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Abstract 
PARP inhibitors (PARPi) are FDA approved for the treatment of BRCA1/2 deficient breast and ovarian cancer, 

but a growing body of pre-clinical evidence suggests the drug class holds therapeutic potential in other cancer 

types, independent of BRCA1/2 status. Large-scale pharmacogenomic datasets offer the opportunity to develop 

predictors of response to PARPi’s in many cancer types, expanding their potential clinical applicability. 

Response to the PARPi olaparib was used to identify a multi-gene PARPi response signature in a large in vitro 

dataset including multiple cancer types, such as breast, ovarian, pancreatic, lung cancer, osteosarcoma and 

Ewing sarcoma, using machine learning approaches. The signature was validated on multiple independent in 

vitro datasets, also testing for response to another PARPi, rucaparib, as well as two clinical datasets using the 

cisplatin response as a surrogate for PARPi response. Finally, integrative pharmacogenomic analysis was 

performed to identify drugs which may be effective in PARPi resistant tumors. A PARPi response signature 

was defined as the 50 most differentially transcribed genes between PARPi resistant and sensitive cell lines 

from several different cancer types. Cross validated predictors generated with LASSO logistic regression using 

the PARPi signature genes accurately predicted PARPi response in a training set of olaparib treated cell lines 

(80-89%), an independent olaparib treated in vitro dataset (66-77%), and an independent rucaparib treated in 

vitro dataset (80-87%). The PARPi signature also significantly predicted in vitro breast cancer response to 

olaparib in another separate experimental dataset. The signature also predicted clinical response to cisplatin and 

survival in human ovarian cancer and osteosarcoma datasets. Robust transcriptional differences between PARPi 

sensitive and resistant tumors accurately predict PARPi response in vitro and cisplatin response in vivo for 

multiple tumor types with or without known BRCA1/2 deficiency. These signatures may prove useful for 

predicting response in patients treated with PARP inhibitors. 
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Introduction 
Genome fidelity is essential for the survival of cells and organisms. In addition to the intrinsic proofreading 

exonuclease activities of the DNA polymerase and replication complexes, eukaryotic cells have evolved 

elaborate error correction pathways able to repair both single and double strand damages [1]. Germline or 

somatic mutations in the genes involved in DNA repair pathways, such as BRCA1 and BRCA2, are frequently 

observed in cancer cells [2]. Cells with defects in the BRCA1 or BRCA2 pathways, which impair double strand 

break (DSB) repair, rely on single strand repair pathways, such as base excision repair pathway (BER), to 

correct frequently occurring DNA damage. 

 

The poly ADP ribose polymerase (PARP) protein family, which includes PARP1 and PARP2, are a vital 

component of BER pathway [3],[4]. In addition to its role in BER repair, PARP1 also participates in DSB repair 

via activation of ATM, a protein necessary for homologous recombination (HR) repair [5]. PARP1 also 

recognizes stalled replication forks and recruits protein to begin HR repair [6]. These functions make the PARP 

family an appealing target in cancer cells, especially those exhibiting mutations in double strand repair pathway 

[7]. 

 

Cancer cells with BRCA and other homologous recombination pathway mutations are exquisitely sensitive to 

PARP inhibitors [8],[9], and patients with ovarian cancer [10], breast cancer [11], [12], pancreatic cancer [13], 

and prostate cancer [14] with germline BRCA mutations have improved progression-free survival on these 

medications [15]. Though germline and somatic BRCA mutation patients derive the most benefit from these 

drugs, in clinical trials, the survival advantage of PARP inhibitors also extends to a subset of wild type BRCA 

tumors [16], which are often HR deficient by other means such as PALB2 mutation or BRCA promoter 

methylation. Moreover, emerging cell line and early-stage clinical trial data indicate that PARP inhibition might 

offer clinical benefits in cancers not typically associated with BRCA mutations, for example, in prostate, lung, 

Ewing sarcoma, osteosarcoma, and BRCA wild type breast cancer. Thus, there is a need to develop tumor 

subtype agnostic biomarkers which reliably predict clinical response to PARP inhibitors.  

 

We, therefore, set out to develop a PARP response signature using gene expression data from a very large 

collection of cell lines treated with the PARP inhibitor olaparib, the first such drug that entered clinical 

development [17]. We developed a predictor using machine learning algorithms and validated it on independent 

groups of cell lines treated with both olaparib and rucaparib. The model’s predictive value was further 

independently validated in three additional data sets, two of which were clinical, using cisplatin response as a 

surrogate. Further biologic and therapeutic implications of our findings are discussed. 

 

Results 
Highly predictive gene signature for PARP inhibitor response 

We asked if the in-vitro sensitivity to olaparib and rucaparib (previously called AG-014699) of tumor cell lines 

from a wide range of tissue subtypes previously reported in a large pharmacogenomic study [18] is also 

associated with transcription patterns, which could then be used as markers for PARP inhibitor response 

prediction across many different tissue subtypes. We also explored if we could develop a multi-gene panel 

predictive of PARP responsiveness in patient tumors and cells lines without any discernible genetic hallmarks 

of BRCA gene or related pathway deregulation. 

