
Mathematical modeling of directed acyclic graphs

to explore competing causal mechanisms

underlying epidemiological study data

Joshua Havumaki‡∗ and Marisa C. Eisenberg◦∗

*co-corresponding authors

‡ Department of Epidemiology of Microbial Diseases; Yale University; joshsh@umich.edu

◦ Departments of Epidemiology, Mathematics, Complex Systems; University of Michigan;

marisae@umich.edu

1

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007922doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/19007922
http://creativecommons.org/licenses/by-nd/4.0/


1 Abstract

Accurately estimating the effect of an exposure on an outcome requires understanding how

variables relevant to a study question are causally related to each other. Directed acyclic

graphs (DAGs) are used in epidemiology to understand causal processes and determine

appropriate statistical approaches to obtain unbiased measures of effect. Compartmen-

tal models (CMs) are also used to represent different causal mechanisms, by depicting

flows between disease states on the population level. In this paper, we extend a mapping

between DAGs and CMs to show how DAG–derived CMs can be used to compare com-

peting causal mechanisms by simulating epidemiological studies and conducting statistical

analyses on the simulated data. Through this framework, we can evaluate how robust sim-

ulated epidemiological study results are to different biases in study design and underlying

causal mechanisms. As a case study, we simulated a longitudinal cohort study to examine

the obesity paradox: the apparent protective effect of obesity on mortality among diabetic

ever-smokers, but not among diabetic never-smokers. Our simulations illustrate how study

design bias (e.g., reverse causation), can lead to the obesity paradox. Ultimately, we show

the utility of transforming DAGs into in silico laboratories within which researchers can

systematically evaluate bias, and inform analyses and study design.

2 Keywords

Epidemiological study design; directed acyclic graphs; compartmental models; obesity

paradox
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3 Introduction

Designing analyses to accurately estimate the effect of an exposure on outcome requires

understanding how variables relevant to a study question are causally related to each

other. Directed acyclic graphs (DAGs) are diagrams used in epidemiology to graphically

map causes and effects to separate associations due to causality versus those due to bias.

Compartmental model (CMs) depict parameterized flows between disease states over time

[1, 2] and can be used to explicitly represent mechanisms underlying disease progression

or transmission [3, 4]. Given the causal nature of both DAGs and CMs, a question arises

of whether these two approaches may be linked. Indeed, Ackley et al. provided a formal

mapping from the basic building blocks of DAGs (e.g. causality, confounding and selection

bias) to CMs [1]. See Figure 1 for an example illustration and Appendix Section S1.1 for

a review and more in-depth comparison between DAGs and CMs. Using this mapping,

a DAG and CM are defined as ‘corresponding’ if they represent the same conditional in-

dependencies. This correspondence represents an exciting new development in linking

DAGs and CMs—here we expand this idea to a general framework for study design and

sensitivity analysis in practice. This step is necessary to understand how simulating DAGs

can provide actionable insight from the relationships between variables in a study and

ultimately, inform study design and analyses. Additionally, designing this framework has

allowed us to identify and develop approaches to handle practical problems encountered

when translating real DAGs into CMs (e.g. combinatorial explosion).

In this paper, we extended the work by Ackley et al. by developing an operationalized

workflow which uses the mapping (between DAGs and CMs) to simulate epidemiological

studies. We also note some opportunities to simplify this mapping to reduce the combina-

torial explosion of CM compartments that results from realistic DAGs (taking advantage

of simplifications to the CM that can be included when conditioning on a variable and
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Figure 1: From left to right: A simple DAG showing causality wherein exposure E causes
outcome D. Next, in CMD1, We will assume that E and D are both dichotomous, so the
corresponding CM will have 2n states (where n = 2 since there are 2 random variables
on the DAG). Additionally, D status does not affect E status. The X̄ notation denotes not
X, so Ē is unexposed. Thus the rates at which individuals become exposed (i.e. go from
Ē to E) are the same whether or not they have D—equal rates are denoted by the same
parameter value and if the parameter symbol is not indicated, distinct rates are assumed.
This CM is further asserting that once an individual becomes diseased or exposed, they
cannot return to the non-diseased or non-exposed state. In CMD2, we see that individuals
can move from E to Ē, but their D status does not affect the rate at which they transition
as indicated by the equal rates between ĒD to ĒD̄ and ED to ED̄. Both CMD1 and
CMD2 would be considered corresponding with the given DAG.

tracking mortality). We illustrated our findings by deriving a CM from a published DAG

representing an instance of the obesity paradox, wherein obese ever-smoking diabetics

have lower mortality rates than their normal weight counterparts. We examined compet-

ing hypotheses underlying the obesity paradox by incorporating different potential biases

into our CM and then simulating study data. Our method can be applied to nearly any

DAG or study question to gain insight into what underlying causal mechanisms can ex-

plain patterns observed in epidemiological data. This insight can be used to reduce bias

in study designs and ultimately obtain more accurate effect measures of an exposure on

outcome.
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4 Methods

4.1 Overview of the Obesity Paradox

The obesity paradox is the apparent protective effect of obesity on mortality among individ-

uals with chronic diseases such as heart failure, stroke, or diabetes [5–8].In this analysis,

we used an observational study conducted by Preston et al. in which obese, ever-smoking

(but not never-smoking) diabetics had lower mortality rates than their normal weight

counterparts [6] as inspiration for our simulation study, because it is a clear example of an

occurrence of the obesity paradox. We did not use the same dataset or aim to replicate the

analysis or results in this study, rather we extended the published DAG representing the

causal processes of interest, and used statistical analyses in the study to motivate exam-

ples of competing causal mechanisms that might be investigated. Figure 2(a) shows the

published DAG from the observational study [6] representing the obesity paradox. The

exposure is body mass index (BMI) and is coded as either overweight/obese (BMI ≥ 25

kg/m2) or normal weight (BMI = 18.5-24.9 kg/m2) and the outcome is mortality. Indi-

viduals are considered to have diabetes or prediabetes if their hemoglobin A1c is less than

5.7%, or if they have been previously diagnosed. Smoking is a common risk factor for dia-

betes, mortality, and BMI, and is coded as ever-smoking (≥ 100 cigarettes over the course

of an individual’s lifetime) or never-smoking (< 100 cigarettes). The mortality rates were

age-standardized according to the 2000 census using age groups 40-59 and 60-74. For sim-

plicity of notation, we will refer to prediabetics and diabetics as ‘diabetics’ and overweight

and obese as ‘obese’.

There have been numerous potential explanations proposed for the obesity paradox. Ex-

ample explanations due to bias in study designs include reverse causation [6], confound-

ing, selection bias [6, 9], or inaccuracy of BMI in representing body composition [10]. In
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general, in addition to random variation and measurement error, study design bias may

be due to underlying causal mechanisms that have not properly been adjusted for in the

analysis (e.g. reverse causation). Causal explanations include the fact that obese individ-

uals may receive better medical treatment [11], or are chronic disease specific e.g. obese

individuals may be protected from plaque formation on their arteries through a greater

mobilization of endothelial progenitor cells [12].

For the purposes of this study, we will define the obesity paradox based on the qualitative

results of the Preston et al. study, i.e., the obesity paradox occurs when obese never-

smoking diabetics have higher rates of mortality than normal weight never-smoking dia-

betics and obese ever-smoking diabetics have lower rates of mortality than normal weight

ever-smoking diabetics. We also assumed that comparable individuals who are obese

or ever-smokers always have higher mortality rates than their normal weight or never-

smoking counterparts, respectively. In other words, we only considered biases in study

designs (specifically reverse causation or selection bias) as potential explanations, rather

than examining situations where we model obesity as actually being biologically protec-

tive.

To obtain an unbiased effect measure of BMI on mortality, we can refer to the structure of

the DAG from Preston et al. (Figure 2(a)). Overall, if we assume that there are no other

sources of bias in the study, and no other common causes of the variables on the DAG,

an unbiased effect estimate would require that we adjust for smoking status. Diabetes

is a collider or common cause of smoking and BMI, and a mediator in the path between

BMI and mortality. Conditioning on a collider creates a spurious association between its

causes [13] however, adjusting for smoking removes the bias. To account for the fact that

we are conditioning on a mediator (diabetes is a mediator on the path between BMI and

mortality), we can assume that there are no additional unmeasured confounders and only

consider the controlled direct effect of BMI on mortality i.e., when diabetes is held constant
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[14]. See Appendix Section S1.2 for a more details on determining what to adjust for in

the statistical analysis.

