well as proteins serving as positive- and negative-controls to enable 

multiplexed sensing information within a single test (Fig. 1B). For each xVFA, there are two top-cases 

used during the operation (Fig. 1C). The first top-case facilitates the uniform flow of a serum sample from 

the loading inlet to the sensing membrane, where LD-specific antibodies are bound to the detection 

antigens immobilized on the nitrocellulose surface. The second top-case is then used for color signal 

generation, where a conjugate pad, upon wetting, releases embedded gold-nanoparticles (AuNPs) 

conjugated to anti-human IgM or IgG antibodies. The AuNPs then bind to the LD-specific IgM or IgG 

antibodies previously captured on the sensing membrane, resulting in a color signal in response to the 

captured amount. After completion of these sandwich immunoreactions, both IgM and IgG running in 

parallel, the sensing membrane is immediately imaged by a custom-designed mobile-phone reader (Fig. 

1D-E), which captures the background image (taken before the assay operation) and the signal image 

(taken after the assay operation) of the sensing membrane for subsequent analysis in a computer, where a 

neural network is used to ultimately determine the final result (seropositive or seronegative). The general 

concept of paper-based vertical flow design was reported in our previous work43; a detailed breakdown of 

the functional paper layers and assay reagents can be found in the Supplementary Information (Fig. S1, 

Table S1, S2) along with further discussion on the wax-printed sensing membrane design and optimized 

operational protocol (Fig. S2).  

 

The mobile phone-based assay reader (Fig. 1D-E) is constructed from a smartphone (LG G4H810) and 3-

D printed (Dimension Elite, Stratasys) attachment containing four 525 nm wavelength light emitting 

diodes (LEDs) for even illumination of the sensing membrane. An external lens was also mounted in the 

3-D printed attachment below the built-in phone camera lens system for enabling an in-focus field of 

view. All the images were obtained in raw dng format using the standard Android camera app of the 

smartphone. 
 

Assay operation 

  

First, a background image of the blank sensing membrane is taken with our mobile-phone reader.  Then 

the first top-case is mated with the bottom-case, and 200 µL of running buffer is introduced to fully wet 

the paper layers in the xVFA. After the buffer is absorbed fully into the xVFA cassette (~20 seconds), 20 

µL of serum sample is pipetted into the loading inlet and allowed to absorb. Then, a second addition of 

running buffer is introduced to the loading inlet, followed by a 6-minute wait period, during which the 

serum sample reacts with the sensing membrane and the unreacted sample is washed away to the lower 

absorbent pads. The first top-case is then exchanged with the second top-case, and 450 µL of running 

buffer is added to release the AuNP conjugates responsible for color signal generation. After an 8-minute 

wait period, the xVFA cassette is opened and imaged by the mobile-phone reader to get the multiplexed 

signal.   
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Separate xVFAs are run in parallel for IgM and IgG antibody detection, where the only difference 

between the two xVFAs is in the conjugate pad, i.e. one conjugate pad contains AuNPs conjugated to 

anti-IgM antibodies and the other contains AuNPs conjugated to anti-IgG antibodies (Fig. 2A). 

 

Image processing and deep learning-based analysis 

 

Raw dng images, captured by our mobile reader, of the sensing membrane taken before (background 

image) and after (signal image) the assay are converted to tiff format. The green pixels are then extracted, 

and the background and signal images are registered to each other via a rigid-transformation. The 

immunoreaction spots are then identified in the background image and a fixed-radius mask is defined per-

spot at approximately 80% of the immunoreaction spot area. The pixel intensity within this 

immunoreaction spot mask is then calculated for the registered signal image and normalized by the pixel 

average of the corresponding immunoreaction spot in the registered background image, 

     

𝑅𝑚 =  
∑ 𝐼𝑠𝑖𝑔𝑛𝑎𝑙𝑥,𝑦 𝜖 Ω𝑚 (𝑥,𝑦)

∑ 𝐼𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑𝑥,𝑦 𝜖 Ω𝑚 (𝑥,𝑦)
              

where 𝑅𝑚 defines the normalized signal per immunoreaction spot (𝑚) and Ω𝑚 defines the x-y 

bounds of the fixed-radius mask per immunoreaction spot. This background normalization procedure 

helps account for non-uniformities in the illumination as well as local defects that might exist within the 

immunoreaction spots on each xVFA sensing membrane. Immunoreaction spots functionalized by the 

same capture antigen are averaged together, and each of the unique 𝑅𝑚 signals, derived from both the 

IgM and IgG xVFAs, are then used for deep learning analysis (Fig. 2B). 