 

To minimize both technical laboratory artifact effects and also to pursue “drug class” as opposed to drug 

specific findings, we performed our analysis only in the large subset of cell lines, (n=143) that showed 

concordant sensitivity or resistance to the two drugs (Supplementary Table 1). We first identified differentially 

expressed genes in a subset of cell lines treated with olaparib. Due to the large number of statistically 

significantly differentially expressed genes (Supplementary Table 2), we selected the top 50 genes and used 

their expression levels to classify in-vitro response of cell lines to PARP inhibitors. For a training set, we 

randomly selected two thirds of the cell lines treated with olaparib, and one third was used for initial validation. 
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The model derived from the training set was then applied to cell lines treated with rucaparib for another 

independent testing. On 3-fold cross validation LASSO-logistic regression, prediction accuracies with various 

subsets of the 50 genes ranged from 80-89% for the training set, 66-77% for the olaparib-treated independent 

cell lines and 80-87% for the rucaparib treated independent data set. An example of a high performing logistic 

regression-based prediction model is shown in Table 1. 

 

Table 1. Genes selected by LASSO logistic regression model for PARPi response prediction in the cell line 

training dataset by Garnett et al. 
Gene symbol Gene name Coefficient 

CALM1 calmodulin 1 -0.86939 

CALM1 calmodulin 1 -0.34952 

MMP2 matrix metallopeptidase 2 -1.28786 

NID1 nidogen 1 2.96661 

PDGFRB platelet-derived growth factor receptor beta 2.73977 

TP53BP1 tumor protein p53 binding protein 1 1.09617 

GALNT3 polypeptide N-acetylgalactosaminyltransferase 3 1.98191 

PRAF2 PRA1 domain family, member 2 -1.36475 

COX11 cytochrome c oxidase copper chaperone COX11 4.19121 

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.00954 

MYD88 myeloid differentiation primary response 88 -4.33323 

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa -0.35708 

CALM1 calmodulin 1 -2.88417 

MAPK13 mitogen-activated protein kinase 13 0.42046 

PXDN peroxidasin -0.42148 

SOS2 SOS Ras/Rho guanine nucleotide exchange factor 2 -3.04141 

RUFY1 RUN and FYVE domain containing 1 5.16040 

NLRP1 NLR Family Pyrin Domain Containing 1 1.02986 

HCFC1R1 host cell factor C1 regulator 1 0.05239 

LARP6 La ribonucleoprotein domain family, member 6 1.91950 

CNTNAP1 contactin associated protein 1 1.82016 

CLSTN2 calsyntenin 2 1.20249 

   

On inspection of classification accuracies, we found our prediction algorithm worked very well for certain 

tissue subtypes, such as ovarian, and breast cancer cells, which were classified with 100% accuracy. That said, 

the signature also showed 100% cross validated prediction accuracy in osteosarcoma cancer cell lines and 71% 

and 84% for Ewing’s and the lung cancer cell lines, respectively, observations that are interesting given the lack 

of any clear knowledge for genetic perturbations of the HR pathway in any significant subsets of these tumors. 

We noted that there is substantial heterogeneity in PARP inhibitor drug response between the different tissue 

types included in the Garnett dataset, with some cell types showing extreme rates of resistance or sensitivity 

(approaching 100%), and others showing a more “balanced” split in terms of the fraction of sensitive or 

resistant cell lines. Therefore, we considered the possibility that this type of “tissue bias” might mean that the 

gene expression differences and model predictions may reflect to a large extent differences between the 

different histologic cancer types as opposed to a true PARPi resistance phenotype. To answer this question, we 

assessed the classification accuracy excluding any cell lines from tissue types that showed above 80% resistance 

or sensitivity to either of the two drugs (Supplementary Table 1). We observed that the prediction accuracy in 

the remaining cell lines (n = 111) was similar, 80-89%, 68-77%, and 79-86% for the training, independent 

olaparib and the independent rucaparib treated datasets, respectively. 

 

We then asked if a published ovarian cancer “BRCAness” signature [19], that was previously shown by our 

group to predict response to PARP inhibitors in ovarian tumors that did not harbor BRCA mutations, could also 

be applied broadly to the multiple different tissue subtypes included in the current analysis. The “BRCAness” 

signature, when used for hierarchical clustering [20] of the cell lines, showed a significant association with in-

vitro response to PARP inhibitors (Fisher’s exact test p-value: < 0.05; odds ratio (OR): 2.1 - 3.9). However, a 3-

fold cross-validated LASSO logistic regression prediction model showed accuracies only in the range of 56 - 

72%. This suggests that this “BRCAness” signature, while associated with defects in the DNA repair pathway 

in tumors that do not harbor BRCA mutations, does not fully capture the biology that determines response to 
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PARP inhibitors in different tissue subtypes, underscoring the possible new insights offered by our current 

analysis. 

 

Finally, we applied the PARPi response signature on an entirely separate public dataset from a different study 

[21] of gene expression profiles of 9 breast cancer cell lines treated with olaparib. Hierarchical clustering using 

PARP inhibitor response gene lists ranging from 2 to 49 genes from our signature distinguished between the 

relatively resistant and sensitive cell lines in this external dataset (OR ≥ 4.0; P = 0.008 - 0.048; Figure 1A). 

