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Abstract 

The spread of dengue through global human mobility is a major public health concern. A 

key challenge is understanding the transmission pathways and mediating factors that 

characterized the patterns of dengue importation into non-endemic areas. Utilizing a network 

connectivity-based approach, we analyze the importation patterns of dengue fever into European 

countries.  

Seven connectivity indices were developed to characterize the role of the air passenger 

traffic, seasonality, incidence rate, geographical proximity, epidemic vulnerability, and wealth of 

a source country, in facilitating the transport and importation of dengue fever. We used 

generalized linear mixed models (GLMMs) to examine the relationship between dengue 

importation and the connectivity indices while accounting for the air transport network structure. 

We also incorporated network autocorrelation within a GLMM framework to investigate the 

propensity of a European country to receive an imported case, by virtue of its position within the 

air transport network.  

The connectivity indices and dynamical processes of the air transport network were 

strong predictors of dengue importation in Europe. With more than 70% of the variation in 

dengue importation patterns explained. We found that transportation potential was higher for 

source countries with seasonal dengue activity, high passenger traffic, high incidence rates, lower 

economic status, and geographical proximity to a destination country in Europe. We also found 

that position of a European country within the air transport network was a strong predictor of the 

country’s propensity to receive an imported case. 

Our findings provide evidence that the importation patterns of dengue into Europe can be 

largely explained by appropriately characterizing the heterogeneities of the source, and topology 

of the air transport network. This contributes to the foundational framework for building 

integrated predictive models for bio-surveillance of dengue importation. 

Key words: Air transport network, Connectivity indices, Dengue, Europe, Importation risk
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Introduction 
 

During the last few decades, dengue fever has rapidly spread into new geographical 

regions with a resultant increase in its global incidence [1, 2]. This global spread has notably 

been linked to increasing human mobility, particularly air travel [3-5]. Global aviation network 

has increased in volume by almost eight-fold in the past 40years, enabling human movement 

across long distances in a relatively short time [6-8]. Thus, creating a mobility network for the 

spread of infectious diseases like dengue [9-11]. Infected air travelers have contributed 

significantly to the importation of dengue to non-endemic areas [12-14]. 

As human mobility and connectivity continue to advance, dengue spread via importation 

will continue to increase at unpredictable rates [4, 15]. The complexity of the air transport 

network poses a substantial challenge in the understanding of the dynamics of dengue spread and 

importation [16, 17]. How to effectively tackle dengue spread mediated via the complex air 

transport network is a priority of vector-borne disease surveillance and control [18-20]. In this 

context, understanding the dynamics by which dengue fever is transported, across the complex 

and dynamic mobility network, is an important first step [5].  

Previous work on network-mediated epidemic often assumes a common framework, that 

the probability of an imported infection is directly correlated with the number of arriving air 

passengers [13, 21]. However, a simple correlation between imported cases and crude travel 

statistics is insufficient to explain the transmission pathways [21]. Such an approach does not 

allow to differentiate imported cases arriving from countries with higher infection risk and 

transport potential, or if the variance in the number of cases is also mediated by other socio-

economic and anthropogenic factors. Neither does this capture the connectivity patterns of the 

mobility network that influence or constrains the dynamics of importation.  

Recent studies have applied a range of social network modeling approaches to 

understanding the transmission pathways of a network-mediated epidemic. From a general 

perspective, these methods combine the derived attributes of the epidemic source country and the 

topology of the transporting network to explain importation dynamics [17, 22].  Epidemic source 

attributes are characterized by the heterogeneities in the passenger’s air travel volume, socio-

economic and anthropogenic factors, that mediate the risk of infection and transport of the 
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disease [23]. While the network topology is characterized by centrality measures of the nodes 

(countries) in the air transport network. [24, 25]. To our knowledge, there are no studies that 

apply this explanatory power of social network analysis to characterize dengue importation 

patterns into Europe.  

 

Here, we adopt a refined network connectivity approach to analyze data on imported 

dengue cases from 21 European countries, within a 6-year period (2010 – 2015). Specifically, 

our approach is outlined in the following: (1) We integrate a source-to-destination country 

combination to construct a network connectivity for dengue importation; (2) We then examine 

connectivity measures accounting for factors mediating the transport and importation potential 

from the source country; (3) Lastly, we investigate how the topology of the air transport network 

influences the importation risk from a source and the propensity of a destination country to 

receive an imported case.  

 

Methods  
 

Conceptual framework  
 

Our proposed network connectivity framework adapts techniques from previous work on 

dispersal connectivity, spatial autocorrelation and network modelling [25-28] to capture the 

dynamics of dengue importation. The inputs for our analysis consist of the dengue importation 

data, air travel data and the underlying air transport network structure.  