4.2 Workflow Summary

We propose the following workflow to simulate epidemiological studies and conduct sta-

tistical analyses on CMs derived from DAGs:

1. DAG and Study Design. Design or use an existing DAG representing the causal pro-

cesses related to a given exposure and outcome, and then design an epidemiological

study (alternatively, this method can be used to conduct sensitivity analyses on an

existing study in which case one would use the existing study design). Using the

DAG, determine which variables will be controlled for in the statistical analysis (see

Step 5 below). In our analysis, we started with a published DAG [6].

2. DAG→CM Mapping. Derive a CM from the DAG using the mapping described by

Ackley et al. [1].

(a) Because multiple CMs may correspond to the given DAG, decide the appropriate

CM based on the chosen study design and realistic mechanisms for the process

of interest. In our CM, individuals can transition from never-smoking to ever-

smoking, but not back to never-smoking. In general, the research question and

hypotheses will guide how to correctly derive a CM from a given DAG since the

correspondence between DAGs and CMs is not one to one. [1].

(b) Potentially reduce the state-space for the chosen CM based on the study popu-

lation and biological processes included (e.g., mortality). In our analysis, the

study design conditions on diabetes, so we only track individuals with diabetes,
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and can therefore simplify the model state-space to only include the diabetic

states (as opposed to having a corresponding non-diabetic disease state for each

diabetic disease state). Similarly, we can reduce the state-space by not includ-

ing compartments for individuals who have died (corresponding to the mortal-

ity variable in the DAG), but rather only the mortality out-flow rates from each

compartment.

3. Simulation and Sampling. Simulate the chosen study population using the CM

based on predefined ranges of parameter values and initial conditions. In our analy-

ses, we simulated a yearlong longitudinal cohort study among diabetics aged 40-74

(this matched the ages of the population in the observational study) for each sampled

parameter set.

(a) Parameter and initial condition values and ranges can be determined based on

the mechanism of interest, existing data, the literature, or simply broad ranges

that encompass the plausible space of values (as were used in our analysis).

Values may be (for example) uniformly sampled from these distributions using

Latin Hypercube Sampling (LHS) [15].

(b) Simulation of the study using the chosen CM can be implemented in a variety

of ways, e.g. as ordinary differential equations or as a stochastic model.

4. Generate Simulated Data. Generate a simulated dataset based on the outcome

of interest and measurement details of the study (e.g. number of follow-up time

points, variables measured, potential sampling or measurement error that might be

of concern (i.e., one may want to incorporate measurement error to see how that

affects the study results). In our case, because individuals were followed up once

at the end of the study, we made a single simulated dataset for the entire study

(consisting of person-time and mortality by disease state over the course of the year).
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For simplicity and because we simulated a very large study (1,000,000 individuals),

we did not examine issues of sample size or measurement error. After simulating a

study, we subsequently calculated person-time (to estimate time at risk for the study

population over the course of the study) and incident mortality by disease state.

5. Analysis and Evaluation. Run statistical analyses and/or calculate outcomes using

the simulated data in Step 4. Analyses may include calculation of a single effect

estimate and/or a wide range of statistical regression methods (depending on what

analyses are of interest/planned for the study). Next, evaluate the results to examine

how the causal relationships and parameters included in the model affect potential

biases and patterns of interest in the data. In our analysis, we calculated mortality

rate ratios (MRRs) to compare normal weight to obese individuals within different

smoking strata and then assessed whether each given model and study design could

recreate the obesity paradox.

6. Revision and Exploration. Based on the results of Step 5, potentially alter the study

design and/or DAG to explore alternative biases and causal mechanisms, then re-run

the workflow. We did this by simulating epidemiological studies assuming different

unadjusted study design biases (i.e., reverse causation and selection bias).

In the remainder of this paper, we assess how different underlying causal mechanisms

might lead to the obesity paradox to illustrate the utility of this workflow. Example code

that we used for our analyses which demonstrates this workflow is available on GitHub:

https://github.com/epimath/cm-dag.
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4.3 Simulating a Longitudinal Cohort Study

We simulated a yearlong cohort study to examine the relationship between obesity and

mortality among diabetics aged 40-74. We followed up participants once at the end of the

study to calculate person-time and incident mortality by disease state. We started with

a population of 1,000,000 people and (for the age-structured models mentioned below)

weighted according to their age group distribution in the 2010 United States (US) census

[16]. See Appendix Section S1.7 for details on age-weighting for our study population.

4.4 Alternative CMs

We used 4 different models to explore how our simulated datasets change with different

proposed underlying causal mechanisms. See Figure 2 for all DAGs and corresponding

CMs. We began with Model 1, a direct conversion of the published DAG from Preston et al.

[6] to a CM. See Appendix Section S1.3 for details on how we converted this DAG and re-

duced the number of compartments on the CM. After following the workflow for Model 1,

we explored other possible mechanisms that might lead to the obesity paradox. The other

mechanisms used in this case study were inspired by the Preston et al. study and literature,

to evaluate whether they can provide a plausible explanation for the obesity paradox—we

note this simulation study cannot provide an actual explanation to the obesity paradox,

only test whether particular hypothesized mechanisms can potentially generate the obe-

sity paradox. Model 2 incorporated age-varying rates and was age-weighted according

to the US census [16]. We split our population into a younger age-group (ages 40-59)

and an older age-group (ages 60-74) and simulated the same model within strata of age.

See Appendix Section S1.6 for details on how we incorporated age into the DAG and

CM. Model 3 represents reverse causation due to chronic obstructive pulmonary disease

(COPD), a co-morbidity associated with diabetes for which smoking is a risk factor that
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can induce cachexia (loss of weight and muscle mass) and cause higher mortality rates

[17–20] (thereby increasing mortality among a subset of normal weight ever-smokers).

Individuals with comorbid diabetes and COPD can transition into an ‘unhealthy’ compart-

ment, U . Individuals in U have lost weight due to cachexia and also have higher mortality

rates than their normal weight ‘healthy’ counterparts (i.e. normal weight ever-smoking

individuals with COPD who have not undergone cachexia). See Appendix Section S1.8

for details on the underlying biological mechanism and how we incorporated reverse cau-

sation into the DAG and CM. Finally, Model 4 is a combination of Models 2 and 3. See

Appendix Section S1.10 for details on how we incorporated age and reverse causation into

the DAG and CM.

In all CMs, once individuals die, they cannot move between disease states and we no

longer track them, therefore to reduce the dimensionality of our model, mortality is an

outgoing flow from each compartment and was not included in the set of disease states.
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DAG Corresponding CM

Figure 2: All DAGs and corresponding CMs used in our obesity paradox simulation study.
DAGs (left column) and corresponding CMs (right column) for each model. By row: 1.
Preston et al. [6] DAG; 2. adding in age-varying mortality rates; 3. reverse causation, and
4. combined model. In the DAGs, ‘BMI’ is the exposure and ‘Mortality’ is the outcome.
‘Age’ and ‘Smoking’ confound the relation between ‘BMI’ and ‘Mortality’ The box around
‘Diabetes’ indicates that the study population is conditioned on individuals with diabetes.
Cachexia is represented by ‘U’, and ‘COPD’ is chronic obstructive pulmonary disease. With
respect to the longitudinal DAGs, ‘History’ denotes status before the study, ‘0’ denotes
baseline, and ‘1’ represents the end of the study i.e., one year follow up. In the CMs,
mortality rates are denoted by dotted lines. Rates with no labels (including mortality
rates) may all be distinct.
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4.5 Parameterization of the CM

We aimed to make minimal assumptions about parameter values, to derive generalizable

insight into the mechanisms driving the obesity paradox. We conducted a sweep of param-

eters (transition and mortality rates) and initial states (denoted ‘parameter sets’) using

LHS [15] to uniformly sample values from predefined ranges [15, 21]. Specifically, we

allowed all compartment transition rates to vary from 1% to 20% per year. For example,

this results in between 1% to 20% of obese ever-smokers becoming normal weight over the

course of the 1 year study. Although 20% is unrealistically high (especially in the general

population), we intentionally set a large range of parameter values to ensure that we cap-

ture realistic ranges and to see if any extreme scenarios might lead to the obesity paradox.