 

Lastly, before being input into the diagnostic decision neural network, the 𝑅𝑚 signals from both the IgM 

and IgG xVFAs are standardized to the mean, 𝑅𝑚
̅̅ ̅̅  , and standard deviation, 𝜎𝑚 taken over the training set, 

 

𝑅𝑚′ =  
𝑅𝑚 − 𝑅𝑚

̅̅ ̅̅

𝜎𝑚 
 

       

The decision neural network contains an input layer with M nodes (e.g., M = 20 with the full IgM/IgG 

antigen panel), three fully connected hidden layers with 128, 64, and 32 nodes, in the first, second, and 

third layers, respectively. Each layer contains batch normalization, a 50% dropout, and a Rectified Linear 

Unit (ReLU) activation function, defined by 𝑓(𝑥) =  max (0, 𝑥), with the exception of the final output 

layer, which uses a sigmoid activation function, yielding a network output as a numerical value between 0 

and 1. A final binary diagnosis is then made by evaluating this numerical output with a blind cutoff value 

of 0.5. A binary cross-entropy cost function, defined as: 

𝐻(𝒚, 𝒚′) = −
1

𝑁
∑[𝑦𝑛 log 𝑦′𝑛 + (1 − 𝑦𝑛) log(1 − 𝑦′

𝑛
)]

𝑁

𝑛=1

 

was used during the training phase (learning rate = 0.001, batch-size = 32) with the two-tier based 

seropositive and seronegative diagnosis used as the gold-standard label, 𝑦𝑛 𝜖 {0,1}. Here, 𝑁 represents the 

number of training samples, and 𝑦′𝑛 𝜖 (0,1) represents the neural network prediction. The hyper-

parameters mentioned above (except the diagnostic threshold) were determined by a random parameter 

optimization in which 2 and 3 hidden layers with varying number of nodes were tested via k-fold cross-

validation (k =5) along with different dropout, learning rate, and batch size parameters randomly selected 

from a predefined list. All networks were trained for up to 1000 epochs with early stopping criterion 

defined by the stagnation of training accuracy not exceeding a change of 0.1% over 100 training epochs. 

The network weights at the last epoch (defined by the early stopping criterion) were then stored in the 

final model. 

 

 

Eq. 1 

Eq. 2 

Eq. 3 
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Clinical study 

 

In total, 106 unique human serum samples were obtained from the LDB (collected under Advarra IRB 

Pro00012408). Out of these sample, 50 were used for training, 50 for blind testing, with the additional 6 

used for precision evaluation. All the samples used were early-stage LD, having been obtained < 30 days 

since symptoms or the initial tick bite. All the cases and endemic controls were confirmed to be Lyme-

positive or negative through standard two-tier testing methods, or in some cases quantitative Polymerase 

Chain Reaction (qPCR) or convalescent draws (seroconversion). For the first tier, a combination of 

Whole Cell Lysate Enzyme-linked Immunosorbent Assay (ELISA), C6 Peptide EIA, or VlsE/PepC10 

ELISA testing was used. The second tier, performed regardless of the first-tier results, was comprised of 

the standard IgM and IgG WB. For this work, samples were considered seropositive if any of the three 

EIA tests in the first tier had a positive or equivocal (borderline) result and the second tier had a positive 

result for either the IgM or IgG WB as defined by the CDC recommendation (≥ 2 of 3 bands for IgM WB, 

and ≥ 5 of 10 bands for IgG)9. Samples were also considered seropositive by MTTT guidelines, where a 

seropositive diagnosis was called from two positive or equivocal EIA tests along with the presence of 

EM, without the need for a positive WB result16,31. Additionally, all samples were confirmed negative for 

coinfections of Anaplasmosis and Babesia, both of which are infections also transmitted by the Ixodes 

tick and can produce similar constitutional symptoms to LD. 