In the sections below, we describe the various inputs and our modeling approaches. In the 

first section, we describe the disease and air travel data, with their respective sources. Next, we 

describe the connectivity indices representing factors that potentially facilitate the transport and 

importation of dengue from a source country into Europe. We then describe the generalized 

linear mixed effect (GLMM) modelling approach for quantifying the variation in dengue 

importation as explained by the indices.  

The next section introduces the concept of dependency network analysis to account for 

the influence of the air transport network structure. Firstly, we describe the construct of the 
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weighted directed network from the air passenger’s data and then define centrality measures to 

characterize each individual node’s (i.e. country) influence within the network. The centrality 

measures of the source countries were then added to the GLMM model of the connectivity 

indices to account for the influence of network structure. Finally, we describe an extension of our 

analysis to model the propensity of a country in Europe to receive an imported case, by virtue of 

its network topology (i.e. centrality measures).  

 

Disease data 

We analyzed imported cases of dengue fever reported in Europe for the period of 2010 – 

2015. Dengue fever data was obtained from the European Centre for Disease Prevention and 

Control (ECDC) [29]. Routine (weekly) Europe-wide infectious disease surveillance data is 

collected from European Economic Area member states (EU/EEA) countries by the ECDC. Data 

is collected and managed through The European Surveillance System (TESSy) database; a 

database provided by the ECDC national focal points for surveillance [30].  

 Here, we considered confirmed cases of dengue, according to the 2012 EU case 

definition for viral haemorrhagic fever (VHF) which defines a confirmed case as any person 

meeting the clinical and the laboratory criteria [31]. The subset of imported cases or travel-

associated cases are categorized as persons having been outside the country of notification 

during the incubation period of the disease. Place/country of infection was defined as the place 

the person was during the incubation period of the disease. A total of 21 EU/EEA countries 

reported data on imported dengue, within the period of 2010 – 2015 (inclusive of zero reporting). 

For our analysis, we considered each imported case, its country of infection (as source country), 

the reporting country (as destination country) and the reporting month.  

 

Air travel data 

To describe the flow of individuals into Europe, we obtained the passenger air travel data 

for 2010 – 2015, from the International Air Transport Association (IATA) [32]. IATA Passenger 

Intelligence Services (PaxIS) data, is the most comprehensive airline passenger’s data available 
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today. Data includes the complete passenger itineraries, true origins and destinations, route 

segments and connecting points. The data contained over 11,996 airports in 229 different 

countries and their territorial dependencies, with calibrated passenger travel volumes for each 

route at a monthly timescale. The passenger volumes were available at the country level, i.e. the 

total number of passengers traveling from each country worldwide. We used these data to 

construct a monthly directional passenger flow from all countries worldwide with a final 

destination in Europe (also accounting for all connecting flights). This passenger flow was 

inclusive of flow in-between European countries.  

 

Connectivity indices  

We assembled seven indices representing factors potentially mediating the importation 

risk of dengue from a source country. These indices are decomposed into components 

representing the ‘source strength’ (the risk of dengue infection); and the transport and 

importation potential (the connection between the source country and the potential destination 

country in Europe).  

Indices 1 and 2, characterize dengue monthly activity and annual seasonality in the 

source country. These indices were created using worldwide dengue outbreak notifications data 

from DengueMap (a unified data collection tool, that brings together disparate dengue reports of 

local or imported dengue cases from official, newspapers and other media sources globally) [33]. 

Index 1 is defined as having one or more confirmed cases in a given month (January-December) 

in the years of 2010 through 2015, index 2 is defined as having dengue activity (i.e. notification 

of one or more confirmed cases) in a given month in two or more years from 2010 through  2015 

[34]. Index 3 is the annual dengue incidence estimates of source country adjusted for the 

country’s population, obtained from the Institute for Health Metrics and Evaluation (IHME) [35, 

36]. Index 4 is the geographical distance between centroids of source country and destination 

country, often modelled as a proxy for travel time and predictor for epidemic arrival times [37]. 

This assumes that proximity to an endemic source increases transport and importation potential 

to destination. Index 5 is the epidemic vulnerability of the source country, represented by the 

recent infectious disease vulnerability index from RAND cooperation [38]. This index identifies 

countries' vulnerabilities to control potential disease outbreaks by assessing a confluence of 
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seven broad country level factors: demographic, health care, public health, disease dynamics, 

political-domestic, political-international and economic [38]. This index assumes that most 

vulnerable countries might pose a higher risk of infection and transportation. Index 6 is the 

income per capita (GDP) of source countries; poor countries with weak economies are associated 

with poor health outcomes, lesser abilities to detect, prevent and respond effectively to infectious 

disease. Hence, we assume greater importation risk from poorer source countries. Index 7 is the 

total arriving passengers from source country to destination country (i.e. accounting for both 

direct and connecting flights) which has often been correlated with disease importation [13], with 

an implicit assumption that infection risk is equal for all source countries. Hence an increase in 

passengers, in turn, increases the transport and importation potential. 