Furthermore, we placed no restrictions on the number of individuals starting in each state

and only ensured that the total number of individuals across all disease states equaled the

study population at the start of the simulation. See Appendix S1.11 for more details on the

calculation of initial conditions. We imposed biologically realistic restrictions on the mor-

tality rates such that ever-smokers have a higher mortality rate than their never-smoking

counterparts (i.e., within weight strata), and obese individuals have a higher mortality rate

than their normal weight counterparts (i.e., within smoking strata). In the age-structured

models, older age group mortality rates for a given disease state were determined by mul-

tiplying the younger age group mortality rate of the same state by a scaling factor between

1 and 2. Finally, in the reverse causation models, we derived the mortality rate in the

U compartment by multiplying the mortality rate of normal weight healthy ever-smokers

with COPD by a cachexia scaling factor between 1 and 2 (similar to the age scaling factor

in Model 2). Overall, each model represents different underlying causal mechanisms and

running a model on a given parameter set represents a single simulated study. See Ap-

pendix Section S1.12 for more details on sampling transition and mortality rates for each

model and Table 1 for all LHS ranges.
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Table 1: LHS Ranges
Parameters Range Models

Normal weight never-smoking to obese never-
smoking

1% to 20% All models

Obese never-smoking to normal weight never-
smoking

1% to 20% All models

Smoking initiation rate 1% to 20% All models
Normal weight ever-smoking to obese ever-
smoking

1% to 20% All models

Obese never-smoking to normal weight never-
smoking

1% to 20% All models

COPD incidence rate 1% to 20% Model 3 and combined model
Normal weight ever-smoking with COPD to obese
ever-smoking with COPD

1% to 20% Model 3 and combined model

Obese ever-smoking with COPD to normal weight
ever-smoking with COPD

1% to 20% Model 3 and combined model

Cachexia initiation rate 1% to 20% Model 3 and combined model
Baseline mortality rate 1% to 10% All models
Add on for smoking 0% to 10% All models
Add on for obesity 0% to 10% All models
Age-varying mortality scaling factor 1 to 2 Model 2 and combined model
Add on for COPD 0% to 10% Model 3 and combined model
Cachexia (U) scaling factor 1 to 2 Model 3 and combined model

4.5.1 Data Generation and Statistical Analysis

After running each model with 10,000 randomly sampled parameter sets [22], we calcu-

lated person-time and incident deaths per compartment for each study (i.e. for each model

and sampled parameter set). See Appendix Sections S1.13 and S1.15 for more information

on these calculations. Next, we calculated MRRs comparing normal weight to obese indi-

viduals within smoking strata to measure the effect of BMI on mortality. As mentioned, to

recreate the obesity paradox (as per [6]), the MRRs from a simulated dataset (i.e., study)

must simultaneously show normal weight never-smokers with lower mortality rates than

their obese counterparts, and normal weight ever-smokers with higher mortality rate than

their obese counterparts.

In Model 1, we measured all compartments and calculated the MRRs directly from the

simulated data. In Model 2 (age), we initially did not adjust for age as a confounder.
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Rather, MRRs were calculated by taking the sum of incident deaths divided by the sum of

person-time for a given disease state across age-groups. As a sensitivity analysis, we did

adjust for age by externally standardizing the MRRs to the unexposed (obese) group [23].

Finally, in Model 3 (reverse causation), our study design did not initially adjust COPD or

related complications (i.e., cachexia). Therefore individuals with COPD were measured

together with ever-smokers (e.g., in our study population, all normal weight individuals

with COPD including those with cachexia were measured together with normal weight

ever-smokers). The MRRs were calculated in the same way as we did for Models 1 and

2. Therefore, we initially did not adjust for COPD or cachexia. As a sensitivity analyses,

we adjusted for reverse causation by excluding all individuals with COPD (including those

with cachexia) at baseline (and then ran the study for 1 and 5 years). Finally, in the

combined model, we ignored age, COPD, and cachexia in our initial analysis, and then

adjusted for age only, COPD only and finally, age and COPD.

All simulations and analyses were conducted in R version 3.3.3 [24]. Compartmental

models were run using the ‘deSolve’ package [25].

5 Results

Overall, we found that not adjusting for study design bias in our CMs resulted in the

obesity paradox. See Table 2 and Figure 3 for all results.
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Table 2: Results from All Analyses
Models Unadjusted Analysis Adjusted Analysis
Model 1: Published
DAG

No obesity paradox NA

Model 2: Adding in age-
varying mortality rates

Obesity paradox oc-
curs – when there are
more younger obese
or more older normal
weight individuals
(selective survival bias)

Adjusting for age stops
the obesity paradox
from occurring

Model 3: Reverse cau-
sation

Obesity paradox oc-
curs – more than in
Model 2 because the
mechanism directly af-
fects normal weight in-
dividuals (reverse cau-
sation bias)

Excluding those with
COPD at baseline stops
the obesity paradox
from occurring (for the
1 year, but not the 5
year study)

Model 4: combined Obesity paradox oc-
curs – Predominant
mechanism is reverse
causation

Interactive effects be-
tween biases
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MRRs for Normal Weight vs. Obese Individuals

Figure 3: Results from all model runs and parameter sets. Each plot represents the MRR (mortality
rate ratio) comparing normal weight individuals to obese individuals for never-smokers against the
corresponding MRR for ever-smokers for each of the 10,000 LH-sampled parameter sets with each point
representing a single simulated study. The obesity paradox occurs when obese never -smoking diabetics
have higher rates of mortality than normal weight never-smoking diabetics and obese ever -smoking
diabetics have lower rates of mortality than normal weight ever-smoking diabetics. By row: 1. Preston
et al. [6] 2. adding in age-varying mortality rates; 3. reverse causation and 4. combined model.
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In Model 1, we did not see the obesity paradox because the MRRs from the simulated

data were simply the ratio of the CM mortality rate parameters (see Figure 3(a)). For

instance, the ever-smoker MRR is just the mortality rate of normal weight diabetic ever-

smokers (NWDS) divided by the mortality rate of obese diabetic ever-smokers (ODS)

(see Appendix Section S1.16 for more details). Due to the structure of Model 1 and the re-

strictions we placed on the parameter values, mortality rates for normal weight individuals

were always lower than (or at the very least equal to) their obese counterparts therefore,

all ever-smoking MRRs were ≤1. Overall, Model 1 cannot simulate a protective effect of

obesity on mortality among diabetic ever-smokers.

Next, in Model 2, the obesity paradox did occur in a subset of studies (See Figure 3(b)).

Overall, among model runs that resulted in the obesity paradox, there were generally ei-

ther more younger individuals in the obese ever-smoking compartment and/or more older

individuals in the normal weight ever-smoking compartment. This caused the mortality

effects of age to counterbalance those of obesity, resulting in the obesity paradox. In other

words, for the obesity paradox to occur, age-varying mortality must be sufficiently high

and work together with the relative age distribution of individuals across disease states.

This is analogous to selective survival bias in which obese ever-smoking individuals are

more likely to die before they reach older ages, thus there would tend to be more older

normal weight ever-smokers than older obese ever-smokers. An illustration of this is the

trade-off between the proportion of old vs. young individuals who are in the obese dia-

betic ever-smoking (ODS) compartment and the relative mortality rate of normal-weight

diabetic ever-smokers (NWDS) vs. ODS (shown in Figure 4). The majority of parameter

sets that resulted in the obesity paradox show the proportion of individuals in the older

age-group among all ODS is < 50%. Additionally, the effect of obesity on mortality is

relatively low (i.e., the NWDS mortality rate is consistently similar to the ODS mortality

rate in the parameter sets that resulted in the obesity paradox). Finally, as the proportion
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of individuals in the older age group increases, the effect of obesity on mortality decreases

even more in model runs that resulted in the obesity paradox. This is analogous to obesity

becoming less risky as individuals age [26]. In the age-standardized sensitivity analysis,

no runs resulted in the obesity paradox (results not shown; similar to the baseline model).