 

The clinical samples used for training and testing were obtained and tested in two separate sample-pulls. 

The first sample-pull contained 25 LD cases and 25 endemic controls from a collection site in East 

Hampton, New York between 2014 and 2016 (see Table S3). 24 of the 25 LD cases were seropositive, 

with the one exception confirmed Lyme-positive through B. burgdorferi qPCR. All seropositive samples 

were early-stage LD, with 3 out of 24 being early disseminated, defined by the presence of multiple EMs. 

All samples in the first sample-pull were tested with the IgM and IgG xVFAs in duplicate and used as the 

training data-set (𝑁(+) = 48, 𝑁(−)= 52). We should emphasize that since our training ground truth for this 

work is the two-tier test (which we aim to replace using our paper-based POC xVFA), one of the Lyme-

positive samples here (tested in duplicate) has been added to the negative set (𝑁(−)= 52) since it was 

seronegative (although being qPCR positive).  

 

The second sample-pull, used for blind testing of our platform, also contained 25 LD cases and 25 

endemic controls, but was obtained fully blinded (i.e. without case and control labels), and tested with our 

xVFAs and the associated serodiagnostic algorithm three months after the first sample-pull (see Table 

S4). The second sample-pull also contained cases and endemic controls from collection sites in East 

Hampton (USA), New York (USA), but also included samples from several sites in Wisconsin (USA), 

which were not included in our training phase. In this blind testing set, 23 of the 25 LD cases were 

seropositive, with the two exceptions confirmed Lyme-positive through a convalescent blood-draw taken 

approximately 3 months after the first draw that revealed seroconversion via two-tier testing methods. All 

seropositive samples were early-stage LD, with 9 out of 23 being early disseminated. All the samples in 

the second sample-pull were tested with the IgM and IgG xVFAs in duplicate and used as a blinded test 

set (𝑁(+) = 42, 𝑁(−)= 54), with four IgM tests removed due to fabrication error (see Supplementary 

Information, Fig. S3). The seropositive and negative diagnostic predictions resulting from our xVFA 

testing and machine learning algorithm were blindly sent to the LDB prior to receiving the gold-standard 

testing labels (to determine our blind testing performance). Six sensing membranes were additionally 

processed (compared to other activated xVFAs) using an affine image transformation to correct 

misalignments resulting from unforeseen expansion and/or contraction of the nitrocellulose pad, during 

the automated image registration step (see Supplementary Information, Fig. S4). 

 

Lastly six separate serum samples, obtained at the same time as the second sample pull were used for 

precision evaluation performed by a single assay operator as well as multiple, newly trained personnel. In 
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summary, 106 unique human serum samples obtained from the LDB have been used for training, testing 

and further inspection of our xVFA LD detection platform. 

 
 

RESULTS 

  

Training and cross-validation. The first sample-pull (𝑁(+) = 48, 𝑁(−)= 52) was used entirely for cross-

validation and training of our xVFA platform. Figure 3 summarizes the signals from the multi-antigen 

detection panel across all the seropositive samples in the training set, with the raw (1 − 𝑅) signals of all 

the tests shown in Figure S5. The statistical performance of each antigen in terms of its t-score (Eq. S1) is 

also shown, with the Mod-C6 peptide and OspC antigen being the top-ranked immunoreaction spots for 

the IgG and IgM sensing membranes respectively. As will be detailed and discussed later on, the 

individual performance and therefore the value of different antigen-targets as a single disease 

discriminator is highly-limited in the context of LD diagnosis, and our multiplexed xVFA platform 

computationally selects a complementary set of antigen-targets that collectively diagnose early-stage LD, 

providing a cost-effective and rapid POC replacement for the two-tier test.  