  Source strength for all indices was determined by the endemicity of dengue in the source 

country, while transport and importation potential were modelled based on each unique factor, as 

detailed in Table 1 below.  
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Table 1. Connectivity indices (𝐒𝐣,𝐟)of a focal destination country (𝐣) for the importation of dengue 

fever (𝐟) 

Index Meaning Connectivity 

(𝑺𝒋,𝒇) 

Source 

strength 

Transport 

and 

importation 

1 Dengue activity ∑ 𝜃𝑖,𝑓 𝐴𝑖

𝑖≠𝑗

 𝜃𝑖,𝑓 1 

2 Dengue seasonality⸸ ∑ 𝜃𝑖,𝑓 𝑆𝑖

𝑖≠𝑗

 𝜃𝑖,𝑓 1 

3 Incidence estimates of source country 

 
∑ 𝜃𝑖,𝑓 𝐼𝑅𝑖

𝑖≠𝑗

 𝜃𝑖,𝑓 1 

4 Geographical distance 

 
∑ 𝜃𝑖,𝑓 ln𝑑𝑖𝑗⁄

𝑖≠𝑗

 𝜃𝑖,𝑓 1 ln𝑑𝑖𝑗⁄  

5 Epidemic vulnerability‡  ∑ 𝜃𝑖,𝑓 V𝑖⁄

𝑖≠𝑗

 𝜃𝑖,𝑓 1 𝑉𝑖⁄  

6 Source country’s wealth (GDP) 

 
∑ 𝜃𝑖,𝑓 ln𝑔𝑖⁄

𝑖≠𝑗

 𝜃𝑖,𝑓 1 ln𝑔𝑖⁄  

7 Total air passengers from a source 

country 

 

∑ 𝑃𝑖→𝑗

𝑖≠𝑗

 
1 𝑃𝑖→𝑗 

𝑖 = source country; 𝑗 =destination country;  𝜃𝑖,𝑓 =  endemic to dengue fever, infection is constantly maintained at a 

baseline level in country without external inputs (0 or 1); 𝐼𝑅= Incidence rate; 𝑑 = geographical distance between 
centroids of countries 𝑖 and 𝑗 (in kilometers); 𝑉 = infectious disease vulnerability; 𝑃 = total air passengers; 𝑔 = 

Gross domestic product.   

⸸= coded as a binary variable, with a value 0 indicates ‘no activity or seasonal pattern’ and 1 indicates ‘activity or 

seasonal pattern’ respectively. 

‡= infectious disease vulnerability index is summarized as a normed factor score for each country ranging between 0 

and 1, from most vulnerable with the lowest score to least vulnerable with the highest score, hence we specify the 

inverse.  

Logarithms were used in the equations to decrease variability in raw input data and to improve the normality of the 

indices. 
 

 

To quantify the variation in dengue importation as explained by our proposed 

connectivity indices, we fitted a generalized linear mixed effect model (GLMMs) [39] Unit of 

analysis was the monthly source-destination country combination, with a binary response 

variable coded to indicate a reported case of imported dengue (1) or not (0). The GLMM was 

fitted with logit link functions for binomial errors and fixed effects of the connectivity indices 

and a crossed random effects (intercepts) of the destination country and time step (in a month). 

We also included a fixed effect for time to control for the following: specific global aviation 
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traffic effects, i.e. increase or decrease in traffic to a specific country, due to a major event (e.g. 

traffic increase to London, during the 2012 summer Olympics), and to account for under-

reporting or no report for countries in specific months.  To improve normality, the continuous 

fixed effects variables were transformed using the log(𝑥 + 1) function, then centered on zero, 

and standardized to unit variance, before model fitting. Model fits were evaluated by calculating 

the marginal and conditional GLMM 𝑅2  [40]. Likewise, model post-estimation using model 

diagnostic measures and residuals plots were evaluated using the DHARMa residual diagnostics 

for hierarchical models [41]. 

 

Dependency network 

 

Next, to explore the influence of the air transport network structure on the variation of 

dengue importation, we incorporate the dependency network approach. This is a system level 

analysis of the activity and topology of the air transport network to investigate the capacity of a 

country to influence or be influenced by, other countries within the network by virtue of their 

connections [42-44]. The specificity of network influence on dengue importation risk is that the 

connectivity between a source country (𝑖) and a destination county (𝑗) is not analyzed in 

isolation, but in consideration for the effects of 𝑧, where 𝑧 , is the other countries within the 

network structure. The implication of this network structural view is that the connection between 

𝑖 and 𝑗 is also dependent on the connections between 𝑖 and 𝑧 and between 𝑗 and 𝑧. Therefore, the 

distributed heterogeneity in the connections is characterized by interdependencies within the 

network and must be accounted for statistically [25, 45].  