Least angle regression (LARS) models significantly predicted each cell line’s response to olaparib. A 

representative model is shown in Figure 1B (8 gene model, 0% deviation from minimal error allowed, R2 = 

0.77). 

 

Assessment of individualized prediction accuracy via ROC analysis. 

Receiver Operator Characteristic (ROC) analysis is the gold standard for assessing predictive power of a given 

biomarker on a continuous variable scale. Thus, we performed ROC analysis in the independent validation set 

of 143 cell lines treated with rucaparib. The 22-gene predictor model presented above in Table 1, achieved an 

AUC = 0.919 (95% CI: 0.87 - 0.97, p < 0.001, Figure 2). Various models including subsets of 14 - 50 genes all 

performed similarly with statistically significant AUC values 0.88 - 0.90. 

 

PARP response signature is associated with clinical chemo response and recurrence in ovarian cancer 

To test if the PARP response signature identified in vitro could be used to determine the in-vivo tumor 

sensitivity, we selected 456 cases of ovarian cancer treated with cisplatin from The Cancer Genome Atlas 

network dataset [22]. Given the lack of tumor derived molecular data from patients treated with PARP 

inhibitors to date, cisplatin response was analyzed as a surrogate for sensitivity to agents targeting DNA repair 

pathways [19], and specifically PARPi’s. A 3-fold cross-validated LASSO-logistic regression models 

constructed iteratively with 25 - 50 gene subsets yielded accuracies of approximately 68%, in a training set 

including 2/3 of the cases, while predictions in the independent sample set including the remaining 1/3 of 

samples ranged between 70 - 74%. Genes from the optimal cisplatin prediction model in the ovarian cancer data 

are seen in Table 2. In order to account for possible overfitting confounding these findings we also performed 

unspervised hierarchical clustering and found a significant association between PARPi response signature 

derived cluster groups and clinical response in the TCGA samples (Fisher’s exact test P = 0.038 - 0.076, OR = 

1.46 - 1.60) (Figure 3), further indicating that the PARPi response profiles do carry biologic relevance to 

cisplatin response in a clinical cohort. 

 

Table 2.  PARP response signature genes included in optimal logistic regression model for cisplatin response 

prediction in the ovarian cancer data. 

 
Gene symbol Gene name Coefficient 

MMP2 matrix metallopeptidase 2 0.21011 

PKIG protein kinase inhibitor gamma 0.07603 

TP53BP1 tumor protein p53 binding protein 1 0.11472 

PRAF2 PRA1 domain family, member 2 0.12707 

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.10122 

HTATIP2 HIV-1 Tat interactive protein 2, 30kDa 0.05653 

CALM1 calmodulin 1 -0.01888 

MAPK13 Mitogen-activated protein kinase 13 -0.17067 

ITPK1 inositol 1,3,4-triphosphate 5/6 kinase -0.25138 

HCFC1R1 Host cell factor C1 regulator 0.19645 

 

We further found that the PARP inhibitor response signature not only predicted in-vivo response of the tumor to 

cisplatin, but was also associated with recurrence free survival in the ovarian cancer clinical data. We examined 

the iteratively generated cluster groups described above, based on unsupervised hierarchical clustering with 

several parsed subsets of the 50 differentially expressed mRNAs, and found that they also represented two 
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groups with different recurrence free survival risk. For example, Figure 4 shows Recurrence Free Survival 

results based on a 40-gene derived sample clustering, (Log-rank P < 0.001; Hazard Ratio (HR): 1.75; 95% 

confidence interval (CI): 1.30 - 2.27; Median RFS: 551 months vs. 843 months); and a 14-gene derived 

clustering (Log-rank P = 0.006; HR = 1.44; 95% CI: 1.11 - 1.87; Median RFS: 552 months vs. 680 months;). 

Supervised models using the same gene lists also predicted groups with recurrence free survival that was very 

close to nominal signifiance (14 gene model, Log-rank P = 0.060; Permutation  P = 0.17; HR: 1.275; 95% CI: 

0.990 - 1.643; Medan RFS: 582 months vs. 646 months; Figure 4). PARP response genes with the strongest 

univariate association with RFS are shown in Table 3.   

Table 3. PARP response signature genes associated with clinical outcome (RFS) in ovarian cancer. 
Gene symbol Gene name Hazard ratio Parametric p-value 

CALM1 calmodulin 1 0.744 0.017 

CALM1 calmodulin 1 0.766 0.018 

KCNJ4 potassium inwardly-rectifying channel, subfamily J, member 4 1.327 0.022 

TP53BP1 tumor protein p53 binding protein 1 1.315 0.026 

MAPK13 mitogen-activated protein kinase 13 0.840 0.028 

ITPK1 inositol 1,3,4-triphosphate 5/6 kinase 0.792 0.046 

LDB2 LIM domain binding 2 1.203 0.047 

CALM1 calmodulin 1 0.761 0.052 

HCFC1R1 host cell factor C1 regulator 1 1.170 0.076 

PKIG protein kinase inhibitor gamma 1.158 0.092 

CNTMAP1 contactin associated protein 1 1.463 0.092 

 

PARP response signature is associated with clinical chemoresponse and recurrence in osteosarcoma 

Osteosarcoma is one of the most recalcitrant cancers with five-year survival rates for recurrent and metastatic 

cases below 30% and inadequate response to chemotherapy beyond first line. Because of the unexpected 

response to PARP inhibitors also observed in a subset of osteosarcoma cell lines (Supplementary Table 3), we 

tested if the PARP inhibitor response signature we identified using the gene expression of cell lines exposed to 

olaparib could be useful in the clinical setting. For this, we used gene expression data that we previously 

published from a human cohort of 33 primary osteosarcoma samples [23]. As we did in the ovarian cancer 

analysis, and given that cisplatin is part of the standard first line treatment in osteosarcoma, we also used 

cisplatin response as a surrogate for PARP inhibitor response. 