 

Before training the final serodiagnostic algorithm to be used for the detection of early-stage LD, the 

training set was used for selecting an optimal subset of antigens. We implemented a sequential forward 

feature selection (SFFS) method where the signals from each sensing channel were added one at a time, 

into the input layer of the neural network and then trained via k-fold (k=5) cross-validation. After the 

addition of each input feature, the performance of the network was evaluated based off a mean square 

error cost function, i.e., 

                                                                     𝐽(𝒚, 𝒚′) =  
1

𝑁
∑ ∑ (𝑦𝑖,𝑘 − 𝑦𝑖,𝑘

′ )
2

𝑁

5
𝑖=1

5
𝑘=1                         Eq. 4 

where 𝑦𝑖,𝑘  𝜖 {0,1} is the ground truth binary result (i.e. seropositive or negative) and 𝑦𝑖,𝑘
′ 𝜖 (0,1) is the 

numerical output of the network for the ith test in the kth fold of the k-fold cross validation (k=5). 𝑁 is the 

number of tests in the training data-set. The input feature which yielded the best network performance for 

that iteration was then kept as an input feature until all the 20 sensing channels were included as inputs 

(for ranking of their collective value for LD diagnosis); see e.g., Fig. 4C.  

 

Figure 4 shows the area under the receiver operator characteristic (ROC) curve (i.e., AUC) at each round 

of the SFFS antigen-selection algorithm, revealing a local maximum (AUC = 0.969) created by a panel of 

6 antigens and the 3 control spots: OspC, P41, and the positive control spot (anti-mouse IgM) from the 

IgM sensing membrane, as well as the Mod-C6 peptide, Crasp1, BmpA, P41, positive control spot (anti-

mouse IgG), and the negative control spot (Bovine Serum Albumin, BSA) from the IgG sensing 

membrane. Using this subset of sensing channels as the detection panel, a sensitivity of 91.7% and 

specificity of 96.2% was found via the cross-validation analysis (Fig. 4A, inset). The final LD diagnosis 

network was then trained using this computationally-selected subset as the antigen panel (M = 9), 

incorporating the tests (i.e., 100 activated xVFAs) from the first sample-pull (NTrain = 100, i.e., 𝑁(+) = 48 

and 𝑁(−)= 52), using the same network parameters outlined in the Methods. 

  

Clinical blind testing. The second sample-pull (𝑁(+) = 42, 𝑁(−)= 54) was then entirely used for blind 

testing the performance of our xVFA diagnostic platform, yielding an AUC of 0.950, sensitivity of 

90.5%, and specificity of 87.0% with respect to the seropositive and seronegative results, as summarized 

in Figure 5. This reported diagnostic performance of our xVFA platform achieved during the blind testing 

phase, to the best of our knowledge, exceeds previous POC tests for early-stage LD31,42. As a point of 

reference, Table S5 shows a comparison with the recently FDA-approved POC test from Quidel, which 

can be used as a first-tier test, detecting IgM and IgG antibodies using the C6 antigen. Though FDA-

approved, the Quidel test is not recommended as a replacement of the two-tier testing. The performance 
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of our xVFA also outperforms a number of previous clinical studies investigating diagnostic performance 

of standard two-tier as well as modified two-tier testing with respect to the ultimate clinical 

diagnosis9,17,38. 

 

Next, to achieve higher specificity, we tuned the decision threshold of the diagnostic network during the 

training phase such that the cross-validation specificity reached > 98%, resulting in a decision threshold 

of 0.66. Implementing this threshold in the blind testing phase (with 192 activated xVFAs), along with 

batch-specific standardization (also see the Discussion section), we achieved an AUC, sensitivity and 

specificity of 0.963, 85.7% and 96.3% with respect to the two-tier serology results (see Table S6). Such 

optimization of the decision biases can be utilized to achieve a desired false-positive and false-negative 

trade-off, depending on the clinical setting where the LD test is administered.  

 

With this fine-tuned decision threshold, we achieved two false positive and six false negative results out 

of the 96 individual tests run through our xVFA platform, reaching an overall accuracy of 91.7%. 

