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Abstract 
 

The recent emergence and established presence of Aedes aegypti in the Autonomous 

region of Madeira, Portugal, was responsible for the first autochthonous outbreak of dengue in 

Europe. The island has not reported any dengue cases since the outbreak in 2012. However, there 

is a high risk that an introduction of the virus would result in another autochthonous outbreak 

given the presence of the vector and permissive environmental conditions. Understanding the 

dynamics of a potential epidemic is critical for targeted local control strategies.  

 

Here, we adapt a deterministic model for the transmission of dengue in A. aegypti 

mosquitoes. The model integrates empirical and mechanistic parameters for virus transmission, 

under seasonally varying temperatures for Funchal, Madeira Island. We examine the epidemic 

dynamics as triggered by the arrival date of an infectious individual; the influence of seasonal 

temperature mean and variation on the epidemic dynamics; and performed a sensitivity analysis 

on the following quantities of interest: the epidemic peak size, time to peak and the final 

epidemic size. 

 

Our results demonstrate the potential for year-round transmission of dengue, with the 

arrival date significantly affecting the distribution of the timing and peak size of the epidemic. 

Late summer to early autumn arrivals is more likely to produce larger epidemics within a short 

peak time. Epidemics within this favorable period had an average of 22% of the susceptible 

population infected at the peak, at an average peak time of 82 days. We also demonstrated that 

seasonal temperature variation dramatically affects the epidemic dynamics, with warmer starting 

temperatures producing peaks more quickly after introduction and larger epidemics. Overall our 

quantities of interest were most sensitive to variance in date of arrival, seasonal temperature, 

biting rate, transmission rates, and the mosquito population; the magnitude of sensitivity differs 

across quantities.  

 

Our model could serve as a useful guide in the development of effective local control and 

mitigation strategies for dengue fever in Madeira Island. 
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Introduction 
 

Dengue is notably the most important mosquito-borne viral disease, with approximately 

half the world’s population at risk of infection [1]. This arboviral disease, caused by a virus of 

the Flaviviridae family, has gained renewed global attention due to its wide geographical spread 

and increased burden in recent years. The spread of the disease is in concordance with the 

geographical expansion of its primary vector (i.e. Aedes aegypti), characterized by the presence 

of a suitable climate and increase in global trade and travel [2, 3].  

 

A paradigmatic example of the recent spread of dengue and of its epidemic potential was 

demonstrated in Madeira Island, an autonomous region of Portugal. A. aegypti was first detected 

in Funchal, the capital city of Madeira Island, in 2005 and by October 2012 the island reported 

its first autochthonous case of Dengue serotype 1 (DENV 1) [4]. The importance of this 

epidemic is demonstrated  by three main reasons: (1) It was the first sustained autochthonous 

transmission of dengue in the European Union since the 1920s [5];  (2) its size, with 1080 

confirmed cases (of the 2168 probable cases reported) and 78 cases reported in 13 other 

European countries in travelers returning from Madeira [6];  and (3) the rapid time course of the 

epidemic, that peaked within a month after the official report of the first case in October [7].   

 

To understand the complexities of this outbreak, Lourenco and Recker [8] developed an 

ento-epidemiological mathematical model to explore the ecological conditions and transmission 

dynamics. Their findings suggest the virus was introduced over a month before cases were 

reported (in August). In their model, asymptomatic circulation occurred before the two initial 

autochthonous cases were reported in October, maintaining the virus in the population. 

Furthermore, their findings indicate that the transmission dynamics and eventual epidemic 

burnout was driven predominantly by the influence of temperature on the life history traits of the 

mosquitoes (incubation period, mosquito mortality and aquatic developmental rates). The 

seasonal drop in autumn temperatures led to a reduction of the vectorial capacity and effectively 

stopped the virus propagation.  

Their findings are consistent with previous experimental work addressing the strong 

influence of temperature on the life history traits of the mosquitoes and arbovirus transmissions 
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[9-12]. Likewise, many existing mechanistic transmission models have integrated the effects of 

temperature on mosquito traits to understand how it influences the probability and magnitude of 

dengue transmissions [13-17]. Other recent work examined the influence of seasonal variation in 

temperature on the epidemic magnitude and duration [18, 19]. These models emphasize the 

strong, nonlinear (often unimodal) influence of temperature and seasonality on dengue 

transmission and epidemic dynamics.  

 

Expanding on previous work, we here explore the impact of seasonal temperature 

variations on the potential epidemic dynamics on Madeira Island. It is imperative to explore the 

influence of seasonality, as Madeira Island presents with a range of contrasting bioclimates as a 

result of its heterogeneous landscape and strong influence from the Gulf Stream and Canary 

current [20]. The southern coastal regions of the island (including Funchal), at low altitudes, 

have higher annual temperatures in comparison to the northern coastal regions or inland regions 

with higher altitudes [20, 21]. In addition, though the island has not reported any dengue cases 

since the outbreak in 2012, it is likely that new introductions would result in local transmission 

given the presence of the vector and permissive environmental conditions. A recent vector 

competence study with A. aegypti from Madeira reported virus transmission potential (virus in 

saliva) from 2 Madeira populations, although the proportions transmitting were low 

(transmission rate of 18%, 14 days post-infection) [22]. This demonstrates the potential risk for 

the local transmission of dengue 2 serotype (DENV 2) if introduced on the island. With an 

increase in co-circulation of all dengue serotypes (DENV 1-4) worldwide [23, 24], and 

Madeira’s increasing lure as a popular year-round travel destination, a potential introduction is 

likely [25].  

 

We incorporate a standard deterministic SEI-SEIR transmission model parameterized 

from existing literature and available field data. The main goals of this model are: (1) to examine 

the epidemic dynamics in Funchal, Madeira as triggered by the arrival of an infectious individual 

at different timepoints during the year; and (2) to examine the influence of seasonal temperature 

mean and variation on epidemic dynamics. To do this, we employed a different modeling 

framework from that of [8], in that our model explicitly accounts for seasonality and temperature 

dependence in the transmission dynamics. Likewise, we explore epidemiologically relevant 
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outcomes of epidemic size, peak incidence and time to peak, rather than basic reproduction 

number or vectorial capacity, which are more complex measures of epidemic dynamics. 

 

Methods 
 

Model framework 

 

We adapt a deterministic compartmental vector-host transmission model exploring 

chikungunya virus invasion in Florida, USA with A. aegypti and Aedes albopictus mosquitoes, 

from Lord et al. (unpublished work). This was adapted into a standard SEI-SEIR transmission 

model with one vector, similar to others used in modelling dengue transmission (e.g. in [26-29]).   