 

We first mapped our signature probe sets (which was generated on the Affymetrix platform) to the Illumina 

DASL platform which was used in the previous human osteosarcoma gene expression study and found that 46 

of the 50 genes could be mapped.  

  

The low sample size of the osteosarcoma clinical cohort and differences in microarray platforms, presented 

special challenges for this analysis. Despite these limitations we did find evidence that the PARP inhibitor 

signature was associated with chemoresponse assessed by cisplatin induced tumor percent necrosis in the 

osteosarcoma cohort. Among the signature genes, in univariate logistic regression analysis COX11, EDNRA, 

and LDB2 were significantly associated with percent tumor necrosis (P = 0.033, 0.080, 0.067, ORs: 1.89, 2.41, 

2.11 respectively, > 90% vs < 90%), while COX11, RUFY1, and LDB2 were significantly associated with 

tumor percent necrosis (Pearson: 0.338, 0.356, -0.405; P = 0.055, 0.042, 0.02, respectively). LASSO logistic 

regression prediction models (LOO cross-validated) using from 2 to 50 PARP response genes predicted clinical 

response to cisplatin with accuracies ranging 61-73%. Further, 7 mRNAs from the PARP inhibitor response 

signature were found to be associated with RFS by standard univariate Cox proportional hazards models with a 

significant or trending p value (P < 0.15; Table 4). Finally, unsupervised hierarchical clustering based iteratively 

on 10-30 PARP response signature gene subsets demonstrated differences in recurrence free survival (for 

example, 30 genes: median RFS: 14 months versus 151 months, HR = 6.34, 95% CI: 2.00-20.53, log-rank P < 

0.001, Figure 5A; 10 genes: median RFS: 34 months versus not-yet-reached, HR = 2.09, 95% CI: 0.76-5.75, 

log-rank P = 0.003, Figure 5B). Given the substantial technical differences between the datasets and the small 

sample size of the osteosarcoma cohort, we find these results supportive of the general hypothesis that the 

PARP response signature may be clinically applicable in osteosarcoma too. 
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Table 4. PARP response signature genes associated with clinical outcome (RFS) in osteosarcoma. 
Gene symbol Gene name Hazard ratio Parametric p-value Standard deviation of log intensities 

PDGFRB platelet-derived growth factor receptor beta 1.722 0.044 1.500 

LDB2 LIM domain binding 2 1.413 0.049 1.195 

CALM1 calmodulin 1 1.813 0.058 0.995 

CNTNAP1 contactin associated protein 1 1.473 0.074 1.340 

MRC2 mannose receptor C type 2 1.373 0.106 1.669 

ITPK1 inositol 1,3,4-triphosphate 5/6 kinase 0.701 0.111 1.452 

DENND5A DENN domain containing 5A 1.472 0.116 0.827 

 

Gene Set Enrichment analysis demonstrates critical biologic processes and pathways differentially 

regulated in the PARP resistant versus sensitive phenotype. 

The substantial global differences in transcription between PARPi sensitive and resistant cell lines prompted us 

to investigate if specific functional pathways are implicated in PARPi response. We performed Gene Set 

Enrichment Analysis and identified many pathways differentially regulated by virtue of coordinated/aggregated 

differences of the pathway gene sets between cell lines sensitive or resistant to olaparib and rucaparib (LS and 

KS p < 0.05) (Table 5 and Supplementary Table 4). This analysis was performed using the global expression 

data filtered only by 20% for low variance genes (analysis with 10% filter and no filter produced very similar 

results). Predefined signatures of oncogenic pathway activation associated with PARPi response included 

pathways which may be therapeutically targetable, such as MEK and mTOR, among others. Expression of 

genes located on the largest non-coding cluster in the human genome, 14q32, were found to be significantly 

different between PARPi resistant and sensitive cell lines. Transcription and epigenetic modification of this 

locus has been shown to predict outcome in various cancer type by our group and others [23],[24],[25]. This 

finding is supported by differential expression of the gene target set of miR-299, a microRNA that is also 

located on 14q32 

 

Table 5. Gene Set Analysis. Gene sets with LS and KS permutation p < 0.05 when analyzed in both the 

olaparib and rucaparib datasets were considered enriched. The sign of the Efron – Tibshirani maxmean statistic 

indicates if the geneset is over (+) or under (-) expressed in PARPi sensitive cell lines. In the large majority of 

gene sets, the direction of differential regulation was concordant between the olaparib and rucaparib treated cell 

lines, with only a few exceptions, in which case a sign is not listed. 
Cytoband  Pathways  microRNA  Oncogenic signature  