Interestingly, some intuitive reasoning can be attributed to these instances of misdiagnosed tests. For 

example, four out of the six the instances of false negative tests were from two patients that self-reported 

the shortest duration of LD symptoms (≤ 1 day) indicating that these samples may have the least 

developed immune response in our blind testing set. Additionally, one of these two false-negative 

duplicate pairs (LD188, see Table S4) was clinically positive in the first-tier due only to an equivocal 

result in the VlsE/PepC10 EIA. Because VlsE was eliminated from our multi-antigen detection panel 

during the pre-screening process (see Supplementary Information, Fig. S6), our xVFA is incapable of 

detecting antibodies to VlsE. This can be addressed in the future by further optimizing the binding 

properties of VlsE antigen in the nitrocellulose substrate as well as expanding the number of diverse sera 

in the training set prior to the computational antigen selection.  

 

It is also important to note that two seropositive samples in our testing set, i.e., LD185 and LD158 (see 

Table S4), were considered negative through standard two-tier testing (STTT), i.e. where the second-tier 

is IgG/IgM WB. Nevertheless, our POC test correctly called these samples positive with respect to the 

MTTT gold-standard label, which has demonstrated greater efficacy compared to the STTT in recent 

reports and has in fact lead the CDC to amend their recommendation for LD testing16,17,38. 

 

Lastly, half of the misclassified samples (4 out of 8) are from single discordant tests among the duplicate 

pairs. Therefore, to shed more light on this result, precision testing was performed with an additional six 

samples (N(+) = 3, N(-) = 3) obtained from the LDB, where each sample was measured with six repeated 

xVFA tests following the same operational protocol as in the training and testing phases (see 

Supplementary Information, Fig. S7, S8, Table S7). To more realistically assess how the xVFA performs 

as a POC test, we also examined the precision between three different users/operators, two of which were 

new to xVFA operation and given only 5 minutes of training. With the batch-specific standardization and 

threshold tuning, the overall accuracy during this precision testing, 91.7%, exactly matched the accuracy 

obtained during the blind testing. Additionally, no difference in accuracy was observed between the 

precision testing from a single operator and the testing completed by the multiple newly trained operators 

(Table S7). The precision of the individual immunoreactions was also investigated, yielding an average 

coefficient of variation of 8.9% for the same operator and 9.3% for the various newly trained operators 

(Fig. S7, S8). While this shows good overall repeatability in the underlying immunochemistry, some 

antigen spots exhibited a coefficient of variation exceeding 20% which can ultimately lead to poor 

precision in the output of the decision algorithm.  Therefore, despite the demonstration of interoperability, 

these testing results suggest that precision might be a limiting factor of our performance. Further 

improvements can be made by automating the fabrication processes and implementing humidity and 

temperature controlled environments, in order to improve the coefficient of variation of the individual 

immunoreactions as part of our xVFA. Additionally, ensuring that a large number of samples are used 

during the batch-specific standardization could potentially further improve our testing precision. 
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DISCUSSION 

 

Optimization of antigen selection in early-stage LD xVFA platform 

 

Computationally selecting the detection panel from a larger set of antigen/peptide targets improves the 

performance of the serodiagnostic algorithm. The capture antigens functionalized to the sensing 

membrane produce varying degrees of statistical variance in their optical signals, especially over different 

batches of fabricated sensors. This can stem from fabrication tolerances borne out of the low-cost 

materials, or from operational variance. Some capture antigens can also exhibit varying degrees of cross-

reactivity with other antibodies native to human sera. Our feature selection procedure helps eliminate the 

least reliable discriminators while conserving an ensemble of reactions that can most reliably detect the 

immune response. A very good example of this phenomenon can be seen in this comparison: when 

forgoing the feature selection process and implementing the full antigen selection panel (M = 20) as 

inputs to the network, the cross-validation testing reveals that AUC, sensitivity and specificity are 0.894, 

72.9% and 92.3% respectively, compared to 0.969, 91.7% and 96.2% respectively, from the network 

trained on the computationally-selected subset of 9 features (see Table S8 and Fig. 4); this clearly 

emphasizes that the use of more antigen-targets does not offer a better solution for LD diagnosis. 