Figure 4: Age-weighting and relative mortality among Model 2 runs. The proportion of
obese diabetic ever-smokers (ODS) who are old at the beginning of the simulation is
displayed on the x-axis e.g., if equal to 0.5, half of the individuals in ODS are in the
older age group and half are in the younger age group. The relative mortality of normal
diabetic ever-smokers (NWDS) to ODS is displayed on the y-axis e.g., if equal to 0.5,
the NWDS mortality rate would be half of the ODS mortality rate. Parameter sets that
resulted in the obesity paradox are in red and sets that did not result in the obesity are in
blue. WhenNWDS mortality is close to ODS mortality, having ODS be primarily younger
can counterbalance the higher mortality due to obesity.

In Model 3 (compared with Model 2), more runs resulted in the obesity paradox (Figure

3(c)). This is due to the fact that the reverse causation mechanism differentially affects

normal weight ever-smoking individuals (compared with obese ever-smoking and normal

weight never-smoking individuals). Therefore, the obesity paradox depends on (1) the

relative obese and normal weight mortality rates (for both healthy and unhealthy individ-

uals) and (2) the distribution of individuals in healthy and unhealthy compartments. On
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the other hand, in Model 2, age-related mortality affects normal weight and obese indi-

viduals as well as ever-smoking and never-smoking individuals in the same manner and

thus relies on the population distribution across more compartments i.e., both age groups

in ever-smoking obese and normal weight and never-smoking obese and normal weight

compartments. Because healthy and unhealthy normal weight ever-smokers are measured

together in our observational study, the unhealthy mortality rate increases the combined

(healthy and unhealthy) normal weight ever-smoking mortality rate such that the overall

normal weight ever-smoking mortality rate is higher than the obese ever-smoking mor-

tality rate and the obesity paradox occurs. When examining results among ever-smokers

only, this mechanism of weighting the overall normal weight mortality rate is revealed in

the relative proportion of individuals starting in different disease states (Figure 5). For

instance, for runs in which the obesity paradox occurs, the relative mortality rate of indi-

viduals who are unhealthy compared to those who are obese ever-smokers increases when

fewer normal weight individuals start in the unhealthy compartment.

Figure 5: Age-weighting and relative mortality among Model 3 runs. The proportion
of normal weight individuals who are unhealthy at the beginning of the simulation is
displayed on the x-axis. The relative mortality of unhealthy individuals to obese diabetic
ever-smokers (ODS) is displayed on the y-axis i.e., if equal to 2, the U mortality rate
would be twice of the ODS mortality rate. Parameter sets that resulted in the obesity
paradox are in red and sets that did not result in the obesity are in blue. As U mortality
becomes substantially higher than ODS mortality, having fewer individuals starting in U
is sufficient to counterbalance the higher mortality due to obesity.
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The results from our sensitivity analyses reveal that excluding individuals with COPD at

baseline reduced the number of model runs that result in the obesity paradox to 1 (com-

pared with 3,114 in the unadjusted version). If we run the study for 5 years to evaluate

whether the obesity paradox might emerge over time, only 82 model runs resulted in

the obesity paradox (results not shown). This highlights the importance of inclusion and

exclusion criteria in an initial study population in recreating the obesity paradox.

Finally, in the combined model, we found that the reverse causation mechanism leads to

the obesity paradox substantially more than the age-weighting (selective survival) mecha-

nism. This is evidenced by the fact that when we adjust for age only, the obesity paradox

still occurs in 97.1% of the runs in which it originally occurred (3017/3107), while if

we adjust for reverse causation only, the obesity paradox occurs in 12.1% (376/3107) of

the runs in which it originally occurred. The results from our sensitivity analyses reveal

that when we control for both age and COPD, the obesity paradox is avoided almost com-

pletely. Interestingly, when we standardize age or exclude individuals with COPD only,

certain parameter sets that did not previously result in the obesity paradox, now demon-

strate the obesity paradox. This indicates a ‘two wrongs make a right’ interactive effect

between these two biases: for instance, if normal weight individuals skew younger, this

might counteract the effects of a high proportion of individuals starting in U in the unad-

justed model, but if we adjust for age only, the proportion starting in U may result in the

obesity paradox.

6 Conclusion

We have developed a workflow that can be used to explicitly examine the underlying con-

ditional independencies of DAGs. This method provides a systematic way to quantitatively
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simulate and evaluate bias and provide insight into the causal relationships between vari-

ables in a study. Our workflow can be applied to nearly any study question assuming

standard assumptions (e.g., no faithfulness violations on DAGs [27]). Modeling DAGs and

conducting simulated studies can provide insight into how to design sound observational

studies and analysis plans. For instance, if results from a simulated study don’t match ex-

pected results, this may imply the existence of unmeasured and/or unadjusted covariates,

or interacting biases as we found in our obesity paradox simulation study. Although in this

case, traditional analyses using DAGs would have likely found the same main sources of

bias (i.e., unadjusted covariates), our method also identified some additional biases (that

would not have been easily identified using traditional methods (e.g., interaction between

age and reverse causation, and excluding individuals with COPD at baseline and then

running the study for 5 years showing that biases that were initially adjusted for could

re-emerge over time). Overall, we simulated epidemiological study data in a structured

manner based on the conditional independencies of DAGs to test different hypotheses. Ad-

ditionally, this framework allows us to explore and simulate these biases interactively and

over time, observing (for example) how different measurement times, sampling designs,

etc. might affect potential biases or impact which variables are most critical to measure.

We successfully recreated the obesity paradox by deriving a compartmental model from a

published DAG [6] and then incorporating two different unadjusted biases. In Model 1,

we found that direct conversion of the published DAG was not able to recreate the obesity

paradox. In Model 2, we incorporated age-varying mortality and found that the relative

proportion of individuals in different age groups across disease states can create a selective

survival bias causing the obesity paradox. In Model 3, we found that reverse causation

caused by an unmeasured disease state can more effectively cause the obesity paradox

compared with the age-varying mortality model. The reverse causation mechanism was

more effective because it differentially affected normal weight ever-smoking individuals
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(compared with obese ever-smoking and normal weight never-smoking individuals). Fi-

nally in the combined model, we observed how different biases can interact to cause or

prevent the obesity paradox from occurring. Overall, adjusting for biases in these models

(sensitivity analyses) made the obesity paradox nearly non-existent, indicating that incor-

porating bias and not adjusting for it correctly is required to recreate the obesity paradox

(assuming the protective effect of obesity is not truly present, and that we have sufficient

sample size). Ultimately, even with very general parameter assumptions for our model,

we were able to derive general insight into what causal mechanisms may drive the obesity

paradox. In the literature, both selection bias [28] and reverse causation [6, 29] have

been suggested as potential causes of the obesity paradox in previous studies. Our results

suggest that, over the parameter ranges we explored (and for this specific study design and

simulated population), reverse causation may be more effective than age-related mortality

at generating the obesity paradox, however more realistic, specified modeling studies are

needed to further explore these issues. Moreover, other study biases likely co-exist and

depend on the specific dataset and study design. However in general, in situations where

only a limited number of variables can be measured e.g., due to logistical constraints, our

workflow could be used to identify which biases are more important to account for (i.e.,

reverse causation in our analyses) and therefore which variables to measure.

Overall, our analyses were primarily meant to illustrate the utility of our workflow and

further study would be needed (e.g. with more potential causes or biases, and estimation

or sampling of parameters from data) to thoroughly investigate the causes of the obesity

paradox. Therefore, we drew our inspiration from the Preston et al. study [6], but did not

aim to recreate their results directly. Depending on the goals of the study, our workflow can

be used to quantitatively recreate the results of existing studies which can be used to more

precisely derive new insight into which study design biases are predominant, how biases

might interact, or what combinations of factors lead to a specific scientific conclusion.
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Limitations of this study include the fact that the DAGs we use are overly simplified (de-

spite our use of a published DAG) and do not represent the complete state of knowledge

about the relationships between variables relevant to the study question. We decided to

use relatively simple DAGs to more effectively illustrate our workflow. It is simple to make

more realistic DAGs by adding additional demographic characteristics e.g. race, socioe-

conomic status, access to medical treatment and including these would simply require

vectorizing our equations further (as we did for the extension from Model 1 to Model 2).