 

Using IATA passengers air travel data, we constructed 72 weighted directed networks, to 

represent the monthly flow of air passengers into Europe, from 2010 to 2015. For each network, 

countries are represented by a node while edges represent the flow of passengers between pairs. 

The network graph is denoted by 𝐺𝑚 = (𝑉, 𝐸), where 𝑉𝐺 is a set containing all the nodes (or 

vertices), while 𝐸𝐺  contains all the edges, with 𝑚 indicating the month. Edges are denoted as 𝑒𝑖,𝑗,  

where 𝑖 is the source and 𝑗 is the destination of a travel route represented by the edge. For each 
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connected pair of nodes 𝑖 and 𝑗, the edge was weighted with the total number of passengers from 

𝑖 to 𝑗 given by 𝑊𝑖𝑗 (Fig 1).  

 

 

 
Fig 1. Air transport network. The weighted, directed network, constructed from IATA passenger’s data with a 

final destination in Europe. Each node is one country, and the size of a node is proportional to the average number of 

passengers in a month.  

 
 

The role of a node in the network and its likelihood to influence the transport and importation 

potential of dengue was then characterized by the following centrality measures (Table 2): 

 

Degree centrality. The number of links or connections that a node has, this assigns a 

score based on the number of nodes within the network, that an individual node is connected to 

[42, 45]. The higher a node's degree, the more it associates with neighboring nodes, potentially 

increasing its transport potential or increases its vulnerability to importation (in the case of a 

destination country).  

 

Betweenness centrality. Measures the number of times a node lies on the shortest path 

between other nodes in the network [42]. A node with high betweenness metric is expected to 

have a higher transport potential, as it bridges between different nodes that are not directly 
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connected. Alternatively, destination countries with high betweenness are at higher risk of 

importation.  

Closeness centrality. measures how close (in terms of topological distance) a node is 

with respect to all other nodes [46]. The topological distance between any pair of connected 

nodes is given by the inverse of the number of passengers in the corresponding edge. Therefore, 

the higher the number of passengers in a given edge, the shorter the distance between them, the 

faster an infection gets transported or imported.   

 

Eigenvector centrality. The basic idea of the eigenvector centrality is that a node’s 

centrality is determined by the combination of its connections and that of its neighbors [47, 48]. 

A node will have high eigenvector centrality if it has strong connections with other highly 

connected nodes. In our context, if a node is connected to other highly influential nodes, the 

higher its transport potential or the higher its vulnerability to importation from a random source 

in the network. 

 

Table 2. Centrality measures for a central node (adapted from [45])   

 

 Centrality 

measure 

Characteristics of a central node Equation 

1 Degree  Connected directly with many other 

nodes 
𝐷𝐶𝑖 = 𝑠𝑖 = ∑ 𝑊𝑖𝑗

𝑗≠𝑖

 

2 Betweenness  Lies on many shortest paths linking 

other pairs. The probability that 

communication from 𝑝 to 𝑔 will go 

through 𝑖 
 

𝐵𝐶𝑖 = ∑
𝑔𝑝𝑞(𝑖)

𝑔𝑝𝑞
𝑝≠𝑖,𝑝≠𝑞,𝑞≠𝑖

 

3 Closeness  Short communication path to other 

nodes, a minimal number of steps to 

reach others 

 

𝐶𝐶𝑖 =
𝑁

∑ 𝑙𝑖𝑗𝑗
 

4 Eigenvector  Connected (directly and/or indirectly) 

to many other nodes and/or 

to other high-degree nodes  

 

𝐸𝐶𝑖 =
1

𝜆
∑ 𝐴𝑖𝑗𝑣𝑗

𝑗

 

𝑖 = source country; 𝑗=destination country; 𝑠 = node strength (i.e. the sum of all edge weights attached to a node);  

𝑊𝑖𝑗 = weight of the edge between nodes 𝑖 and 𝑗;  𝑔𝑝𝑞= the number of shortest-paths between nodes 𝑝 and 𝑞;  

𝑔𝑝𝑞(𝑖)= the number of shortest-paths between nodes 𝑝 and 𝑞 (other random nodes in the network), which pass 

through 𝑖 ; 𝑁 = number of nodes in a network;  𝑙𝑖𝑗=  distance of the shortest between nodes 𝑖 and 𝑗 , here weighted 

distance is given by the inverse of the number of passengers in the corresponding edge; 𝐴 = adjacency matrix of the 

weighted network; 𝜆 = leading eigenvalue of 𝐴; 𝑣 = leading eigenvector of 𝐴; 
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To quantify the influence of the air transport network topology, we employ two different 

modelling approaches. Firstly, we account for the network structure in our connectivity 

framework, by including the centrality measures of the source country. We tested whether 

GLMMs based on connectivity indices and the air network centrality measures outperformed the 

base model based on the connectivity indices alone. GLMMs were fitted with the same random 

effect structure as above. All possible combinations of centrality measures were considered, 

resultant models were compared based on their fixed effects ∆AIC and marginal GLMM 𝑅2. 