Interestingly, using the single antigen with the highest t-score (the Mod-C6 like in the IgG membrane) 

alone as an input to the network, results in an AUC of 0.850 and a sensitivity and specificity of 77.1% and 

98.1%, respectively. Such performance for early-stage LD samples is characteristic of EIAs that detect 

only a single antibody, as the antigen-targets employed, such as the Mod-C6, can be synthesized to limit 

the presence of cross-reactive epitopes while failing to detect less prevalent antibodies, such as OspC or 

BmpA that may be produced at the beginning of the infection, albeit at lower concentratrions20,44. The 

significant benefit of the computationally-determined multi-antigen panel is also clearly reflected in the 

blind testing set, showing the highest AUC when compared to networks trained with the full antigen panel 

and the Mod-C6 alone (see Table S8). 

 

It is also important to note that the SFFS method implemented in this work, which is referred to as a 

wrapper feature selection technique, does not simply select the top individual discriminators (i.e. the 

sensing channels with the highest t-score). Instead, it iteratively adds input features and assesses their 

performance as an ensemble of inputs to a neural network. We should emphasize that filtering the input 

features based on the top 9 individual t-scores results in poorer cross-validation performance (AUC = 

0.900, Sensitivity = 79.2%, Specificity = 92.3%) when compared to a network with 9 features selected by 

our SFFS method. This can be partly attributed to the relative unimportance of redundant information. In 

other words, antigen-targets associated with the same patient population or stage of infection as an 

already implemented antigen-target are of less value to the diagnostic performance, despite having good 

performance as a single discriminator; in fact, this is a very important conclusion for the design of 

multiplexed sensors in general, which certainly applies to our early-stage LD xVFA platform.   

 

Additionally, the positive and negative control spots, while not intended for unilaterally discriminating 

seropositive and negative samples can contain pertinent relative information for a computational POC 

sensor. For example, the relative concentration of AuNPs in the conjugation pad as well as instances of 

strong non-specific binding from matrix effects inherent in human sera can be represented by the positive 

and negative control immunoreactions and thus factored into the logistical classifier.  

 

Alternative to the wrapper SFFS technique used here, a global search could potentially be implemented in 

which the network is trained by every combination of possible sensing channels. However, this requires 

training a network for every possible subset of M sensing channels, multiplied by the number of folds in 

the k-fold cross validation, i.e. 𝑘 ∗ ∑
𝑀!

𝑟!(𝑀−𝑟)!
𝑀
𝑟=1 . With our multiplexed xVFA platform (M = 20) and 5-
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fold validation, this results in over 5.2 million training instances, which was prohibitive due to the 

computation time required (> 10,000 hours at 7.2 seconds per training instance on an NVIDIA GeForce 

FTX1080 Ti GPU).  

 

In addition to the performance advantages discussed above, our feature selection process can also be used 

to reduce the cost per-test. For example, the reagent cost for the full antigen panel (M=20) would be 

reduced by 44% by implementing the subset of 9 immunoreaction spots selected during the training phase 

(Fig. 4D). Although not considered here, future methodologies could even incorporate reagent cost into 

the feature selection cost function, 𝐽(𝒚, 𝒚′) to better illustrate cost-performance trade-offs. Additionally, 

immunoreaction spots with antigen-targets that were not computationally selected could be replaced in 

future sensing membrane designs by redundancies of positive and negative control spots as well as 

already selected capture antigens, or even alternative antigen-targets not yet tested. This type of data-

driven iterative assay development is universally applicable, and could be a powerful framework for 

improving multiplexed sensors, especially for complex diagnoses like LD as well as for POC tests that 

must balance cost and performance. 

 

Optimization of the false-positive and false-negative rate 

 

Another important aspect of the training and feature selection phase is the degree of trade-off between 

sensitivity and specificity. The diagnostic algorithm can be influenced during the training phase by 

penalizing instances of false negatives more heavily than instances of false positives, e.g. through tunable 

weights on the two terms in the binary cross-entropy cost function used to train the network (Eq. 3), or by 

adjusting the threshold which discriminates between positive and negative samples. In practice, it may be 

more beneficial for a POC assay that is intended to be used at the first line of patient assessment, to have a 

greater portion of false positives over false negatives, especially in the case of contagious diseases. 