14q32 - Intrinsic prothrombin activation + MIR296  MEK UP.V1 UP - 

2q12  Protein digestion and absorption + MIR34A, MIR34C, MIR449  P53 DN.V1 DN - 

5q35 + ECM-receptor interaction + MIR518B, MIR518C, MIR518D + STK33 SKM DN  
8p22 + Steroid biosynthesis - MIR135A, MIR135B - SINGH KRAS DEPENDENCY - 

21q22 + Glycosphingolipid biosynthesis lacto and neolacto series - MIR518F, MIR518E, MIR518A + LEF1 UP.V1 DN - 

8p21 + PPAR signaling pathway - MIR299 + P53 DN.v1 DN + 
15q11 + Glycosaminoglycan biosynthesis - heparan sulfate / heparin + MIR339 + TGFB UP.V1 DN + 

5q12 + Fatty acid degradation - MIR520A, MIR525 - ATF2 S UP.V1 UP - 

9p22 + Fc gamma R-mediated phagocytosis - MIR26A, MIR26B - IL21 UP.V1 DN + 
4q34 - Sulfur metabolism -   ATF2 UP.V1 DN + 

7q33 +     MTOR UP.N4.V1 UP  

3p22 -     EGFR UP.V1 DN - 
10p15 -     SIRNA EIF4GI UP - 

4q32 +     IL15 UP.V1 DN + 

6q22 +     ATF2 S UP.V1 DN + 
      MYC UP.V1 DN  

      RAF UP.V1 DN + 

      EIF4E DN + 
      MEL18 DN.V1 DN - 

      PRC2 EED UP.V1 UP + 

      IL2 UP.V1 DN + 
      LTE2 UP.V1 UP - 

 

Pharmacogenomics analysis to identify drugs that can potentially reverse PARP inhibitor resistance. 

Heterogeneity of PARPi response in the cell line data prompted us to use the molecular response signature to 

discover pharmaceuticals which may hold therapeutic potential in PARPi resistant tumors. We used the recently 

described PharmacoGx [26] analytical tool via the PharmacoDB [27] interface to analyze PARPi response 

across multiple large scale pharmacogenomic datasets. First, the entire set of drug interactions with the PARP 
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response signature genes in all cell lines contained in the database was used to prioritize drugs with a highly 

significant (p < 0.001) interaction and reasonably large effect size (regression coefficient > |0.25|), returning a 

list of 35 drugs. We then compared the in vitro sensitivity of these 35 drugs to olaparib and rucaparib in five 

cancer types postulated to be at least partly sensitive to PARPi’s (breast, lung, ovarian, Ewing’s sarcoma, and 

osteosarcoma) by obtaining drug sensitivity measures for all available cell lines derived from the five cancer 

types. The cell lines were then ranked by their median IC50 value for olaparib and rucaparib, and the first and 

fourth quartiles of cell lines were labelled as clearly sensitive and clearly resistant. For the 35 drugs the median 

IC50 across resistant cell lines of each cancer type was obtained, and the 21 drugs with a median IC50 less than 

10 µM for resistant cell lines of one or more cancer types are presented in Table 6. It was noteworthy that six of 

these drugs inhibit key enzymes in the oncogenic signatures identified in the genset enrichment analysis (Table 

5, above), and four have been shown by others to synergize with PARPi’s in vitro (afatinib [28], crizotinib [29], 

erlotinib [30], and trametinib [31]) suggesting this proof of principle analysis identifies drugs which should be 

further investigated for the treatment of PARPi resistant tumors. Additionally, using a slightly relaxed effect 

size filter (regression coefficient > |0.15|) and same stringent significance cut off (p < 0.001) we found that 

enzastaurin, a PKCβ inhibitor previously reported to synergize with PARPi’s [32], was also identified for 

predictive interaction with our transcriptomic markers.   
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Table 6. Integrative Pharmacogenomic Analysis. 

Drugs 
Breast Lung Ovarian 

IC50 All IC50 R FC (ruc) IC50 All IC50 R FC (ruc) IC50 All IC50 R FC (ruc) 