However, since we are not fitting these models to study data that includes these variables,

we would have added more parameters to our models without truly adding any informa-

tion. Because each new DAG variable doubles the number of equations in the CM, this

would add complexity without insight. We aimed to strike a balance between realism and

parsimony in our models to isolate and examine the qualitative effects of individual causal

mechanisms of interest. For instance, the effects of race may counteract the effects of

age leading to overly complicated results (i.e. identifiability issues may obscure the larger

point). A potential future direction is to construct larger DAGs from the literature and

make simplifying assumptions to reduce the corresponding CM’s dimensionality (such as

including only one variable among a collinear set). For instance, suppose both BMI at base-

line and BMI history are included on a given DAG, one could assume that history is a proxy

for baseline BMI among e.g. adults [30] and collapse these two variables into a single BMI

variable. The robustness of results to this simplifying assumption can also be explored us-

ing our workflow. Relatedly, our workflow could also be used to identify which variable(s)

on a DAG are sufficient or necessary to replicate a particular pattern in the data (e.g., by

systematically removing variables and simulating the results). Finally, individually-based

models may be used for study questions requiring more detailed demography. Another

weakness is that our crude estimate of person-time (see Appendix Section S1.13) will not

work if the dynamics of the model are very fast. It is possible to calculate person-time

precisely by tracking the flows in and out of compartments separately.
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Strengths of this study include the methodological contributions to using CMs in conjunc-

tion with DAGs to understand patterns seen in the data. We extended the mapping that

Ackley et al. developed [1] and proposed a method for comparing simulated data with

epidemiological study data. This method can be expanded for different types of epidemio-

logical analyses and can also be used for different purposes e.g. relaxing statistical assump-

tions, multifaceted sensitivity analyses or exploring counterfactual scenarios. We were able

to show that the initial, simple DAG presented in the Preston et al. paper did not on its own

reproduce the obesity paradox and then proposed alternative mechanisms and DAGs that

could recreate the obesity paradox. Furthermore, we gained insight into what hypotheti-

cal causal mechanisms could result in the obesity paradox with limited data informing our

model. Additionally, conducting the random sweep (i.e. LHS) of the parameters and initial

conditions allowed us to account for uncertainty and draw general qualitative conclusions

about the structure of the model and its effects on our statistical results. Ultimately, our

workflow can help explicate causal mechanisms to explore whether or not DAGs are valid

representations of hypotheses in question even when data is limited. Additionally, CMs

derived from DAGs can be used as a testing ground for competing causal mechanisms to

determine which ones can most closely explain patterns seen in observational study data.

This represents a departure from the standard paradigm of fitting CMs to epidemiological

data, where instead, here we operationalize causal relationships depicted on the DAG to

simulate epidemiological study data.

Additional future research can include other statistical analyses on simulated data. For in-

stance, a Poisson regression model (for count data) can calculate MRRs and can be useful

if conditioning on multiple variables (see Appendix S1.16.1). Alternatively, simulated data

can be individuated and other types of regression models can be run. Model parameters

can be tuned to quantitatively recreate specific datasets which might be useful for gain-

ing insight into specific study results or a specific target population. Additionally, model
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parameters can be informed directly from data. For instance, see Appendix Section S1.16

for notes on how to parameterize the mortality rates from data. Similarly, the data collec-

tion process itself can be simulated in the compartmental model, allowing one to assess

how issues such as measurement error or insufficient power might affect the relationships

reflected in the DAG. Finally, the DAG-derived CMs could also be linked with real-world

data to accomplish the parameter estimation/inference step itself (i.e. without modeling

additional statistical analyses).

Overall, we presented here a new utility for CMs derived from DAGs: testing hypotheses to

understand patterns seen in study data. We also proposed a method to compare simulated

data with epidemiological study data that can be used to test competing hypotheses. We

used our method to determine that a DAG from the literature was not complete and could

not recreate the obesity paradox by itself. We therefore simulated two alternative causal

mechanisms and derived corresponding DAGs that could recreate the qualitative results of

the study. Ultimately, simulating study data by operationalizing the causal relationships

on DAGs can provide insight into how to design sound observational studies and analysis

plans.
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S1 Supplementary Information

S1.1 Compartmental Model and Directed Acyclic Graph Comparison

See Table S1 for a general comparison between Directed acyclic graphs (DAGs) and Com-

partmental models (CMs).

DAGs are non-parameterized causal diagrams used to graphically map causes and effects

to aid in designing epidemiological studies. DAGs summarize the complete set of known

relationships between variables relevant to a given study question [1, 31, 32]. A necessary

precursor for a DAG to be considered causal is that all known common causes of any pair

of variables on the graph must also appear [1]. Once relationships between variables are

synthesized, a researcher can identify what must be measured and/or controlled for to

eliminate confounding and selection bias [13, 32]. On DAGs, statistical associations be-

tween variables may be produced by (1) cause and effect (unbiased), (2) common causes

(confounding bias), (3) common effects (collider bias) [13]. DAGs are therefore used to

separate associations due to causality versus those due to bias. Figure S1 shows illus-

trations of how associations are formed on a DAG. The work flow to structure and then

determine which variables to adjust for on DAGs is described elsewhere e.g. [31, 33–35].

Once assumptions about the causal relationships between variables are made explicit and

potential confounders and/or colliders are revealed, a study design and statistical analysis

plan can be created such that an unbiased effect estimate of a given exposure on outcome

can in principle be calculated.
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Table S1: DAGs vs. CMs
DAGs CMs

Non-parameterized Parameterized
Temporality represented Temporality represented
Used to identify bias, gaps in knowledge
and plan analyses in studies

Used to conduct in silico studies e.g., un-
derstand mechanisms, ask policy ques-
tions

Synthesize all a priori knowledge Synthesize key knowledge, but strive for
parsimony

Causal if all common causes are included Depict flows over time i.e., simulate
causal processes

Figure S1: The sources of association between variables become evident on a DAG. E is
the exposure, D is the outcome or disease, and C is the covariate (1) cause and effect, (2)
common causes or confounding, and (3) common effect or collider bias e.g. selection bias.

CMs simulate parameterized flows between disease states over time and are themselves a

form of causal diagram [1, 2]. Specifically, CMs can be used to explicitly simulate mech-

anisms underlying disease transmission or disease progression and are often fit to popu-

lation level data [3, 4]. Unlike causal DAGs which must in principle include all common

causes, CMs often must balance realism with parsimony, and often only include the causal

processes most relevant to the hypothesis [36].1

Once a model schematic is created, it may be converted into ordinary differential equations

(ODEs) or simulated stochastically for smaller sample sizes. Data can then be integrated

from a variety of sources as model inputs. For instance, data can inform the number of

1However, we note that DAGs technically also require parsimony in that (for example), all mediators
between a given cause and effect are not included. Additionally, in practice DAGs often do not include all
common causes, e.g. if it is not fully clear whether certain features are causally related.
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people which start in each disease state (initial conditions) or the transition rate parameter

values. Furthermore, model outputs can be fit to a variety of data types [37], such as an

epidemic curve or cancer incidence time-series[3, 38]. A fitted model can then be used

to (1) estimate transition model parameters and initial conditions, (2) determine which

parameters should be measured in future field studies, and (3) examine counterfactual

scenarios when data collection is untenable due to ethical constraints or limited resources.

S1.2 Model 1: Determining What to Adjust for on the Preston et al.

DAG

To determine what to adjust for in a statistical analysis, we can refer to the structure of the

DAG from the observational study (Figure 2(a)).