However, another important consideration is the pre-test likelihood, which can be low for samples 

submitted for serological LD testing (<20%)24,45. Therefore, it may also be important to ensure a lower 

portion of false positives in order to reduce the overall number of misdiagnoses. Ultimately however, due 

to the small number of misclassified samples observed during the training phase of this work (only 6), we 

did not implement any of these possible adjustments before the initial blind testing. With larger data-sets, 

where the empirical effect of tuning the bias can be better modeled, these approaches should be 

considered and jointly investigated with experts in diagnostic testing. 

 

 

Batch-specific standardization 

 

Although our blind testing sensitivity is comparable to the cross-validation sensitivity during the training 

phase, indicating that our deep learning-based diagnostic algorithm did not over-fit to the training data-

set, the network did exhibit a drift in its numerical output from the training phase to the testing set (see 

Fig. S9). The mean output for negative samples shifted from 0.060 ± 0.156 to 0.278 ± 0.246 (mean ± SD) 

between the training and testing samples (also shown in Fig. S9). This effect is likely due to the instability 

of the antigen-targets, which produced underlying statistical differences of the 𝑅𝑚 signals between the 

training and testing phases of the clinical study, which were conducted 3 months apart due to sample 

availability from the LDB. Additionally, differences in temperature and humidity at the time of manual 

fabrication among other variables can impact repeatability across fabrication batches. Such issues are also 

pervasive in commercial assays, demanding production-grade equipment to establish environmental 

controls during automated fabrication as well as rigorous quality assurance to verify performance 

standards. 

 

To mitigate such issues, future batches of sensors can be standardized to sample means (𝑅𝑚
̅̅ ̅̅ ) and standard 

deviations (𝜎𝑚) as a characteristic signature of their fabrication batch (see Eq. 2).  For example, during 
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the initial blind testing phase reported in this work, the mean and standard deviation of the training data 

were used for the input standardization. This resulted in a drift of the 𝑅𝑚′ inputs away from zero, which 

can in turn manifest as a drift in the network output. Therefore, by standardizing the blind testing inputs to 

the sample mean and standard deviation of the testing batch, the drift in negative sample outputs is 

reduced by over 80% (see Fig. S9). As a result, three of the false positive samples are subsequently 

classified as true negatives (with a decision threshold of 0.5), increasing the specificity from 87.0% to 

92.6% and the AUC from 0.950 to 0.963 with respect to the two-tier serology, while only incurring one 

extra false negative sample. Practically, batch-specific sample means and standard deviations could be 

calculated as a running average of the activated sensors in a batch, and could even be exclusively 

determined using endemic control sera, which is more readily available. An alternative approach is to 

include fabrication batch information as inputs to the network in the form of external labels46. In this case, 

the network could learn inherent batch-to-batch variations and compensate for these differences through 

its internal tunable parameters.  

 

Outlook 

 

In conclusion, we demonstrated a paper-based computational multi-antigen xVFA platform capable of 

diagnosing early-stage LD at the POC. Our xVFA has a material cost of $0.42 per-test and can be 

performed in 15 min by an individual with minimal training. A low-cost and handheld optical reader 

enables automated analysis to quantify colorimetric signals generated on a nitrocellulose membrane, 

followed by analysis with a neural network for inferring a diagnosis from the multi-antigen sensing 

information. By computationally selecting a panel of detection antigens for IgM and IgG antibodies 

specific to LD and performing a fully-blinded clinical study with early-stage LD samples, we report an 

AUC, sensitivity, and specificity of 0.950, 90.5%, and 87.0%, respectively, with respect to the two-tier 

serological testing. Using batch-specific standardization and threshold tuning, we improved the specificity 

of our blind-testing performance to 96.3%, with an AUC and sensitivity of 0.963 and 85.7%, respectively. 

 

The multi-target and POC nature of the computational xVFA make it uniquely suited for LD diagnostics, 

presenting major advantages in terms of time, cost, and performance when compared to (first-tier) EIAs 

with single antigen-targets as well as standard two-tier testing methods that are rather costly (e.g., 

>$400/test) and slow (>24 hours for results). 