The SEI component of our model describes the vector population, represented as 

susceptible (𝑆𝑣), exposed (𝐸𝑣), and infectious (𝐼𝑣). Our models explicitly consider a single vector 

and a single life stage, i.e. adult females of A. aegypti. Mosquitoes enter the susceptible class 

through a recruitment term, based on observed seasonality patterns from field data in Funchal 

[30]. The recruitment term does not explicitly model the aquatic (eggs, larvae, and pupae) stage 

of mosquitoes and is not linked to current population size, but explicitly includes seasonality in 

recruitment to the adult female population. A susceptible mosquito moves into the exposed class 

(𝐸𝑣), after biting an infectious human and becoming infected with dengue virus. After a 

temperature dependent extrinsic incubation period, surviving mosquitoes get transferred to the 

infectious class (𝐼𝑣). They remain in the infectious class until death, due to the assumption of the 

absence of immune response. Mosquitoes leave the system through a temperature dependent 

mortality function. We assume the virus infection does not affect the lifespan of the mosquitoes 

and that there is no significant vertical transmission.  

The SEIR component of our model describes the human population represented as 

susceptible (𝑆ℎ), exposed (infected but not infectious) (𝐸ℎ), infectious (𝐼ℎ), and recovered 

(immune) (𝑅ℎ). Our model assumes the human population (𝑁ℎ) to be constant, not subject to 

demography as we considered a single outbreak with a duration in the order of a year. A 

susceptible individual enters the exposed class (𝐸ℎ) after being successfully infected, by an 

infectious mosquito bite. We do not explicitly account for repeated biting, interrupted feeds or 
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alternative host preferences. We also assume that not every infectious bite leads to successful 

human infection. Once a human individual is exposed, they enter an intrinsic incubation period, 

until they become infectious. They then move to the infectious class (𝐼ℎ) and can transmit the 

virus back to a susceptible mosquito. We assume that humans stay infectious for a period after 

which they recover. Once a human individual enters the recovered/immune class (𝑅ℎ), we 

assume a lifelong immunity, as multiple co-circulating serotypes of dengue virus are not 

considered. A resulting schematic representation of the model is shown in Fig 1. 

 

 

Fig 1. Schematic representation of the model. Sv, Ev, and Iv represent the susceptible, exposed, and infectious 

compartments of the mosquito population. Sh,  Eh, Ih, and Rh represent the susceptible, exposed, infectious, and 

recovered compartments of the human population, respectively. The outline arrows are the transition from one 

compartment to the next, and the black filled arrows are the direction of transmission.  

 

Model equations 

 

Our model is defined by the following ordinary differential equations: 

 

𝑑𝑆𝑣

𝑑𝑡
= 𝜌 −

𝑎 𝛽ℎ→𝑣 

𝑁ℎ
𝐼ℎ𝑆𝑣 − 𝜇𝑣𝑆𝑣            (1) 

𝑑𝐸𝑣

𝑑𝑡
=

𝑎 𝛽ℎ→𝑣 

𝑁ℎ
𝐼ℎ𝑆𝑣 − 𝛾𝑣𝐸𝑣 − 𝜇𝑣𝐸𝑣      (2) 

𝑑𝐼𝑣

𝑑𝑡
= 𝛾𝑣𝐸𝑣 − 𝜇𝑣𝐼𝑣                              (3) 
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𝑁𝑣 = 𝑆𝑣 + 𝐸𝑣 + 𝐼𝑣                             (4) 

 

𝑑𝑆ℎ

𝑑𝑡
=  −

𝑎 𝛽𝑣→ℎ 

𝑁ℎ
𝑆ℎ𝐼𝑣                           (5) 

𝑑𝐸ℎ

𝑑𝑡
=

𝑎 𝛽𝑣→ℎ 

𝑁ℎ
𝑆ℎ𝐼𝑣   − 𝛾ℎ𝐸ℎ                (6) 

𝑑𝐼ℎ

𝑑𝑡
= 𝛾ℎ𝐸ℎ − 𝜂ℎ𝐼ℎ                             (7) 

𝑑𝑅ℎ

𝑑𝑡
= 𝜂ℎ𝐼ℎ                                         (8) 

 

𝑁ℎ = 𝑆ℎ + 𝐸ℎ + 𝐼ℎ + 𝑅ℎ                   (9) 

 

Here, the coefficient 𝜌 is the mosquito recruitment term (expanded below); 𝑎 is the biting 

rate;  𝛽ℎ→𝑣 and   𝛽𝑣→ℎ are the human-to-mosquito and mosquito-to-human transmission rates, 

respectively;  1 𝛾ℎ⁄   and  1 𝜂ℎ⁄    represent the intrinsic incubation and human infectivity periods; 

1 𝛾𝑣⁄  and 𝜇𝑣 represent the extrinsic incubation period and mortality rate for mosquitoes 

(temperature dependent, details below). The state variables and parameters used for our model 

are displayed in Tables 1 and 2, respectively. 

 

Table 1. State variables for the model. 

Variables  Description  

𝑆𝑣 Number of susceptible mosquitoes 

𝐸𝑣 Number of exposed mosquitoes 

𝐼𝑣  Number of infectious mosquitoes 

𝑁𝑣 Total mosquito population size 

𝑆ℎ Number of susceptible humans 

𝐸ℎ Number of exposed humans 

𝐼ℎ Number of infectious humans 

𝑅ℎ Number of recovered humans 

𝑁ℎ Total human population size 

 

Table 2. Definitions and ranges of the model’s parameters.  
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Parameter Description  Default Value  Range  Reference  

𝒓𝜹 
Number of mosquitoes per host in the 

unimodal peak phase  
2 2 – 6 

[8, 31, 32] 

 

𝒑𝒃𝒂𝒔𝒆 
Proportion of mosquitoes in baseline 

recruitment 
0.05  [8, 33] 

𝒊𝒗 

The interval between baseline pulses 

(days)1 

 

5 2 – 7 [33] 

𝒒  Timing of unimodal peak (days)1 266 255 –276 [33]  

𝝈 
The variance of the unimodal peak 

(days)1 
29  [33]  

𝑹𝒕𝒐𝒕  
Total mosquito recruitment 

(population size)2  
  

Calculated based on default 

value and range for 𝑟𝛿  above.  

Used in the sensitivity 

analysis.  