Diabetes is a collider or a common effect of smoking status and BMI. The study is condi-

tioned on diabetics (denoted by the box around diabetes on the DAG) since it will only be

conducted among individuals with diabetes. Conditioning on a collider creates a spurious

association between its causes (in this case: smoking status and BMI) also called selection

bias [13]. Additionally, diabetes is a mediator on the pathway from BMI to mortality. Con-

ditioning on a mediator typically causes bias when there are unmeasured confounders i.e.,

between mediator and outcome or exposure and mediator. However, for simplicity, we will

assume that there are no additional unmeasured confounders. Even though smoking con-

founds the association between mediator and outcome (and mediator and exposure), it is

measured and we will adjust for it. Other issues related to conditioning on a mediator may

arise due to exposure-mediator interaction i.e., if the effect of BMI on mortality is affected

by diabetes status. This is addressed by the fact that we will only consider the controlled

direct effect of BMI on mortality i.e., when the mediator value is held constant [14]. Next,

smoking status is a common cause of BMI and mortality and therefore confounds their

30

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007922doi: medRxiv preprint 

https://doi.org/10.1101/19007922
http://creativecommons.org/licenses/by-nd/4.0/


association. If we assume that there are no other sources of bias in the study, and no other

common causes of the variables on the DAG, an unbiased effect estimate of BMI on mor-

tality would require that we adjust for smoking status. For instance, we will estimate the

effect of BMI on mortality in separate smoking strata to remove the spurious associations.

We would therefore expect that examining the association between BMI and mortality in

a population of diabetics among ever-smokers and then separately among never-smokers

would remove the bias and the protective effect of obesity on mortality. However, this was

not found to be the case in the Preston et al. study [6]. Therefore, either other biases

exist and are not evident due to an inaccurate DAG or incorrectly categorized variables, or

obesity truly is protective against mortality among ever-smoking diabetics.

The work flow to structure and then determine which variables to adjust for on DAGs is

described elsewhere e.g. [31, 33–35].

S1.3 Deriving a Corresponding CM from the Preston et al. DAG

The DAG of interest in this analysis is taken from Preston et al. [6], shown in Figure 2(a).

We initially operationalized the causal relationships between variables in the DAG from

Preston et al. (Figure S1.3) by creating a corresponding CM S1.3, using the method of

Ackley et al. [1]. See Appendix Equations 1 for the ODEs of the full model.
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Figure S2: (left) DAG representing the obesity paradox from Preston et al. [6] (right)
CM: Schematic of the single age group compartmental model diagram corresponding to
the DAG. NW represents normal weight individuals; O represents obesity; D represents
diabetes, and S represents smoking. Individuals in any given compartment can die. Each
arrow represents flows between states and rates that are equal to each other have the
parameter. For instance, diabetes status does not affect the rate at which an individual
transitions from obese to normal weight, therefore OD to NWD and O to NW have
the same rate. We specify where transition rates are the same between compartments by
labeling the model schematic accordingly and using the same parameter to represent equal
rates in the equations. Mortality rates are denoted by dotted lines. Rates with no labels
(including mortality rates) may all be distinct.

We enumerated disease states based on all possible combinations of random variables

appearing in the DAG, i.e. there are 24 possible states, since we have 4 binary variables:

diabetes, obesity, smoking, and mortality. Once individuals die, they cannot move between

disease states and we no longer track them, therefore to reduce the dimensionality of our

model, mortality is an outgoing flow from each compartment and was not included in the

set of disease states. This reduced our model to 23 possible states. Next, we included all

biologically plausible transitions between states. For instance, an individual can become an

ever-smoker, but cannot return to being a never-smoker, also a diabetic individual cannot

become non-diabetic.

Since the study population is conditioned on diabetics, we further simplified our model to

only include diabetic compartments. This step reduced our model to 22 possible states. See

Figure 2(b) for the simplified model schematic and Appendix Equations 2 for the ODEs.
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S1.4 Obesity Paradox Model 1 Full Equations

Below are the ODEs used to simulate the flows between disease states for the full model

derived from the Preston et al. DAG. The model schematic is shown in Figure 2(b). The

model equations are given by:

˙NW = −k2NW + k1O − knwNW − k7NW − k3NW

Ȯ = k2NW − k1O − koO − k3O − k8O

˙NWS = k3NW − knwsNWS − k9NWS − k5NWS + k4OS

ȮS = k3O + k5NWS − k4OS − k6OS − kosOS

˙NWD = k7NW − k2NWD + k1OD − knwdNWD − k3NWD

˙OD = k8O − kodOD − k3OD + k2NWD − k1OD

˙NWDS = k9NWS + k3NWD − knwdsNWDS − k5NWDS + k4ODS

˙ODS = k6OS + k3OD − kodsODS − k4ODS + k5NWDS

(1)

where NW , O, NWS, and OS are normal weight and obese non-diabetic never-smokers

and normal weight and obese non-diabetic ever-smokers, respectively. The corresponding

compartments for diabetics are NWD, OD, NWDS, and ODS. The mortality rates begin

with a k and are labeled according to their corresponding compartment. For instance, knwd

is the mortality rate for normal weight diabetic never-smokers. All other parameters are

transition rates between disease states.

S1.5 Simplified Model 1 and 2 Equations

Below are the ODEs used to simulate the flows between disease states for the simplified

model that includes state transitions for diabetic individuals only. There is only one set
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of equations for Model 1 while each age group has its own set of equations, transition

and mortality rates in Model 2. The model schematic is shown in Figure 2(b).The model

equations are given by:

˙NWD = −k2NWD + k3OD − knwdNWD − k1NWD

˙OD = −kodOD + k2NWD − k3OD − k1OD

˙NWDS = k1NWD − knwdsNWDS − k4NWDS + k5ODS

˙ODS = −kodsODS − k5ODS + k4NWDS + k1OD

(2)

where NWD and OD are normal weight and obese diabetic never-smokers, respectively,

and NWDS and ODS are the corresponding normal weight and obese ever-smokers. The

mortality rates begin with a k and are labeled according to their corresponding compart-

ment. For instance, knwd is the mortality rate for normal weight diabetic never-smokers.

All other parameters are transition rates between disease states. The initial state variables

(initial conditions) are in units of people.

S1.6 Model 2: Adding Age to the Original CM

Although age was not explicitly depicted on the original DAG (Figure 2(a)), the analysis

conducted by Preston et al. standardized mortality rates according to US census ages.

Because age is a confounder in the relationship between the exposure, BMI and outcome,

mortality, we should adjust for it in the statistical analysis to obtain an unbiased effect

estimate. However, we initially ran the same statistical analysis as done for model 1 to see

if not adjusting for age correctly could result in the obesity paradox. The purpose of this

exercise is analogous to a sensitivity analysis in that, we investigate how unmeasured bias

may have altered our study data and results.
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To incorporate this into our study, we split our population into a younger age-group (ages

40-59) and an older age-group (ages 60-74) to explore how age-varying rates might lead

to the obesity paradox. Among older adults (i.e., our study population), age affects obesity

status [39], diabetes status [40], and mortality. Smoking initiation rates are quite low after

age 40 i.e., ∼1% so we will assume that this rate is the same regardless of age-group [41].

See Figure 2(c) for the Model 2 DAG.

Apart from considering age, The model schematic (Figure 2(b)) and model equations for

Model 2 are the same as Model 1 (Equations 2). To add in age-varying rates, we included

one set of equations for the younger age group and one identical set of equations for

the older age group. The equations are otherwise the same, but parameters and initial

conditions vary between age-groups, which accounts for the effects of age. We assumed

that everyone remains in their given age group over the course of the study (one year).

S1.7 Age-Weighting for Age-Structured Models

We age-weighted our model using weights from the 2010 census [16]. Specifically, the

proportion of individuals in the young age group (ages 40-59) in the US population is

0.2771295 while the proportion of individuals in old age group (ages 60-74) is 0.1247997.

Thus for a total study population of 1,000,000 individuals, there are

• 1, 000, 000 0.2771295
0.2771295+0.1247997

= 689,498.3 young individuals

• 1, 000, 000 0.1247997
0.2771295+0.1247997

= 310,501.7 old individuals
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S1.8 Model 3: Adding Reverse Causation in the Original Model

We next tested the hypothesis that reverse causation may cause the obesity paradox. We

first assumed that our observational study design was the same as in previous models and

that we did not account for reverse causation in our data collection or statistical analy-

ses (i.e., we ran the statistical analysis based on the original DAG in Figure 2(a)). We

made changes directly to the model to test this alternative underlying causal mechanism

and made a new corresponding DAG. See Figures 2(f) and 2(e) for the new model and

corresponding DAG, and see Appendix Equations 3 for the model equations.