austocystin d 0.652 0.913 47.332 1.228 1.135 8.029 1.295 0.156 2025.336 

afatinib 2.123 2.356 18.339 4.434 3.397 2.683 6.154 5.440 58.253 

bosutinib 4.304 5.643 7.657 5.485 4.529 2.013 4.283 4.861 65.191 

BRD-A86708339 0.506 0.398 108.506 1.918 2.620 3.478 1.755 1.755 180.581 

BRD-K30748066 1.183 1.183 36.533 2.575 4.422 2.061 0.734  -  - 

BX-795 3.950 7.576 5.703 3.320 2.417 3.771 2.398 2.751 115.207 

crizotinib 7.025 8.072 5.352 5.735 7.258 1.256 8.911 8.256 38.387 

cytarabine 2.281 6.176 6.996 1.644 2.749 3.316 1.686 2.646 119.785 

erlotinib 32.450 37.318 1.158 12.381 8.109 1.124 14.725 10.461 30.296 

GSK1070916 10.451 11.733 3.682 40.708 6.801 1.340 66.090 1337.803 0.237 

trametinib 22.735 60.821 0.710 0.438 7.240 1.259 0.165 2.057 154.056 

lapatinib 4.740 3.154 13.700 12.283 9.771 0.933 11.446 12.411 25.535 

midostaurin 0.533 0.575 75.088 0.510 0.679 13.421 0.430 0.979 323.712 

panobinostat 0.107 0.096 449.380 0.070 0.061 150.348 0.081 0.112 2836.438 

PD-153035 19.993 6.227 6.938 24.179 22.532 0.405 39.462 67.372 4.704 

PD-0325901 14.347 20982.228 0.002 1.403 2.595 3.512 1.699 1.075 294.740 

sunitinib 8.460 17.771 2.431 8.934 8.759 1.041 9.197 7.190 44.074 

TAE684 4.398 5.694 7.588 2.576 2.705 3.370 4.266 4.046 78.322 

temsirolimus 4.455 3.483 12.406 2.309 0.616 14.796 0.960 15.901 19.931 

thapsigargin 0.018 0.043 1013.982 0.018 0.022 414.276 0.020 0.023 13930.285 

tozasertib 20.303 21.077 2.050 7.510 11.763 0.775 8.331 0.049 6491.125 

Drugs 
Ewing's Osteosarcoma Pan-Cancer 

IC50 All IC50 R FC (ola) IC50 All IC50 R FC (ola) IC50 All IC50 R FC (ruc) 

austocystin d 0.020  -  - 51.507  -  - 0.802 1.078 167.079 

afatinib 13.516  -  - 9.495 2.746 1043.403 3.900 3.348 53.774 

bosutinib 4.196  -  - 6.598 6.672 429.374 4.383 4.800 37.514 

BRD-A86708339 1.052  -  - 4.388 63.774 44.920 1.747 2.530 71.176 

BRD-K30748066 17.737  -  - 12.872 24.431 117.257 1.902 4.422 40.718 

BX-795 2.245 42.812 28.737 3.452 3.656 783.647 2.939 3.356 53.657 

crizotinib 2.198 7081.577 0.174 5.507 5.149 556.401 6.499 7.770 23.173 

cytarabine 0.297  -  - 0.677 3.079 930.373 1.477 2.963 60.777 

erlotinib 8.090  -  - 36.789 12.054 237.655 19.945 15.173 11.867 

GSK1070916 0.575 0.608 2024.649 11.385  -  - 10.433 10.440 17.247 

trametinib 382.041  -  - 0.897 9.469 302.547 1.814 22.991 7.832 

lapatinib 10.973  -  - 13.833 112.986 25.355 10.501 8.944 20.132 

midostaurin 0.470 0.340 3620.918 0.349 0.332 8621.515 0.498 0.604 298.176 

panobinostat 0.023  -  - 0.112 0.192 14884.391 0.080 0.080 2260.037 

PD-153035 22.649  -  - 39.954 44.258 64.727 25.223 24.497 7.350 

PD-0325901 0.026  -  - 5.199 395.942 7.235 2.510 6.774 26.579 

sunitinib 3.341  -  - 6.578 4.113 696.511 8.705 8.534 21.100 

TAE684 0.663 27.199 45.234 1.143 1.066 2687.037 2.844 3.394 53.047 

temsirolimus 0.009  -  - 0.506 0.242 11853.130 2.967 1.125 160.005 

thapsigargin 0.007 0.003 439669.837 0.003 0.023 124818.344 0.016 0.023 7914.719 

tozasertib 2.225 38.784 31.722 4.504 29.366 97.551 11.974 16.029 11.233 

Novel drug candidates with strong statistically significant predictive interaction with the PARP response 

signature (43 unique genes) are shown together with experimentally derived IC50 (µM) values for 1) all and 2) 

resistant cell lines from each tissue type. Fold change (FC) reflects a ratio of the IC50 of the more potent of the 

two PARPi drugs, and the respective novel candidate drug in PARPi resistant cell lines. Pan-cancer analysis 

was performed with the five cancers. Green denotes an IC50 < 1 µM, and blue denotes an IC50 < 10 µM. Data 

was not available for all combinations of drugs and cell lines. Bolded drugs have been reported to synergize 

with PARPi’s in the literature, italicized drugs target a pathway identified in the GSE analysis in Table 5. 
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Discussion 
PARP inhibitors have significantly improved progression-free and overall survival for patients with BRCA 

positive ovarian [10] and breast cancer [11], [12]. The clinical benefit, however, is not restricted to patients with 

BRCA mutation mediated HR deficiency and in clinical trials, the survival advantage is also observed in 

patients with wild type BRCA genes [33], [34]. Moreover, in vitro studies indicate that PARP inhibitors have 

broad activity, extending beyond clinically approved indications in BRCA mutated ovarian and breast cancer 

patients [16]. In this study, we therefore investigated if a gene expression signature could be used to predict the 

clinical response of PARP inhibitors in both cancer cell lines and patients. 

 

Based on the expression profile of a subset of marker genes from cell lines treated with olaparib, we were able 

to predict with high accuracy response of an independent PARP inhibitor, rucaparib, as well resistance and 

sensitivity of cell lines from a completely independent study. Furthermore, the model outperformed our 

previously published “BRCAness” signature when tested on multiple different cell lines, indicating that the 

signature identified in this study is not restricted to the pathways captured by the BRCAness signature. 