𝒂 Mosquito biting rate  0.4 0.33 – 1.0 [34, 35] 

𝜷𝒉→𝒗 
Rate of transmission from human to 

mosquito  
0.33 0.1 – 0.75 [27, 31, 36] 

𝜷𝒗→𝒉 
Rate of transmission from mosquito 

to human 
0.33 0.1 – 0.75 

[27, 31, 36] 

 

𝝁𝒗 
Mortality rate of mosquitoes under 

optimal temperatures 3 
0.04 0.02 – 0.06 [13, 17] 

𝝁𝒗𝒔 The slope of mortality function 0.05  
 

[13, 37] 

𝜸𝒗 
Virus extrinsic incubation rate (at 

22.5°C)  
0.04 0.04 – 0.07 

 

[17, 38] 

𝜸𝒗𝒔 Slope of extrinsic incubation function 0.008  [38] 

𝟏 𝜸𝒉⁄  
 

Intrinsic incubation period (days) 
6   [39, 40] 

𝟏 𝜼𝒉⁄  Human infectious period (days) 5   [8, 35, 41, 42] 

𝑵𝒉  
The population size of humans 

(constant) 
30000  [43] 

𝒕𝒄𝒓𝒊𝒕 
Date of arrival of infectious human 

(days) 
181 1 – 365  

𝑻𝒎𝒆𝒂𝒏 Mean annual temperature (°C) 20  19 - 21 [44] 

𝑻𝒓𝒂𝒏𝒈𝒆 Temperature range (°C)4 5  4 - 6 [44] 

1 Default value and range are estimates to reflect the observed seasonal activity, not an explicit fit to the island’s 

entomological data; 2 See equation 15, also note this parameter was used in the sensitivity analysis to allow 
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estimation of the relative importance of the total recruitment; 3 Mosquitoes optimal survival range: (15 > 𝑇 <
30℃); 4 Temperature range is given by(𝑇𝑚𝑎𝑥  − 𝑇𝑚𝑖𝑛).   

 

 

Mosquito recruitment. The coefficient (𝜌) in equation (1) above is the daily recruitment 

term of susceptible mosquitoes. The total number of female mosquitoes recruited into the 

population over the year is divided into two main phases: baseline, year-round recruitment, and a 

unimodal peak season recruitment. This is based on the seasonal pattern of mosquitoes on the 

island observed from the A. aegypti mosquito entomological surveillance by the Institute of 

health administration, IP-RAM and the Funchal natural history museum [30, 45]. Weekly 

mosquito trap data is geo-processed and spatial analyzed to identify areas with mosquito activity 

based on the presence/absence of eggs, the number of eggs and adult mosquitoes captured [30].  

 

Visual inspection of the entomological data for the years 2012 – 2019 (weekly time-

series graphs of the cumulative number of eggs and adult mosquitoes) [33] demonstrate a 

unimodal seasonal pattern for mosquito activity during the entomological season. The unimodal 

peak starts around June through to early December, with other months of the year (i.e. January to 

May) having little to no activity. Using a Gaussian curve, we estimated the timeline for our 

unimodal peak recruitment to reflect this seasonal pattern as best possible.  

 

Actual quantifications of mosquito population density remain a grey area. However, the 

majority of dengue models [8, 27, 31, 32, 46] have adopted the use of a mosquito-to-human ratio 

of 2:1. We adopted this framework for setting the estimated number of mosquitoes recruited 

during the unimodal peak season (𝑟𝛿). From the derived number of mosquitoes recruited during 

the peak season, we assumed an additional 5% to be added in the baseline, year-round 

recruitment (𝑝𝑏𝑎𝑠𝑒). The recruitment of susceptible mosquitoes is specified by the following 

equations: 

 

𝜌(𝑡) = 𝜌𝑏  (𝑡) +  𝑅𝑝𝑒𝑎𝑘𝛿(𝑡)                (10) 

Where, 

𝛿 (𝑡) =  
1

2𝜋𝜎𝑘
 𝑒𝑥𝑝 (

1(𝑞𝑘−𝑡)2

2𝜎𝑘
2 )                (11)  
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𝜌𝑏(𝑡) =
𝑅𝑏𝑎𝑠𝑒

𝑖𝑣
                                       (12) 

𝑅𝑝𝑒𝑎𝑘 = 𝑟𝛿𝑁ℎ                                       (13) 

𝑅𝑏𝑎𝑠𝑒 = 𝑅𝑝𝑒𝑎𝑘𝑝𝑏𝑎𝑠𝑒                             (14) 

𝑅𝑡𝑜𝑡 = 𝑅𝑝𝑒𝑎𝑘 + 𝑅𝑏𝑎𝑠𝑒                          (15) 

                                                   

Here, 𝜌(𝑡) represents the number of adult female mosquitoes recruited per time step; 

𝛿 (𝑡) is a Gaussian distribution for the number of mosquitoes added to the population daily, 

during the unimodal peak season; 𝜌𝑏(𝑡) is the number of mosquitoes added to the population at 

intervals (𝑖𝑣) during the all-year round recruitment. 𝑅𝑝𝑒𝑎𝑘 is the total number of mosquitoes 

recruited during the unimodal peak season; 𝑅𝑏𝑎𝑠𝑒  is the total number of mosquitoes recruited 

during the baseline, year-round recruitment; 𝑅𝑡𝑜𝑡 is the total number of mosquitoes recruited into 

the population over the year.   

 

Seasonal forcing. To introduce seasonality in our model, we allowed temperature to vary over 

time by sinusoidally forcing [47]. The daily mean temperature was modelled as a cosine curve 

with a period of 365 days as specified below: 

 

 

𝑇 (𝑡) =
𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛

2
∗ (− cos (

2𝜋(𝑡− 𝜔)

365
)) + 𝑇𝑚𝑒𝑎𝑛      (16) 

 

Here, 𝑇𝑚𝑎𝑥,  𝑇𝑚𝑒𝑎𝑛, and 𝑇𝑚𝑎𝑥 are the average daily maximum, mean, and minimum 

temperatures over the year, (𝑡) is time measured in days and (𝜔) is the phase shift to align the 

cosine function with the seasonal factors in Funchal.  For our temperature model calibration, we 

extracted a 10 year (2008 – 2018) historical daily temperature data for Funchal from Weather 