As mentioned previously, complications from comorbid diabetes and other diseases such

as COPD may induce weight loss [17, 18] and also increase the risk of mortality [19, 20].

We therefore extended Model 1 to simulate how undiagnosed COPD and associated com-

plications may be a risk factor for mortality and also affect the exposure, BMI. Because

these complications affect the outcome and exposure, this model incorporates reverse cau-

sation in that the higher risk of mortality may precede changes in the exposure. In our

extended model, normal weight and obese ever-smokers can transition into COPD disease

states, marked with a ‘C ’. We assumed that comorbidity of diabetes and COPD only oc-

curs among ever-smokers since smoking is a key risk factor for COPD [42]. Additionally

in our extended model, individuals with comorbid diabetes and COPD can then transition

into the ‘unhealthy’ compartment, U . Individuals in U have lost weight due to cachexia

and also have higher mortality rates than their normal weight ‘healthy’ counterparts (i.e.

normal weight ever-smoking individuals with COPD who have not undergone cachexia).

We assumed that BMI does not affect the rate at which individuals get COPD or transi-

tion into U . In some cases (depending on parameter values), individuals in U may also

have higher mortality rates than obese ever-smoking individuals with COPD. Importantly,

for the statistical analysis, ‘unhealthy’ individuals are measured as normal weight ever-

smoking diabetics since our original study design did not measure COPD or the occurrence
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of cachexia. Individuals with diabetes are at an increased risk for developing COPD [43],

so it is also possible that even if individuals with COPD at baseline in our cohort study were

excluded, participants may have developed COPD and moved into the unhealthy disease

state over the course of the study (this would be more likely for longer prospective stud-

ies more than 1 year). We examined this in two sensitivity analyses in which we exclude

individuals with COPD at baseline and run the study for 1 year and 5 years.

Because this reverse causation mechanism relies on exposure status changing due to a risk

factor for the outcome, mortality, the corresponding DAG is longitudinal to represent time-

varying exposure and covariates. Specifically, this DAG incorporates changes to BMI over

time. The exposure is BMI0 the BMI measurement at baseline, and the outcome is cumu-

lative mortality at the end of the study. More details for converting between longitudinal

DAGs and CMs can be found in [1].

S1.9 Reverse causation Model 3 Equations

Below are the ODEs used to simulate the flows between disease states for the reverse

causation model. The model schematic is shown in Figure 2(f). The model equations are
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given by:

˙NWD = −k4NWD + k5OD − k1NWD − knwdNWD

˙OD = k4NWD − k5OD − k1OD − kodOD

˙NWDS = k1NWD − k6NWDS + k7ODS − k2NWDS − knwdsNWDS

˙ODS = k1OD + k6NWDS − k7ODS − k2ODS − kodsODS

˙ODSC = k8NWDSC − k9ODSC − k3ODSC + k2ODS − kodscODSC

˙NWDSC = k9ODSC − k8NWDSC − k3NWDSC + k2NWDS − knwdscNWDSC

U̇ = k3NWDSC + k3ODSC − kuU

(3)

where NWD represents normal weight diabetic individuals; OD represents obese diabetic

individuals; ODS are obese diabetic ever-smokers; NWDS are normal weight diabetic

ever-smokers; ODSC and NWDSC are obese and normal weight ever-smoking diabetic

individuals with COPD; and U are unhealthy individuals with comorbid COPD and diabetes

who have undergone cachexia. These individuals have higher mortality rates than their

unhealthy counterparts (i.e., NWDSC) and in some cases than ODSC but are measured

together with healthy normal weight individuals due to the design of our observational

study. Finally, mortality rates are labeled according to their corresponding compartment.

For instance, knwd is the mortality rate for normal weight diabetic never-smokers. All other

parameters are transition rates between disease states. The initial state variables (initial

conditions) are in units of people.

S1.10 Combined Model

In the combined model, we incorporated both reverse causation and age-dependant mor-

tality. Apart from considering age, the schematic (Figure 2(f)) and ODE equations (3) are

the same as Model 3, but are vectorized such that each age group has its own set of equa-
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tions. See Appendix Figure 2(g) for corresponding DAG which incorporates both reverse

causation and age varying mortality. Because COPD prevalence increases with age [44],

we allowed rates of transition to COPD to vary between age groups. Furthermore, because

cachexia increases with age [45], we allowed rates of transition to U to vary between age

groups. Finally, as reflected in Model 2, age affects BMI, diabetes and mortality. The MRR

calculations are the same as conducted for the other models. We also ran various sensi-

tivity analyses to see if adjusting for bias can keep the obesity paradox from occurring.

Specifically, we (1) adjusted for age by standardizing to the unexposed population, (2)

excluded individuals with COPD at baseline, and (3) combined 1 and 2.

S1.11 Initial Condition Calculations

To determine how to distribute the population across disease states, the proportion of

individuals in each state was randomly sampled using LHS [15]. For each model run,

the sum of all sampled population fractions for the initial states must equal 1 to ensure

uniformly sampled proportions. We randomly sampled proportions of the population in

each disease state then multiplied the sampled proportions by the number of individuals

in the given age group to get numbers of people starting in each disease state.

For instance in model 1 there are 4 states, we sampled 3 (total states - 1) values between

[0, 1]. Then we appended 0 and 1 onto the vector and sorted e.g., {0,0.1,0.4, 0.5, 1},

generating cut-points for the interval [0, 1], allowing the interval to be divided uniformly at

random among the four states. Next, we took the lagged differences between the elements

in the vector i.e., in this example {0.1,0.3,0.1,0.5} to get the start proportions for each

state. This process avoided sampling in a specific order which would more frequently result

in the last disease state have a lower proportion. We finally multiplied the proportions by

census weights to determine how many individuals start in each state in this example:
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{40,192.92, 120,578.76, 40,192.92, 200,964.6}, totalling 401,929.2.

S1.12 Mortality Rate Add-Ons

We imposed biologically realistic restrictions on the mortality rates such that ever-smokers

have a higher mortality rate than their never-smoking counterparts (i.e., within weight

strata), and obese individuals have a higher mortality rate than their normal weight coun-

terparts i.e., within smoking strata).

Specifically, we set ODS mortality ≥ NWDS mortality ≥ NWD mortality and ODS mor-

tality ≥ OD mortality ≥ NWD mortality. We did this by sampling a baseline mortality

rate between 1% to 10% per year and then sampled ‘add-on’ mortality rates between 0%

and 10% for obesity and separately smoking, thus the minimum mortality rate for obese,

diabetic ever-smokers is 1% and the maximum is 30% per year.

S1.12.1 Model 2: Age-varying mortality

All transition rates between disease states were allowed to vary by age group with the

exception of smoking initiation. We set smoking initiation to be the same, because as

mentioned, we assumed that the initiation rates were quite low anyway in these ages

i.e., after 40 years of age [41]. Older age group mortality rates for a given disease state

were determined by multiplying the younger age group mortality rate of the same state

by a scaling factor between 1 and 2. We chose a maximum of 2 because it is a rough

approximation of the relative mortality rates for the younger compared to older age groups

in the US according to the Centers for Disease Control and Prevention [46], although the

age-groups are slightly different than in our model. Overall, within a given age-group the
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same restrictions on the relative mortality rates across disease states were used (as was

used in Model 1). See Table 1 for all parameter ranges.

S1.12.2 Model 3: Reverse Causation

We placed the same biologically plausible restrictions on the relative mortality rates as

we did for Model 1 (i.e., a baseline mortality rate and add-ons for obesity, and smoking)

and included an additional add-on for COPD related mortality. Finally, we derived the

mortality rate in the U compartment by multiplying the mortality rate of normal weight

diabetic healthy ever-smokers with COPD by a cachexia scaling factor between 1 and 2

(similar to the age scaling factor in Model 2). We chose a maximum of 2 since it was

a relatively conservative estimate that corresponded with the age-varying mortality rate.