 

Secondly, we model the network topology of the focal destination country as a dependent 

variable. This assumes that dengue importation into a focal destination country could be directly 

related to the country’s position in the air transport network. For this model, centrality measures 

were fitted as fixed effects, with crossed random effects (intercepts) of each node (i.e. each 

destination country) and time step (m). As above, all possible models were fitted and compared 

based on their fixed effects ∆AIC and marginal GLMM 𝑅2. 

 
 

All analysis and plots were performed in R software, version 3.5.2 [49], using the 

following libraries: glmmtmb [50], igraph [51], tnam [52], DHARMa [41], sjstats [53], ggplot2 

[54], circlize [55] and their varying dependencies.   

 
 

 

Results 
 

Among the 7,277 imported dengue cases reported in Europe from 2010 to 2015, 4,112 

(57.0%) cases had known travel history, i.e. source country of infection. The cases with the 

known source were imported into 21 European countries, from 99 different countries distributed 

across all global regions. 62.1% of reported cases originated from South-East Asia Region, with 

Thailand, Indonesia, India, and Sri Lanka being the major source of import; 18.0% originated 

from Region of the Americas, with most cases coming from Brazil; 12.1% from the Western 

Pacific Region, where Vietnam and the Philippines were the major import source. The data 
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showed that imported cases were most frequently reported in Germany, Sweden, United 

Kingdom, Italy and Norway (Fig 2).  

 

 

 

Fig 2. Distribution of imported dengue cases by the destination country and the source region. Destination 

countries are represented by 21 European countries. Source region represents, 99 different countries distributed 

across all global. Source countries were grouped into regions for visual representation, with region grouping defined 

by the WHO Member States region definition. WHO Member States are grouped into 6 WHO regions: African 

Region, Region of the Americas, South-East Asia Region, European Region (not included in source countries), 

Eastern Mediterranean Region, and Western Pacific Region [56]. 

 

An annual average of 436 million passengers entered Europe from other countries 

worldwide from 2010 to 2015. Of the total number of passengers arriving from regions outside 

of Europe, 44% originated from region of the Americas, with higher traffic from the United 

states, Canada and Brazil; 19% from the Eastern Mediterranean, with higher traffic from 
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Morocco, United Arab Emirates and Tunisia; 15% from the Western Pacific  with higher traffic 

from Thailand, India and Hong Kong;  12% from the African region, with higher traffic from 

Algeria, South Africa, Nigeria; 10% from South-East Asia and. A country-level passenger in-

flow from WHO Member States regions is shown in Fig 3. High traffic inflow was most 

common in the United Kingdom, France, Germany, Italy, and Spain. Most of the identified 

dengue importation hot spots were characterized by a high influx of air passengers, with a 

tendency for an increase in importation risk. However, the high influx of passengers does not 

necessarily lead to a high number of imported cases of dengue, as total number of arriving 

passengers was weakly correlated with the number of imported cases (Spearman’s ƿ = 0.13, 

p=<0.01, S1 Fig). 

 

 

Fig 3. Distribution of air passengers arriving into Europe from WHO regions in 2010 – 2015. Destination 

countries are represented by 21 European countries. Source region represents, 99 different countries distributed 

across all global. Source countries were grouped into regions for visual representation, with region grouping defined 

by the WHO Member States region definition. WHO Member States are grouped into 6 WHO regions: African 
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Region, Region of the Americas, South-East Asia Region, European Region (not included in source countries), 

Eastern Mediterranean Region, and Western Pacific Region [56]. 

 

Connectivity indices and dengue importation 

Our first model investigated the relationship between dengue importation and the 

connectivity indices. Table 3 presents the results of the GLMM model with estimated 

coefficients, odds ratios and 95% confidence intervals for each connectivity index. The estimated 

coefficients represent the relative influence of each connectivity index on the risk of dengue 

importation between source–destination country combinations. In this model, dengue 

importation was significantly associated with the following connectivity measures: dengue 

activity, seasonality, incidence rates, geographical distance, the wealth of source country and 

arriving passengers. Evaluating the model independently of random effects variance component, 

these connectivity indices account for 48% (marginal GLMM 𝑅2 of 0.478) of the variation in 

dengue importation patterns. Overall the GLMM model accounted for 74% (conditional GLMM 

𝑅2 of 0.740) of the variation in dengue importation into Europe. The model fit was adequate, the 

simulated residual diagnostics test for overall uniformity showed no evidence of model 

misspecification.  
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Table 3. Comparison of generalized linear mixed models predicting dengue importation in Europe, using the 

connectivity indices and network autocorrelation (i.e. centrality measures).  