Underground [44]. Utilizing the mean of the minimum, average and maximum daily mean 

temperatures, we set estimates for our seasonality parameters. The mode minimum temperature 

across the years occurred on February 15; hence we set our phase shift at this point to reflect the 

long-term average conditions in Funchal, Madeira (𝑇𝑚𝑎𝑥= 22° C, 𝑇𝑚𝑒𝑎𝑛= 20°C, 𝑇𝑚𝑖𝑛= 17°C).  
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Temperature dependent parameters. The extrinsic incubation period (𝛾𝑣) is modelled to be 

temperature dependent, modified from [48]. Using a linear temperature function, specified by a 

slope (𝛾𝑣𝑠), the rate near the midpoint of the plausible temperatures range for vectorial capacity 

(set at 22.5°C), and a defined lower temperature threshold (set at 10ºC, at which point (𝛾𝑣) equals 

zero). Mortality rates (𝜇𝑣) for mosquitoes was modelled as a function of temperature using a 

mechanistic thermal response curve as described in [13]. They fitted their data as a complex 

polynomial resulting in a basin- shape curve, with optimal temperature for mosquito’s survival 

set at a range of 15℃ > 𝑇 < 30℃. Based on a preliminary exploration of changes to the 

mortality function, we modified the fitted polynomial to a piecewise linear curve with fixed, 

minimal mortality in the same temperature range. Mortality rate then increases quickly and 

linearly at temperatures outside this lower and upper bound, as specified by the function slope 

(𝜇𝑣𝑠). 

 

Starting conditions   

 

The model requires an estimate of each state variable (humans and mosquitoes in each 

class), along with estimates or values chosen from distributions for each parameter. Our 

parameter values are based on multiple citations from reviewed literature of previous empirical 

studies or lab trials and expert opinion. We emphasize previous studies within the context of 

Funchal, Madeira Island (since our main objective was to parameterize the model for the island) 

and chose parameter ranges to reflect conditions in Funchal. 

 

The model assumes a homogeneously mixed population, with a total human population 

set at a constant 30,000 (representative of the population of the most populous civil parish –

Santo António – in the municipality of Funchal and the island) [43]. Since the human 

components of the transmission cycle are not seasonal, we set the intrinsic incubation (1 𝛾ℎ⁄ ) and 

the infectious period (1 𝜂ℎ⁄ ) to constants of 6 and 5 days respectively. For this model, we 

considered only a single dengue serotype. Based on our mosquito recruitment term, the initial 

susceptible mosquito population is set as the number of females (𝜌𝑏(𝑡)) added to the population 

at intervals (𝑖𝑣), as calculated in equation (12) above. With all infectious classes for both human 
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and mosquitoes set to zero, an infection is triggered by the arrival of one infectious human on a 

specified day (𝑡𝑐𝑟𝑖𝑡) into the fully susceptible population. The default initial conditions are thus: 

(𝑆ℎ;  𝐸ℎ;  𝐼ℎ;  𝑅ℎ;  𝑆𝑣;  𝐸𝑣;  𝐼𝑣) = (𝑁ℎ;  0;  0;  0;  𝑝𝑏(𝑡);  0;  0) where 𝑁ℎ = 30,000.  

 

Simulations were set to start at the coldest day in the annual cycle (i.e. February 15) and 

ran for 730 days thereafter (allowing for simulation with 𝑡𝑐𝑟𝑖𝑡 later in the year). We set an 

arbitrary cut-off value for the infectious human, exposed and infectious mosquitoes classes: if   

(𝐼ℎ , 𝐸𝑣 , 𝐼𝑣, all  <0.5) the simulation is terminated and restarted with the classes set to zero. This 

cutoff is necessary otherwise extremely low levels of infection may persist for long periods; in 

the natural system, there would be a high probability that the virus would go extinct [49].  

 

We performed a preliminary exploration of parameter values to determine their effects on 

transmission. The choice of the final parameter values was based on permissibility for 

transmission. The preliminary exploration also informed the initial conditions (described above) 

and parameter ranges for sensitivity analyses (Table 2).  

 

Model simulations were performed using the governing systems of differential equations 

of MATLAB’s inbuilt routine “ode45” [50]. Simulation outputs were processed in the R 

Programming Language version 3.5.3 [51]. 

 

Quantities of interest 

 

Given that a simulation evolves into an epidemic (defined as (𝐼ℎ > 2), after the virus 

introduction), we analyze each simulation for the following quantities of interest (QOI): the 

epidemic peak size (maximum human infected (𝑚𝑎𝑥𝐼ℎ) at any given point during the 

simulation); time to peak infection in humans (time from introduction to 𝑚𝑎𝑥𝐼ℎ, as 𝑡𝑚𝑎𝑥𝐼ℎ); the 

final epidemic size, which represents a measure of epidemic suitability (cumulative proportion of 

humans infected, 𝑐𝑢𝑚𝐼ℎ 𝑁ℎ,⁄  at the final time step). 
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Initial introduction and epidemic dynamics  

 

Firstly, we examine the variability in epidemic dynamics, as a result of different arrival 

dates of an infectious human in a susceptible population. To do this, we ran simulations for all 

365 calendar days of the year (𝑡𝑐𝑟𝑖𝑡 = 1, 2, 3…365), with all other parameters fixed at their 

default values and initial conditions (Table 2). Each simulation was started on February 15 (the 

phase shift in the annual cycle) and ran for 2 years.  

 

Seasonal variance and epidemic dynamics 

 

Next, we examine the epidemic dynamics as a function of seasonal temperature variation. 

Utilizing the same compartmental framework with default initial conditions and parameter 

values, we ran sets of simulations under two different temperature regimes [18]. First, we 

simulated a set of temperature regimes as observed in the historical decadal data for Funchal, 

Madeira. The mean temperature varied from 19.0 ºC to 21.0 ºC in increments of 0.2 ºC, while the 

temperature range (i.e. 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛) varied from 4.0 ºC to 6.0 ºC, in the same increments of 0.2 

ºC, resulting in 121 simulation runs.  The variability in epidemic dynamics is then examined as a 

function of starting temperature. Starting temperature is defined as the temperature on the day of 

introduction of the virus (𝑡𝑐𝑟𝑖𝑡), as derived from the temperature curves.  