 

The signature also predicted with high accuracies the clinical response of patients treated with platinum-based 

chemotherapy, which was used as a surrogate for PARP inhibitor response, in patients with ovarian cancer and 

osteosarcoma. This indicates that the gene expression profile covers not only the broad biology underlying the 

PARP inhibitor response but also suggests that such an approach could be used on patient-derived samples. 

There are, at the moment, no available clinical data that would enable us to confirm how well the model would 

perform when actual patients are on PARP inhibitors. However, since the clinical decision to start PARP 

inhibitor in ovarian cancer is made when the patient is either on or has just completed platinum-based 

chemotherapy, this might more closely approximate current clinical practice than a pure predictor for PARP 

inhibitor response. That said, the predictive performance of such a signature should ultimately be tested in 

patients only treated with a PARP inhibitor as well. 

 

Given that the clinical utility of PARP is now being tested across cancers without known HRD we suggest that 

such a predictive model would be essential to identify the subgroup of patients who might benefit from the 

PARP inhibitors, especially in cancers where the clinical benefit is most likely to be restricted a subset of 

patients. Our results indicate that cancer subsets that were previously thought not to be susceptible to PARP 

inhibitors may still benefit from treatment with these drugs with careful selection of patients based on tumor 

expression profile. The data from our study show that the response predictive gene list is highly reproducible in 

various independent cancer data sets, including subsets that were previously thought to be unsusceptible to 

PARP inhibitors.  

 

Our results also demonstrate the value of principled and sophisticated analysis of large genomic and drug 

response datasets such as the CCLE [35], [36] and the GDSC [18], [37], [38]. While some concerns were 

previously raised about some aspects of technical reproducibility of these drug response screening efforts [39], 

[40], our study demonstrates that despite those potential issues, these datasets, when analyzed carefully and with 

adequate steps to minimize artifacts and noise, can be very valuable in the effort to reveal new therapeutic 

applications and develop response predictors. In this context, another study recently utilized expression and 

drug response data successfully develop and test a PARP inhibitor predictor [32]. That report utilized a different 

set of gene expression data from our study (CCLE vs GDSC) and employed different analytical algorithms and 

somewhat different definitions of response vs non-response. Likely due to all these differences in study 

approach, only a few of the top marker genes overlapped with the multi gene signature we describe here. 

However, both studies converge on similar overall conclusions on the power of gene profiles to predict response 

to PARP inhibitors and aid in developing novel therapies for PARP inhibitor resistance. As has been the case 

for other phenotypes (such as breast cancer prognostic microarray signatures), it is possible that the different 

marker panels reflect different aspects of the same biological phenotype which is characterized of a large 

number of differentially expressed genes, as shown in our analysis too. 
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Our pharmacogenomic bioinformatic analysis of these large transcriptional differences between cell lines 

sensitive and resistant to PARPi’s revealed drugs which may have a rationale for synergy with PARPi’s. 

Furthere, this analysis identified four drugs for which pre-clinical evidence of synergistic interactions with 

PARPi’s already exists, namely afatinib [28], crizotinib [29], erlotinib [30], and trametinib [31]. This suggests 

the drugs from our analysis are candidates for further study, particularly in the subset of patients predicted to be 

unresponsive to PARPi therapy by the PARP response signature. Clinical trials often reveal that only a subset of 

patients respond to treatment with novel molecularly driven therapies, and recent PARPi studies in Ewing 

sarcoma underscore this point [41]. In this context, expression read outs, such as the signature presented in this 

study, can potentially become useful clinical markers to prioritize these new treatments to a subset of patients 

more likely to respond, and may be used to also identify drugs with possible synergy for further testing in the 

clinical setting. 

 

Techniques used to detect homologous recombination deficits, such as RAD51 foci formation assays and 

genomic scar scoring, have been proposed as possible tools to predict response to PARPi’s [42]. Despite their 

proposed utility, RAD51 foci detection can only be performed in tumors after exposure to DNA damaging 

agents, or ex vivo DNA damage, and genomic scar biomarkers have so far been limited by a low positive 

predictive value [43]. Further work should be conducted to determine if these methods can complement a 

transcription-based assay of PARPi response, which has the additional advantage that it can be performed prior 

to the decision to treat with the drugs.  

 

Multi-gene predictors, such as the one developed in this study, need further refinement and validation, and 

future prospective studies are required to confirm the clinical utility of a predictive model. With the wide 

availability of RNA sequencing, we think a predictive model based on RNA expression, in conjunction with 

DNA sequencing approaches, would be feasible for future clinical trials and would help extend the utility of 

PARP inhibitors to an expanding array of patient subgroups in many different types of cancers.  

 

Methods 
In vitro PARP inhibitor response 

Cell line drug response and transcription data used to generate the PARPi response signature was obtained from 

the GDSC [37] dataset https://www.cancerrxgene.org/downloads. The median IC50 of olaparib and rucaparib 

across all cell lines tested in the dataset was used to classify each cell line as sensitive or resistant to olaparib 

and rucaparib, separately. To minimize technical artifacts and prioritize the drug class as opposed to specific 

compound effect, cell lines were required to be classified concordantly for olaparib and rucaparib response in 

order to be included in the analysis. An independent gene transcription dataset of breast cancer cell lines treated 

with olaparib was obtained from a previously published study [21], which was used as entirely independent in 

vitro dataset to validate the PARPi response signature.  