 

Future work can incorporate dual-mode read-out and operation for measuring IgM and IgG antibodies in 

a single test. Additionally, the computational framework outlined here can be used for iteratively 

designing more competitive versions of our xVFA that incorporate statistically more stable, sensitive, and 

specific capture molecules such as synthetic peptides with epitopes engineered for high capture-affinity 

and low cross-reactivity32.  
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Figures 
 

 
Figure 1. (A) Overview of POC Lyme disease diagnostic testing using xVFA and machine learning. (B) Illustration 

of the multiplexed immunoreactions which occur on the sensing membrane during the xVFA operation. (C) 

Expanded diagram of the paper materials within the xVFA showing the sample loading top-case (in blue) and the 

signal generating top-case (in red). The bottom-case is shown below with the sensing membrane containing the 

multi-antigen panel. (D) Photograph of the mobile-phone reader with an opened xVFA cassette and example images 

of the sensing membrane (shown to the right). (E) Cross-section of the xVFA mobile-phone reader with an inset 

showing the illumination of the sensing membrane using an inexpensive opto-mechanical attachment to the 

smartphone. 
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Figure 2. (A) Detailed xVFA operation for the IgM and IgG assays, which are performed in parallel (total assay 

time: 15 min). A depiction of the IgM and IgG immunoassays is shown to the right. (B) Image processing (left), 

capture antigen panel (middle), and deep learning-based analysis (right) of the multiplexed sensing membrane.  
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Figure 3. (A) The sensing membrane of our xVFA and the map of the multi-antigen panel. (B) Example images of 

IgM (left) and IgG (right) sensing membranes after activated by a human serum sample (sample #7) under ambient 

lighting conditions and using the mobile-phone reader (under green LED illumination). (C) The t-score (Eq. S1) of 

the multi-antigen channel calculated over the training data-set for the IgM (left) and IgG (right) sensing membranes 

ranked in descending order. (D) A heat map showing the signals from the multi-antigen panel of the IgM (left) and 

IgG (right) sensing membranes activated by the seropositive samples in the training set. The color bar represents the 

(1-R) signal of each sensing channel normalized to the mean signal of the same sensing channel across all the 

seronegative samples in the training data-set. The normalized IgM and IgG signals for sample #7 are outlined by the 

orange and blue boxes respectively. 
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Figure 4. The feature selection process for the xVFA IgM and IgG antigen panel. (A) Receiver operator 

characteristic (ROC) curves resulting from the neural network inference during cross validation. The color bar 

represents the output from networks trained with different number of input features. The inset defined by the red 

dotted line shows the confusion matrix for all the samples in the training set predicted during cross-validation using 

the 9 antigen inputs shown in (B), which is selected based on the optimization reported in (C). (C) The area-under-

the-curve (AUC) plotted for various networks trained with a different number of inputs of the multi-antigen panel 

(also see (A)). Each bar plot corresponds to the ROC curves shown in A, and is color-coded to represent which 

members of the multi-antigen panel are included as the inputs with the left and right side of each bar showing the 

members from the IgM and IgG sensing membrane, respectively. The red-dotted line shows the local optimum AUC 

(0.969) and the resulting 9 selected features. The error bars show the standard deviation between 4 different training 

instances of the same network. (D) The reagent cost of the sensing membrane versus the number of selected 

members in the multi-antigen panel as they are included in the order shown in (C). Under large-volume 

manufacturing the reagent cost per test is expected to drop by more than an order of magnitude. The red-dotted line 

represents the reagent cost for the 9 selected antigens, and the grey-dotted line shows the reagent cost of the whole 

antigen panel before feature selection. 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 22, 2019. ; https://doi.org/10.1101/19009423doi: medRxiv preprint 

https://doi.org/10.1101/19009423
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

 
Figure 5. ROC curve for the blind testing data (NTest = 96) as output from the neural network trained with the 9 

selected antigens (see Fig. 4) from the training set (NTrain = 100). The inset shows the confusion matrix and area 

under the ROC curve (AUC). The table to the right summarizes the performance over the blindly-tested LD human 

serum samples with respect to the two-tier testing method. 
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