 

Next, we simulate a wider set of temperature regimes to examine plausible future forcing 

scenarios based on near-term projections of seasonal temperature changes in the region of 

Madeira Island [52]. Mean temperature was varied between 15.0 ºC to 30.0 ºC in increments of 

0.2 ºC, while range varied from 0.0 ºC to 15.0 ºC in increments of 0.2 ºC (i.e. a total of 5776 

simulation runs). It is worth noting that most of the temperatures in this regime are outside 

projected changes for the island’s region, and very unlikely to occur in Funchal. However, by 

simulating a wider set of temperature regimes, we are able to characterize uncertainties and 

probable outcomes of a local epidemic across other regions on the island. This also allows us to 

simulate similar extreme temperature conditions already recorded on the Funchal in recent times 

(for example, high temperatures of 37.8ºC on August 5, 2016, and 26.5 ºC on December 5, 2018 

[53, 54]. 
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Model sensitivity analysis 

 

To characterize the model parameters exerting the most influence on our quantities of 

interest, we performed a variance-based global sensitivity analysis, using a combination of Latin 

hypercube sampling (LHS) and a multi-model inference on regression-based models. LHS is a 

stratified Monte Carlo sampling technique, where specified parameter distributions are divided 

into (M) equiprobable intervals, and then sampled, here (M) is the sample size. The entire range 

of each parameter is explored, by sampling each interval for each parameter only once without 

replacement. Parameters values are then randomly resorted into sets to use for simulation. The 

LHS method assumes that the sampling is performed independently for each parameter, thereby 

allowing for an un-biased estimate [55, 56]. Parameter ranges for sampling were derived from 

existing literature, expert opinion and field-based data (Table 2), we assumed a uniform 

distribution for all parameter values. LHS sampling was programmed in MATLAB.  

 

Multi-model inference on a generalized least square (GLS) regression was used to 

estimate the relative importance of the input parameters. Multi-model inference uses the 

information-theoretic approach to offer a more objective way to assess the relative importance of 

input variables by inferring all possible models from a defined candidate set [57, 58]. A vector of 

the input parameters (𝑥𝑝)  were fitted into all possible unique models and then ranked from best 

to worst, based on Akaike information criterion (AIC) values. An estimate of the relative 

importance of a single parameter (𝑝) was then calculated by summing the Akaike weights (𝑤) 

across all fitted models where parameter (𝑝) occurs. Akaike weights are normalized, such that 

the sum over all models considered is 1. The relative importance of parameter (𝑝) was quantified 

by the sum (𝑤) for the parameter. The larger the sum of the weight (between 0 and 1 by 

definition) the more important the parameter is, relative to the other parameters [58]. Input 

parameters were then ranked in terms of their importance to the quantities of interest. Multi-

model inference analysis was done using the glmulti R package [59].  

 

Our analysis considered two separate candidate model sets, one with main effects only 

and one with main effects and pairwise (first order) interactions of input parameters on our 
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quantities of interest. The first analysis (i.e. main effects only) utilized all possible unique 

candidate models through an exhaustive screening method. However, the second analysis 

utilized only a subset of all possible candidate models, using a genetic algorithm [59], as it was 

infeasible to consider all. Our confidence set (for both analysis) was defined as all models within 

two Akaike information criterion (AIC) unit difference (ΔAIC) from the best model (see 

appendix for more details). Models in the confidence set are averaged to produce the relative 

importance and coefficient estimates of input parameters. Note, before the multi-model inference 

fitting, we normalized the input parameters (by centering on zero and scale to unit variance) to 

allow comparison of resulting model-averaged estimates on a common scale. 

 

Results 
 

Initial introduction and epidemic dynamics 

 

We examined the timing and size of the epidemic peak as a function of different arrival 

dates of an infectious human into the susceptible population. An epidemic outbreak occurred for 

all simulated arrival dates in the year, with varying epidemic peak size and time to peak, 

indicating that the default parameter values used for simulations were permissive for 

transmission. Most simulations responded unimodally with peaks occurring few weeks after the 

arrival of an infectious human, this was typical for summer (June – August) arrivals (Figs 2A 

and 2B). However, some simulations responded bimodally, i.e. an initial small outbreak, then a 

prolonged low-level transmission until another outbreak occurs (Figs 2C and 2D). This 

prolonged transmission was typical for arrival dates at the start of the winter (i.e. arrival dates of 

the 12 to 19 December).  

 

We examine this behavior further by comparing the disease progression in the human 

population with that of the mosquito population (Fig 2D). Simulations with a late arrival of the 

infectious human in December had a lower chance to evolve into a large unimodal outbreak, 

because of the depletion of the mosquito population. Following the initial outbreak, a low 

transmission is maintained until the next seasonal peak recruitment of the mosquitoes, before 

another outbreak. This means the dynamics of the epidemic, is also modulated by the temporal 

dynamics of the mosquito population, however, this is not the focus of our analysis. 
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Fig 2. The epidemic progression in the human and mosquito populations. The y-axis is the number of humans or mosquitoes 

in the simulation and the x-axis is days after the simulation start date of February 15. 𝑡𝑐𝑟𝑖𝑡 = arrival date of infectious human; 

𝑚𝑎𝑥𝐼ℎ = the epidemic peak size, the maximum human infected at any given point during the simulation. (A) indicates the disease 

progression in the human population, for an arrival date of an infectious human, 200 days after simulation start (i.e. September 

3). (C) indicates disease progression for an arrival date of an infectious human, 300 days after simulation start (i.e. December 12). 

(B) and (D) show the disease progression in the mosquito population for the respective dates of arrival. (A) shows a classical 

rapid epidemic, with a unimodal response, with the peak occurring few weeks after virus introduction; while (C) shows a 

prolonged period of lower level transmission, resulting in a bimodal response. Default parameters from Table 2 were used for 

these simulations, except for dates of arrival of infectious human.  

 

 

Fig 3 shows our QOIs, for all dates over a calendar year (simulation start date of 

February 15). The timing and size of the epidemic peak vary inversely as a function of date of 

arrival, with shorter epidemic peak timing, producing higher peak incidence and vice versa.  

Epidemic peak time monotonically decreases as a function of the date of arrival until October 

(mid- autumn season), then reverses to an increase, with a steep spike in mid-December and 

reverts to a decrease (Fig 3). Similarly, epidemic peak size monotonically increases until 

October, then reverses to a steady decline until mid-December and reverts to an increase (Fig 3). 

A

 

B

 

D

 

C
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In part, these discontinuities are reflections of scoring each run for a single peak; and 

corresponds to the model behavior shifts from the classical rapid unimodal epidemic, to the 

bimodal and prolonged epidemics.  

 

 

 

Fig 3. Quantities of interest as a function of arrival date. QOI vs date of arrival by calendar date. The x-axis is the date of 

arrival of an infectious human, simulation start date of February 15. The blue square points represent the time to peak infection in 

humans (in days). The red diamond points represent the maximum number of humans infected at any given point during the 

simulation. The green circle points represent the final (or cumulative) epidemic size at the end of the simulation; this is 

represented as the proportion of humans infected (rather than number). Simulations for arrivals on the 12 to 19 December, 

resulted in a prolonged low-level transmission, with bimodal peak, while other dates had a classical unimodal peak.  