  

Model 1  Model 2  Model 3  

Coefficient 

[95% CI] 

Odd ratio  

[95% CI] 

Coefficient 

[95% CI] 

Odd ratio  

[95% CI] 

Coefficient 

 [95% CI] 

Odd ratio 

 [95% CI]  

Connectivity Index             

Dengue activity 0.33  

[0.19, 0.47] 

1.39  

[1.21, 1.59] 

0.29  

[0.15, 0.43] 

1.33  

[1.16, 1.53]  

0.26 

 [0.11, 0.40] 

1.29 

 [1.12, 1.49]  

  
Dengue seasonality 0.15  

[0.01, 0.30] 

1.17  

[1.01, 1.34]  

0.12  

[-0.03, 0.26] 

1.12  

[0.97, 1.29] 

0.04  

[-0.10, 0.18] 

1.04  

[0.90, 1.20] 

  
Incidence estimates  1.52  

[1.41, 1.64] 

4.59  

[4.08, 5.17]  

1.88  

[1.74, 2.02] 

6.55  

[5.68, 7.55]  

1.93  

[1.79, 2.07] 

6.88 

 [5.97, 7.92]  

  
Geographical 

distance 

 -0.56  

[-0.70, -0.41] 

0.57  

[0.50, 0.66]  

 -1.02  

[-1.18, -0.86] 

0.36 

 [0.31, 0.42]  

 -1.17  

[-1.34, -1.00] 

0.31  

[0.26, 0.37]  

  
Epidemic 

vulnerability 

 -0.09  

[-0.23, 0.04] 

0.91 

 [0.79, 1.04] 

0.09  

[-0.05, 0.23] 

1.10  

[0.96, 1.26] 

0.15  

[0.02, 0.29] 

1.17 

 [1.02, 1.34]  

  
GDP 0.35  

[0.23, 0.47] 

1.42  

[1.26, 1.59]  

0.40  

[0.28, 0.52] 

1.49  

[1.32, 1.68]  

0.43  

[0.31, 0.55] 

1.54  

[1.36, 1.73]  

  
Total Air passengers 2.18  

[2.06, 2.29] 

8.82  

[7.86, 9.89]  

2.17  

[2.03, 2.31] 

8.73  

[7.60, 10.03]  

1.95  

[1.80, 2.10] 

7.02  

[6.04, 8.16]  

Centrality Measures              

Degree — —  —  — 0.48  

[0.32, 0.64] 

1.62  

[1.38, 1.90]  

  
Betweenness — —  —  — 1.09  

[0.94, 1.24] 

2.97  

[2.55, 3.45]  

  
Closeness — — 0.13 

[0.01, 0.25] 

1.14  

[1.01, 1.29] 

  

 —  — 

Eigenvector  —  — 1.09  

[0.93, 1.25] 

2.98  

[2.54, 3.50]  

 —  — 

Model Fit             

𝑹𝐆𝐋𝐌𝐌(𝒎)
𝟐  

0.478 0.506 0.512 

𝑹𝐆𝐋𝐌𝐌(𝒄)
𝟐  

0.740 0.755 0.755 

Fixed effects ∆AIC 203.8 48.2 0 

Model 1: the based model of connectivity indices; Model 2: Base model with closeness and eigenvector centrality 

measures; Model 3: Base model with the degree and betweenness centrality measures.  

 𝑹𝑮𝑳𝑴𝑴(𝒎)
𝟐  = Marginal R2; 𝑹𝑮𝑳𝑴𝑴(𝒄)

𝟐  = Conditional R2; ∆AIC =Change in Akaike Information Criterion.  
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Influence of air transport network topology 

The resulting air transport network from the passenger’s data was a directed graph 

structure with 229 nodes and 10261 edges. We took the mean of each centrality measure across 

the 72 weighted networks to obtain a single value for each node. Based on the mean centrality 

measures, the following source countries were most central in respect to all metrics: Canada, 

United States, Australia, United Arab Emirates, China and Brazil (Fig 4). The network metrics 

displayed notable relationships, with moderate-to-high correlations amongst themselves (S2 Fig). 

Betweenness and Eigenvector centrality pairs were the most highly correlated (Spearman’s ƿ = 

1.00, p <.001). Hence to avoid redundancy in model fitting, we added the correlated pairs in 

separate models. All the network metrics examined were significant predictors of dengue 

importation. Compared with the base model of the connectivity indices alone, GLMM fits were 

substantially improved by including the effects of the network topology (Fig 5). The best-fitting 

model was the model with degree and betweenness centrality measure pair, alongside the 

connectivity indices (Table 3). The inclusion of these covariates slightly changed the relative 

influence of the connectivity indices, with the epidemic vulnerability index becoming 

statistically significant.  
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Fig 4. Degree centrality measure of source countries. Each node represents a source country in the air transport 

network, and the size of a node is proportional to its degree, which is weighted by the average number of passengers 

with a final destination in Europe. Node color is categorized by region. For visual representation, the actual degree 

score was scaled down by a factor of 104.  