This enabled us to directly compare causal mechanisms without making assumptions about

the relative rates for age compared with cachexia associated mortality. Thus, the maximum

mortality rate of normal weight diabetic unhealthy ever-smokers was equal to 80%. See

Table 1 for all parameter ranges.

S1.13 Person-Time for Simulated Studies

Even though the CM parameters were in units of years, the time steps for our model

were in days. This is due to the fact that the sampling of both the initial conditions and

parameter values could potentially lead to very fast, transient dynamics at the beginning of

the simulation. For instance, if the transition rates out of the obese compartment are very

fast and the initial conditions place the majority of individuals in the obese compartment,

there will be a rapid decline in the numbers of obese individuals in the early stages of

the simulation. This is not realistic especially in older age groups. Therefore, dividing
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our one-year time step into days enabled us to get a more precise estimate of the mean

person-time spent in each compartment.

We calculated person-time by taking the daily average number of individuals in each dis-

ease state for the study. Specifically, we approximated the number of individuals in each

state at each timestep using the life table method [47] (which is analogous to the trape-

zoidal rule) in which for a given timestep t the number of people in a state at time t and

time t + 1 is averaged. See Appendix Equation 4 for details. We then added all person-

days and converted to person-years by dividing the sum by 365 days
year

to get a final value in

person-years. For slower dynamics or a longer run study, we could have calculated person

years without averaging over each day.

S1.14 Trapezoidal Rule for Person-Time Calculation

We calculated person time for a given time step, t, in simulations using the following

equation i.e. the trapezoidal rule, equivalent to the life table method [47] in which all

withdrawals or deaths are assumed to happen at the midpoint of each interval:

Equation for Person Time

PersonT ime = Nrt −
Nrt −Nrt+1

2
=
Nrt+1 +Nrt

2
, (4)

where ‘Nrt’ is number of individuals in a given compartment at time t and ’Nrt+1’ is num-

ber of individuals in the same compartment at time t+ 1.
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S1.15 Incident Mortality for Simulated Studies

Next, we calculated incident mortality, the outcome, according to the following equation:

MD = Mt+1 −Mt, (5)

where MD is the incident mortality, Mt is cumulative number of deaths in a given com-

partment at time t and Mt+1 is the cumulative number of deaths in the same compartment

at time t+ 1. The cumulative number of deaths by compartment was quantified by adding

extra equations with only the death rate for given compartment multiplied by the number

of people in that compartment. We calculated the total incident mortality numbers for the

entire year by each disease state. We next split our dataset into ever-smoking diabetics and

never-smoking diabetics. We calculated a unique MRR for each strata. This accounts for

the role of smoking as a confounder. See Appendix Section S1.17 for an example simulated

dataset for a single study.

S1.16 Obesity Paradox Mortality Rate Parameterization

We can approximately back-calculate the mortality rate for a given CM compartment (i.e.

the rate determined by LHS) by taking the total number of deaths over the course of

simulation for that compartment (Equation 5) divided by the person time approximation

for that compartment (Equation 4). For instance, in Table S2, the mortality rate of normal

weight never-smokers used in the model is just 25
1500

) = 0.017 deaths per-year. We can also

calculate the mortality rate ratio of normal weight compared to obese never-smokers by

hand from the simulated dataset. For instance, in Table S2, we can just divide the mortality

rate of normal weight individuals (i.e. 25
1500

) = 0.017 deaths per-year) by the mortality rate

of obese individuals (i.e. 19
988

) = 0.019 deaths per-year) to get an MRR of 0.895. The final
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MRRs obtained from our analysis are simply the ratio of CM mortality rates.

Alternatively, if we want to parameterize a CM from real-world data, we can use MRRs by

taking the exponentiated beta estimates from a Poisson model. For instance, if the MRR

of normal weight, never-smoking diabetics compared to obese never-smoking diabetics

is 1.5 we know that the ratio of mortality rates among these two compartments is 1.5

(e.g. they could be 0.3 to 0.2). Now, if our model among never-smoking diabetics is

the same as the crude Poisson model equation above (See equation below 6), we can

also take the exponentiated β̂0 to obtain the mortality rate among normal weight, never-

smoking diabetics and then use the MRR to determine the mortality rate among obese

never-smoking diabetics.

S1.16.1 Poisson Model

Here, we show how to run a Poisson regression model from simulated data. This was

not used in our analysis because we didn’t incorporate any type of sampling error into

our model. However, one may want to simulate sampling using a multinomial draw in

which case a Poisson regression model would be appropriate and could be used to derive

confidence intervals to account for sampling error.

To run a standard Poisson regression model on our simulated dataset from Model 1 (see

Table S2 for example data), we can calculate mortality rate ratios representing the effect

of normal weight compared to obese individuals on mortality:

log(µ̂) = log(T ) + β̂0 + β̂1NW (6)

Where log(T ) is log(person− time) and is also the offset term which accounts for unequal
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follow up times between compartments and allows us to model the rate. The outcome,

log(µ̂), is the estimated incident mortality rate and β̂0 is log(incident mortality rate) among

obese diabetics (i.e. when normal weight (NW ) is equal to 0). Finally, eβ̂1 is the mortal-

ity rate ratio comparing mortality among normal weight individuals to mortality among

obese individuals. It is also the multiplicative effect on the mortality rate of being obese

compared to being normal weight.

Note that it is also possible to individuate our simulated population by sampling according

to a standard population e.g. the census and then to run a different type of regression

model for count data, e.g. Cox proportional hazards, using individual (not compartment)

level data. However, the Poisson regression model is simpler to implement and an appro-

priate choice for count data which is a commonly assumed in epidemiological studies.

S1.17 Example Simulated Dataset

Table S2 shows an example dataset generated from the CM output among never-smokers.

For each characteristic, ‘yes’ is coded as 1 and ‘no’ is coded as 0. The first row repre-

sents individuals in the obese diabetic never-smoking compartment while the second row

represents individuals in the normal weight diabetic never-smoking compartment. The

MRR comparing normal weight never-smokers to their obese counterparts for this given

parameter set is therefore 25/1500
19/988

.

Table S2: Example Simulated Dataset Among Never-Smokers
Diabetic Smoker Obese Normal Weight Deaths Person-Years

1 0 1 0 19 988
1 0 0 1 25 1500
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[26] Hainer V, Aldhoon-Hainerová I. Obesity paradox does exist. Diabetes care.
2013;36(Supplement 2):S276–S281.

[27] Koski T, Noble J. Bayesian networks: an introduction. vol. 924. John Wiley & Sons;
2011.

47

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. not certified by peer review)

(which wasThe copyright holder for this preprint this version posted October 5, 2019. ; https://doi.org/10.1101/19007922doi: medRxiv preprint 

https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1101/19007922
http://creativecommons.org/licenses/by-nd/4.0/


[28] Standl E, Erbach M, Schnell O. Defending the con side: obesity paradox does not
exist. Diabetes care. 2013;36(Supplement 2):S282–S286.

[29] Tobias DK, Pan A, Jackson CL, O’reilly EJ, Ding EL, Willett WC, et al. Body-mass index
and mortality among adults with incident type 2 diabetes. New England Journal of
Medicine. 2014;370(3):233–244.

[30] Friedenberg FK, Tang DM, Mendonca T, Vanar V. Predictive value of body mass
index at age 18 on adulthood obesity: results of a prospective survey of an urban
population. The American journal of the medical sciences. 2011;342(5):371–382.

[31] Fleischer N, Roux AD. Using directed acyclic graphs to guide analyses of neighbour-
hood health effects: an introduction. Journal of Epidemiology & Community Health.
2008;62(9):842–846.

[32] Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epi-
demiology. 1999;p. 37–48.

[33] Shrier I, Platt RW. Reducing bias through directed acyclic graphs. BMC medical
research methodology. 2008;8(1):70.

[34] Robins JM. Data, design, and background knowledge in etiologic inference. Epi-
demiology. 2001;12(3):313–320.

[35] Glymour MM. Using causal diagrams to understand common problems in social
epidemiology. Methods in social epidemiology. 2006;p. 393–428.
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