Note: We examined the fluctuation in the epidemic peak time and size on August 15, for a possible shift in model behavior, there 

was no change from the classical unimodal peak behavior observed around this date.  

 

 

Overall, the shifts in epidemic dynamics are driven by the seasonal change (autumn and 

winter seasons) and its effect on transmission dynamics. Epidemic peak size was highest (with 

23% of the susceptible population infected), for an arrival date on September 3rd, with a short 

time to peak of 90 days (Fig 2A). Epidemic peak size was lowest (with 0.04% of the susceptible 

population infected) for an arrival date on December 12th, with a longer time to peak of 339 days 
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(Fig 2C). All simulations ultimately infected 100% of the human population, except for arrival 

dates in mid-December, with a final epidemic size of 97% of the population (Fig 3).  

 

These results show that under the conditions used here, an epidemic potential exists in all 

seasons of the year, with most favorable seasons for a large outbreak being in late summer/early 

autumn season. Epidemics occurring within this favorable period had an average epidemic peak 

size of 22% of the susceptible population infected, with a time to peak of 82 days. Arrival dates 

of an infectious human, in mid-autumn and early-winter season, can dramatically affect the 

epidemic dynamics.  

 

Seasonal variance and epidemic dynamics  

 

To examine the epidemic dynamics as a function of the seasonal temperature variance, 

we simulated two different sets of temperature regimes, with a fixed arrival date in mid-summer 

(August 15). In the first set of temperature regimes (historical; 𝑇𝑚𝑒𝑎𝑛 varied from 19.0°C to 

22.0°C and 𝑇𝑟𝑎𝑛𝑔𝑒 varied from 4.0°C to 6.0°C, both in increments of 0.2°C), the timing and 

magnitude of the epidemic peak vary inversely as a function of starting temperature (calculated 

for August 15 from 𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑟𝑎𝑛𝑔𝑒 using equation 16). Epidemic peak size increases 

monotonically with an increase in starting temperature, i.e. warmer temperatures at onset 

produce large epidemic peak size with a short peak time and vice versa (Fig 4A). The final 

epidemic size was insensitive to starting temperatures, as all simulations within this regime 

produced final epidemic sizes of 100% of the population infected. 
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Fig 4. Quantities of interest as a function of starting temperature. The x-axis is the starting temperatures within 

each set of temperature regimes and the y-axis is the associated value of the QOIs being considered. Starting 

temperature is the temperature on August 15 calculated from 𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑟𝑎𝑛𝑔𝑒 . The blue square points represent the 

time to peak infection in humans (in days). The red diamond points represent the maximum number of humans 

infected at any given point during the simulation. The green circle points represent represents the final (or 

cumulative) epidemic size at the end of the simulation; this is represented as the proportion of humans infected 

(rather than number). (A) represents the historical  temperature regimes, given by 𝑇𝑚𝑒𝑎𝑛 varied from 19°C to  22°C 

and 𝑇𝑟𝑎𝑛𝑔𝑒  varied from 4°C to 6°C (both in increments of 0.2°C), a total of 121 simulations. (B) represents the 

second set of temperature regimes, given by 𝑇𝑚𝑒𝑎𝑛 varied from 15°C to 30°C and 𝑇𝑟𝑎𝑛𝑔𝑒  varied from 0°C to 15.0°C, 

total of 5776 simulations.  Due to the fixed starting date, multiple combinations of 𝑇𝑚𝑒𝑎𝑛 and 𝑇𝑟𝑎𝑛𝑔𝑒  had the same 

starting temperature. As no other parameters were varied in these simulation sets, QOI and model behavior was 

A

 

B
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identical for simulations with the same starting temperatures and overlapping points are not visible on the graphs. 

The default parameters from Table 2 were used for these simulations.  

 

 

 

 In the second set of temperature regimes (future; 𝑇𝑚𝑒𝑎𝑛 varied from 15.0°C to  30.0°C 

and 𝑇𝑟𝑎𝑛𝑔𝑒 varied from 0.0°C to 15.0°C, both in increments of 0.2°C), epidemic peak time and 

size show similar inverse variation as a function of starting temperature, although the overall 

behavior is different.  Epidemic peak size had a unimodal distribution with its peak at ~30 ºC and 

declines rapidly afterwards (conversely the time to peak decreases until 30 ºC). At this peak of 

~30 ºC, the epidemic peak size was at 26% of the susceptible population infected, within a short 

peak time of 55 days. On the other hand, the final epidemic size steeply increases as a function of 

starting temperature, and plateaus at 20 ºC to 34 ºC (with 100% of the population infected), 

before steeply declining (Fig 4B). No epidemic occurred at lower starting temperatures of 15-17 

ºC.  

 

To further examine how mean temperature and seasonal variance combined to influence 

the epidemic size, Fig 5 shows the variation in the final epidemic size across the annual 

temperature bands. Thermal environments of mean annual temperatures between ~18 ºC to 28 ºC 

support high epidemic size, at both low and high seasonal variance. Mean annual temperature 

bands between ~28 ºC to 30 ºC supports a high epidemic size at low seasonal variance, this 

steadily diminishes as seasonal variance increases. No epidemic was produced at low mean 

annual temperatures of 15 ºC to ~17 ºC and corresponding low seasonal variance. In general, 

under the conditions used here, the dynamics of the epidemic are largely driven by the seasonal 

variation in temperature.  
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Fig 5. Final epidemic size across different seasonal temperature regimes. Heat map of final epidemic size 

(represented as the proportion of humans infected rather than number) as a function of mean annual temperature and 

temperature range. Temperature regimes here is given by 𝑇𝑚𝑒𝑎𝑛 varied from 15°C to 30°C and 𝑇𝑟𝑎𝑛𝑔𝑒  varied from 

0°C to 15°C, a total of 5776 simulations. Default parameters from Table 2 were used for these simulations, except 

for temperature parameters.  
 

 

 

 

Model sensitivity analysis  

 

Model sensitivity was characterized using 500 simulations runs for dengue parameter 

ranges as given in Table 2. All parameters were uniformly distributed for the LHS sampling. The 

conditions here were also permissive for epidemics, with (𝐼ℎ > 2) in 498 of the 500 simulated 

parameter sets. The epidemic progression in these parameter sets was consistent with the general 

model behavior seen in Figs 2A and 2C (i.e. a combination of unimodal and bimodal responses). 