 
 
 

Fig 5. Forest plot comparing the base model and the network autocorrelation models for explaining dengue 

importation into Europe. Models are as represented in Table 3. Plots of the exponential transformed coefficients 

estimates, i.e. as an odd ratio. The “no effect” line is set at 1 and denoted by the grey line. Asterisks indicate the 

significance level of estimates *** = p<0.001; ** = p<0.01; * = p<0.05. 
 
 
 

Network topology as a predictor of importation 

 

Focal destination countries that were most central in the network were the United 

Kingdom, Germany, Spain, Italy, and France (Fig 6). Therefore, they are most vulnerable to 

dengue importation from a random source country. The centrality measures were highly 

correlated amongst themselves, hence it was practically redundant to include all measures in a 

single model (S2 Fig). We added each centrality measure in separate models, to capture the 

influence of the unique aspect of each nodal centrality. Each centrality measure was a significant 
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predictor of dengue importation (Table 4). Surprisingly, the eigenvector centrality measure 

accounted for 70% of the variance in dengue importation (marginal GLMM 𝑅2 of 0.706).  

 

 

 

 
Fig 6. Degree centrality measure of the focal destination countries in Europe. Each node represents a country in 

Europe, and the size of a node is proportional to its degree, which is weighted by the average number of passengers. 

For a visual representation, the actual degree score was scaled down by a factor of 104.  
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Table 4. GLMMs modeling centrality measures of the destination countries as a predictor of dengue 

importation.  

Network Metrics Degree Closeness Betweenness Eigenvector 

 Coefficient  

[95% CI]  

1.12  

[1.06, 1.18] 

1.32  

[1.22, 1.42] 

1.25  

[1.18, 1.32] 

2.88  

[2.65, 3.10] 

  
Odd ratio  

[95% CI] 

3.08  

[2.90, 3.27] 

3.73 

[3.37, 4.13] 

3.49  

[3.26, 3.74] 

17.73  

[14.12, 22.27] 

  
Model Fit   

𝑹𝐆𝐋𝐌𝐌(𝒎)
𝟐  0.295 0.339 0.313 0.706 

𝑹𝐆𝐋𝐌𝐌(𝒄)
𝟐  0.270 0.357 0.342 0.719 

Fixed effect ∆AIC 794.7 90.2 311.5 0.0 

𝑹𝑮𝑳𝑴𝑴(𝒎)
𝟐  = Marginal R2; 𝑹𝑮𝑳𝑴𝑴(𝒄)

𝟐  = Conditional R2; ∆AIC =Change in Akaike Information Criterion.  

 

 

 

Discussion 

The importation of dengue into non-endemic regions is primarily initiated by global 

human mobility, hence it is critical to understand the dynamics of the transmission pathways 

based on the mobility networks. Here, we applied a refine network connectivity approach to 

model the importation of dengue into Europe. Our analysis accounted for factors that mediate the 

risk of importation from a source country through their effects on source strength and transport 

potential. In addition, we considered the influence of the air transport network topology on the 

importation risk from a source and the propensity of a destination country to receive an imported 

case. Our analysis demonstrated that the co-dynamics of the connectivity indices and the network 

topology explained more than 70% of the variance in dengue importation patterns. Likewise, the 

topologically positioning of a focal destination county in the network, played a key role in the 

importation patterns. These results contribute to our understanding of the transmission pathways 

of dengue importation and the role of the dynamical processes of the air transport network.  
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A major focus of our study was the understanding of importation patterns of dengue in 

Europe, with consideration to source strength and the characterized air transport network. Air 

passengers’ data and transport connections have been used to infer relationships with imported 

cases of dengue [13, 57]. However, with the growing complexity of global mobility and 

transportation links, it is increasingly difficult to model importation solely on the crude aggregate 

statistics of air traffic [16, 58]. Air traffic connections between source and destination account 

for a fraction of required modeling parameters for general patterns of importation, other 

epidemiological and anthropogenic parameters need to be accounted for. A fundamental 

understanding of other mediating factors and transportation dynamics is required to achieve a 

more reliable predictive model.  

 

Our analysis addresses this by endowing each source with a specific pattern of 

connectivity that mediates, its strength (risk of infection), transport and importation potential. 