The distribution of the QOIs had a wider range of values ( i.e. 𝑀𝑎𝑥𝐼ℎ =18 to 9537 humans 

infected; 𝑡𝑚𝑎𝑥𝐼ℎ = 20 to 689 days from 𝑡𝑐𝑟𝑖𝑡; 𝑐𝑢𝑚𝐼ℎ = 72% to 100% of the population infected), 

thus providing more variation in the sensitivity analysis.  
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Table 3 shows the relative importance of the input parameters to our QOIs, using uniform 

LHS distributions for dengue parameters (Table 2). Considering the main effects only, under the 

parameter variation used, epidemic peak characteristics were sensitive to the arrival date of the 

infectious human and mean annual temperature. The final epidemic size was more sensitive to 

the mosquito life history trait parameters. Other influential parameters on all the QOIs were the 

mosquito biting rate, transmission rates, and mosquito recruitment. Our QOIs were least 

sensitive to the temperature range parameter (Table 3).  

 

Table 3. Sensitivity analysis of the model’s QOIs.  
 

Parameter 𝑴𝒂𝒙𝑰𝒉 𝒕𝒎𝒂𝒙𝑰𝒉 𝒄𝒖𝒎𝑰𝒉 

𝒕𝒄𝒓𝒊𝒕 1.00 (-0.36) 1.00 (-0.17) 0.29 (0.01) 

𝑻𝒎𝒆𝒂𝒏 1.00 (-0.19) 1.00 (0.12) 0.46 (0.03) 

𝑻𝒓𝒂𝒏𝒈𝒆 0.27 (0.00) 0.27 (0.00) 0.32 (-0.01) 

𝒂 0.97 (-0.10) 1.00 (0.22) 1.00 (-0.12) 

𝜷𝒉→𝒗 0.63 (0.04) 1.00 (-0.25) 1.00 (0.11) 

𝜷𝒗→𝒉 1.00 (0.19) 1.00 (-0.23) 0.98 (0.10) 

𝝁𝒗 0.52 (-0.03) 1.00 (0.20) 0.90 (-0.08) 

𝜸𝒗 0.92 (0.09) 0.89 (-0.06) 0.44 (0.03) 

𝒊𝒗 0.27 (0.00) 0.49 (0.02) 0.29 (0.01) 

𝒒 0.34 (-0.01) 0.53 (0.02) 0.17 (0.00) 

𝑹𝒕𝒐𝒕  1.00 (0.14) 1.00 (-0.12) 0.97 (0.10) 

Relative importance and model averaged parameter coefficient from best-supported models (confidence set of 

models, see appendix for details). The relative importance of parameters on a scale between 0.00 and 1.00; the 

model-averaged coefficients for parameters in parentheses - effects are summarized by their direction (+|−), 

positive indicates the QOI increases as the parameter increases, while negative indicates QOI decreases as the 

parameter increases. Before model fitting, parameters were centered on zero and scaled to unit variance, to 

normalize parameters within the same range, hence coefficient estimates are within the range of 0.0 to 1.0.  QOI is 

denoted by: 𝑚𝑎𝑥𝐼ℎ  = the epidemic peak size; 𝑡𝑚𝑎𝑥𝐼ℎ = time to peak; 𝑐𝑢𝑚𝐼h = final epidemic size. Notations and 

descriptions of parameters are denoted in Table 2.  

 

 

Epidemic peak size was sensitive to the interaction term between the arrival date of an 

infectious human and temperature range, while neither epidemic peak time nor the final epidemic 

size was sensitive to this interaction term. None of the QOIs were sensitive to the interaction 

term of arrival date and mean annual temperature. Some other interactive terms that were 
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influential to all QOIs include interactions (terms) between arrival date of an infectious human 

and the mosquito life history trait parameters (i.e. biting rate, transmission rates, and 

recruitment). Interactions between transmission rates and other parameters had high relative 

importance for epidemic peak and final sizes, indicating that transmission rates may alter the 

effect of other parameters (See S8 Table for full details). 

 

Epidemic peak size was sensitive to the interaction term between the arrival date of an 

infectious human and temperature range, while neither epidemic peak time nor the final epidemic 

size was sensitive to this interaction term. None of the QOIs were sensitive to the interaction 

term of arrival date and mean annual temperature. Some other interactive terms that were 

influential to all QOIs include interactions (terms) between arrival date of an infectious human 

and the mosquito life history trait parameters (i.e. biting rate, transmission rates, and 

recruitment). Interactions between transmission rates and other parameters had high relative 

importance for epidemic peak and final sizes, indicating that transmission rates may alter the 

effect of other parameters (See S8 Table for full details). 

 

 

Discussion 
 

We extend the Lord et al. (unpublished work) model for chikungunya in A. aegypti and A. 

albopictus mosquitoes in Florida to a deterministic compartmental model for dengue fever in in 

A. aegypti in Madeira Island. This SEI-SEIR model explores dengue epidemic dynamics as 

triggered by the arrival of an infected person in Funchal, Madeira and the effects of seasonally 

varying temperature on transmission. Our analysis focused on three quantities of interest: time to 

epidemic peak, epidemic peak size and the final size of the epidemic. We then used a global 

sensitivity analysis to determine which input parameters were most important to quantities of 

interest.  

 

With the simulations of our model, we show that the date of arrival of an infected human 

in a susceptible human population dramatically affects the timing and magnitude of an epidemic 

peak. Given the default parameter values used here, the arrival of an infected person at any time 
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within a calendar year in Funchal can evolve into an epidemic producing a sizable outbreak. 

Outbreaks starting with the arrival of the infected human at the beginning of winter (i.e. in 

December), took a longer time to peak, with a resulting bimodal outbreak response. These 

arrivals coincided with the depletion of the mosquito population; hence an initial small outbreak 

occurs, then a prolonged low-level transmission until the number of susceptible mosquitoes is 

replenished (at the next seasonal peak recruitment), then another outbreak occurs. This suggests 

the temporal dynamics of the mosquito population is important in determining the epidemic 

dynamics. This also suggests that the virus can remain viable within the population at low rates, 

until the next favorable season for transmission.  

 

In contrast, arrival at the end of summer (late August), and early autumn (September and 

October) produces epidemics with a much faster peak rate and a corresponding large epidemic 

size. These transient epidemics are indicative of a higher transmission potential at this point of 

the year and are consistent with the scenario of the 2012 outbreak [6]. In this outbreak, the 

epidemic peaked approximately one month following the initial cases, with a resultant large 

epidemic size [7]. This also further reiterates the conclusions of [8], regarding the time point in 

the year with the highest epidemic risk and when local control strategies should be intensified. 