Source strength was the risk of infection derived from the endemicity of dengue in a source 

country, distinguishing endemic and non-endemic countries. Heterogeneities in source strength 

were further characterized by dengue activity and seasonality patterns in the source country. As 

expected, an ongoing activity and seasonal pattern of dengue in a source country significantly 

increase the transport and importation potential. Transport and importation potential were also 

modelled uniquely for each source by the confluence of the various connectivity indices, 

accounting for other mediating factors. This modelling approach is corroborated by other similar 

studies [13, 23, 59]. With the results matching our a priori expectations, i.e. higher transport 

potential for source countries with high passenger traffic, high incidence rates, lower economic 

status, and geographical proximity to a destination country.  

 

A new feature of interest in our analysis was the utilization of the infectious disease 

vulnerability index as an epidemiological factor. The vulnerability index presents a robust tool 

that identifies a country’s ability to limit the spread of outbreak-prone diseases [38]. The 

combined multifarious nature of this index offers an intuitive understanding of the indigenous 

vulnerability of a source country. For our analysis, we modelled source strength, transport, and 

importation potential to increase with higher vulnerability, as expected most vulnerable countries 

poses a greater risk (model 3). Although our study was focused on the earliest stages of a 
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network mediated epidemic, the inclusion of this index for focal destination country could 

provide insights for modeling the establishment potential of an imported case of dengue. With 

the assumption, that recipient countries with higher vulnerability might present greater 

dissemination and establishment risk from an imported case, assuming appropriate vector 

presence [60]. 

 

Our analysis went further to incorporate the dependency network approach to account for 

the influence of the air transport network topology on dengue importation. Utilizing centrality 

measures to quantify the influence of connection topology and the dynamical processes of the 

network to influence the importation of dengue [24]. We applied two different network analysis 

modelling approach, to quantify the unique contributions of each topological descriptor to 

dengue importation. The first approach incorporates network autocorrelation from the source 

country’s centrality measures, within the GLMM framework of the connectivity indices. The 

addition of the centrality measures within the modeling framework addresses the issue of 

covariance driven by the network structure. All the network descriptors were significant 

predictors of dengue importation, however the combined effect of degree and betweenness 

centrality were the most influential. This result suggests that source countries that are highly 

connected (having multiple air routes into Europe) and act as connecting links to others countries 

(large airport hubs connecting other countries), intuitively have higher transport and importation 

potential, as they have the capacities to quickly connect with the wider network.  

 

The second approach investigates if there is evidence of a correlation between the 

centrality measures of a destination country and its propensity to receive an imported case. We 

applied this approach as a valuable measure of a direct relationship between the air transport 

network structure and dengue importation into Europe [25]. Similar to the above results, all the 

network metrics were strong predictors of the variation in dengue importation.  However, the 

eigenvector centrality, was the most fitting single predictor, explaining over 70% variance in 

dengue importation. These results suggest that the risk of dengue importation for a country (in 

Europe) can be largely explained by its position in the air transport network. Meaning countries 

have higher tendency for an imported case as a result of having more direct ‘one hop’ 

connections with high passengers traffic (as measured by degree centrality); having large airport 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 18, 2019. ; https://doi.org/10.1101/19009589doi: medRxiv preprint 

https://doi.org/10.1101/19009589
http://creativecommons.org/licenses/by/4.0/


23 

 

hubs, bridging other countries (betweenness centrality); being effectively closer to other 

countries because of large passenger traffic (closeness centrality); and having multiple direct and 

indirect connections to other higher connected countries (eigenvector centrality). Overall, these 

results are particularly valuable in identifying countries in Europe that needs to prioritize 

investment in real-time surveillance systems, as a health security measure [35, 61], due to their 

increase propensity to receive an imported case.   

 

In summary, our paper presents a refined approach to the modelling of a network-

mediated epidemic for dengue fever. The connectivity indices presented here captures the 

variation in source strength, transport, and importation potential, by accounting for other 

mediating socio-economic and anthropogenic factors. These indices are an amenable 

representation of real-world risk factors but offer a different approach for analyzing the 

connectivity dynamics of network-mediated importation of dengue. Our analysis went further to 

characterize the role of the air transport network topology in the dynamics of dengue importation 

into Europe. By investigating the network autocorrelations influencing transport potential from 

source countries and the network positioning of the destination country as a predictor of 

importation. Our analyses show that the connectivity indices and dynamical processes of the air 

transport network are strong predictors of dengue importation in Europe. Therefore, the network 

connectivity modelling approach could be useful in predicting source countries, importation 

patterns and destination countries with greater risk of dengue. Thereby, allowing for preemptive 

strategies to mitigate the impacts of imported cases in a timely, accurate and cost-effective 

manner [62, 63]. Finally, this modeling approach could serve as a pivotal prerequisite for the 

development of an early warning surveillance system to monitor and forecast the spread of 

dengue fever. 
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