The overall model behavior in response to the timing of virus introduction within the susceptible 

population is similar to other previous dengue models [26, 60]  

 

Furthermore, we showed the interaction between seasonal temperature mean and range in 

determining the timing and size of an epidemic peak. The historical decadal weather data for 

Funchal, Madeira had an annual mean temperature of 20ºC and an average seasonal temperature 

range of 5ºC, a highly suitable thermal environment for the vectorial capacity of A. aegypti 

mosquitoes and arbovirus transmission. As expected, all our model simulations for this set of 

temperature regimes evolved into an epidemic. Both epidemic peak size and time to peak 

responded monotonically to starting temperature, with warmer temperatures at onset producing 

high prevalence and faster peaks. Subsequently, when we widened the temperature regimes the 

epidemic peak size responded unimodally to starting temperature, with a peak at ~30ºC. 
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Extending the temperature regimes allowed us to demonstrate the nonlinear influence of 

the interaction between annual mean temperature and range on epidemic dynamics. At a low 

annual mean temperature (15ºC to 17ºC) and range (0ºC to ~10ºC), no epidemic occurred; 

however, this temperature band becomes suitable for transmission as the temperature range 

increases beyond this point. Intermediate annual mean temperatures (~18ºC to ~28ºC), supported 

epidemic transmission at both low and high temperature range (i.e. 0ºC to 15ºC). Epidemics 

introduced within these temperature regimes had the highest epidemic suitability (using final 

epidemic size as a measure of epidemic suitability). Lastly, at high annual mean temperatures (> 

28ºC to 30ºC) and range (0ºC to ~10ºC), transmission was supported with high epidemic 

suitability. However, epidemic suitability diminishes as temperature range increases.  

 

To reiterate, most of the simulated temperatures are very unlikely to occur in Funchal, 

with the exception of sporadic extreme summer temperatures and heat waves. Such sporadic 

extreme events have been documented, with recent abrupt changes in temperatures on the island 

[53, 54]. Hence our simulations give an estimate of epidemic suitability in the presence of these 

extreme temperature conditions. Overall these distinct thermal responses are similar to those 

discussed in the works of [17] and [18], which investigated the effects of temperature on dengue 

transmission. Other models (e.g. [13, 19, 61] have shown that the influence of temperature on 

other mosquito life history traits (e.g. biting rates and population size) can contribute 

significantly to transmission dynamics. Although we did not consider these factors, our results 

provide insights about suitable thermal environments for dengue transmission and potential 

epidemic suitability in Funchal, Madeira.  

 

Our sensitivity analysis further characterizes the variability in epidemic dynamics as a 

function of the arrival date of one infectious human into the susceptible population and the 

seasonal temperature regime. There was a significant difference between the sensitivity of the 

quantities of interest to the parameters. The timing and magnitude of the epidemic peak were 

more sensitive to parameter variation in arrival date and mean annual temperature, than the final 

epidemic size. So, slight changes in the parameter values will have more effect on the epidemic 

peak characteristics. Overall the quantities of interest were sensitive to the biting rate, 
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transmission rates, and mosquito population size. This is consistent with other modeling studies 

that highlight the importance of the mosquito dynamics on epidemic outcomes [27, 62, 63].  

 

Our sensitivity analysis went one step further by characterizing the interaction effects 

between the parameters on the epidemic dynamics. Though this was not the focus of our 

analysis, it can be useful for improving understanding of the complex processes that interact to 

determine epidemic dynamics. Likewise, from a control and mitigation perspective, the 

interaction term effects are useful to understand how the implementation of a specific control 

strategy can have dramatic effects on the mosquito life history traits and in turn the overall 

epidemic dynamics. A cautionary note, our sensitivity analysis varied only the mosquito portion 

of the transmission cycle and does not account for the variance in the human transmission and its 

combined influence on the epidemic dynamics.  

 

Putting this all together, our model could be used as a mathematical tool to study 

different epidemic scenarios and shifts in epidemic suitability for other regions in Madeira 

Island. Near term projection for seasonal temperature variation for the region of Madeira island 

(i.e. the North Atlantic, Europe and Mediterranean region), predicts a warming of ~2°C in annual 

mean temperature, with summer months of June, July and August (JJA) temperatures warming 

up to ~2.9°C [52, 64].  Considering the implications of this in view of our results, we can 

speculate that the south coast region of Madeira Island (where Funchal is located), would 

continue to support potential year-round transmission, with possible higher epidemic suitability. 

The north coast and inland regions of the island, where current climate suggests limited or no 

epidemic suitability could have an increased potential to support transmission in extreme 

summer months. It is important to note that these projected shifts in epidemic suitability will also 

be influenced by other factors like rainfall, humidity, and anthropogenic activities. Thus, 

seasonal temperature variation must be considered jointly with these factors.  

 

It is worth reiterating that the default parameters values used in our model were 

permissive for epidemics and likely more permissive than the real world. Likewise, our model 

made several assumptions for convenience and does not cover the full complexities of 

mechanistic drivers of an epidemic. We did not consider rainfall, which would play an important 
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role in the mosquito seasonality and life traits in relationship to climate change. We also did not 

consider the scenario of multiple serotypes of dengue co-circulating in the population, and thus 

prior exposure can lead to immune interactions (a possibility for Funchal, given the circulating 

serotype for the 2012 outbreak was DENV I). We also assumed a non-dynamic human 

population, however, human movement could play an important role in patterns of transmission 

and introduction (given the constant influx of tourists all year round on the island). We also did 

not consider vector surveillance and control measures implemented on the island, which is an 

important factor in limiting mosquito density.  

 
In summary, the model presented here is relevant for the introduction of a new dengue 

serotype into Funchal, Madeira Island and the interaction between mean temperature and 

seasonal variation to drive the epidemic dynamics. Our results demonstrate the potential for all 

year transmission of dengue, with varying levels of epidemic suitability, following an 

introduction of the virus. Overall, we demonstrated that epidemic dynamics are strongly 

influenced by variation in the date of arrival, seasonal temperature, biting rate, transmission 

rates, and the mosquito population. The model sensitivity analysis provides insight into the 

relative importance of these parameters and their interactive effects as mechanistic drivers of an 

epidemic. These results can be a useful guide in the development of effective local control and 

mitigation strategies for dengue fever in Madeira Island.
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