 

Human ovarian cancer and osteosarcoma gene expression datasets 

Clinical and gene expression data for 456 ovarian cancer cases treated with cisplatin were obtained from The 

Cancer Genome Atlas data portal (https://portal.gdc.cancer.gov/) [22]. We previously generated the clinically 

annotated osteosarcoma expression profiling dataset [23], which is accessible through GEO Series accession 

number GSE39055. 

 

Unsupervised hierarchal clustering and standard univariate tests. 

Differential analysis (class comparison) between two groups of samples was performed by a permutation-based 

t-test with standard False Discovery Correction for multiple testing [44]. Positional genesets, miRNA target 

genesets, and oncogenic signature genesets were downloaded from the Molecular Signatures Database 

(http://software.broadinstitute.org/gsea/msigdb). BioCarta genesets were downloaded via the Cancer Genome 

Anatomy Project (http://cgap.nci.nih.gov/Pathways) and KEGG pathways via the KEGG.db R package 

(http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html). Unsupervised hierarchal 
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clustering [20] was performed with the centered correlation and average linkage method. Associations between 

two categorical variables were evaluated with two-tailed chi-square/Fisher’s exact test. Cluster-based group 

associations with survival were assessed by Kaplan-Meier analysis and the log rank test for significance. 

Pearson’s r statistic was used to evaluate continuous variable correlations. 

 

Response/Survival prediction and ROC analysis 

Binary prediction accuracy of the PARP inhibitor signature (sensitive / resistant) was predicted using a 3-fold or 

leave one out cross validated logistic lasso regression [45] and continuous response prediction was performed 

with least angle regression (LARS) [46] as previously described. The supervised principal components survival 

prediction method was used to generate models for patient survival and perform leave-one-out cross validated 

performance assessment [47]. Receiver operating characteristics (ROC) and area under the curve (AUC) 

analysis was performed per standard methodology using a continuous response probability index generated by a 

Bayesian compound covariate prediction algorithm [48].  

 

Geneset enrichment analysis 

Geneset enrichment analysis [49] for the association of global expression profiles (filtered for the lowest 20% 

variance genes) with PARP inhibitor sensitivity was performed with the functional class scoring method [50] 

applying the LS/KS test with a permutation p value less than 0.05 by both tests used to identify genesets with 

enriched differential expression. Positional genesets, miRNA target genesets, and oncogenic signature genesets 

were downloaded from the Molecular Signatures Database (http://software.broadinstitute.org/gsea/msigdb). 

BioCarta pathway genesets were downloaded from the Cancer Genome Anatomy Project 

(http://cgap.nci.nih.gov/Pathways) and KEGG pathways were obtained using the KEGG.db R package 

(http://www.bioconductor.org/packages/release/data/annotation/html/KEGG.db.html).  

 

Integrative pharmacogenomic analysis  

The 50 gene PARP inhibitor response signature was analyzed for drug interaction discovery using the 

PharmacoGx [26] R package through the PharmacoDB [27] interface. Specifically, 43 unique genes comprising 

the signature were individually tested for association with drug response across seven large datasets using 

stringent selection criteria for effect size (regression coefficient > |0.25|) and significance (two-sided t-test p < 

0.001) resulting in 35 drugs with at least one significant interaction with a gene from the PARPi response 

signature. Whenever we tested a drug hypothesis derived by previously published data, external to this analysis, 

we used a slightly less restrictive, but still stringent selection criteria for effect size (regression coefficient > 

|0.15|) with the same significance cut off (two-sided t-test p < 0.001).  

 

In vitro drug sensitivity metrics were then obtained for the 35 drugs with cell lines corresponding to the five 

tissue types of interest; namely breast (87 cell lines), lung (221 cell lines), ovarian (64 cell lines), osteosarcoma 

(15 cell lines), and Ewing’s sarcoma (25 cell lines). We elected to use the median IC50 for groups of cell lines 

in order to avoid outlier effects. First, the median IC50 dose response metric was calculated for each drug across 

the cell lines to obtain a “pan-cancer” IC50 value for each drug. Median IC50 values for each of the five cancer 

types were then calculated separately to observe tissue-type specific drug interactions. To identify cell lines 

resistant and sensitive to the PARP inhibitors olaparib and rucaparib in the PharmacoDB database, median 

IC50’s for olaparib and rucaparib were obtained for the subset of cell lines for which drug response data was 

available. For each cell line, the median response to both olaparib and rucaparib was calculated. Cell lines were 

ranked by the median IC50 response, and the 1st and 4th quartiles of the list were used to define sensitive and 

resistant cell lines, respectively. Within the separate sensitive and resistant cell line groups, median IC50 values 

for each drug were calculated. As a final filtering step, only drugs with a median IC50 less than 10 µM in at 

least one tissue type’s subset of PARPi resistant cell lines were included in our final list of 21 drugs.  

 

Statistical Software 

The NCI BRB-ArrayTools v4.6.0 [51], R (version 3.4.3), and SPSS v 24 software were used. 
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Figure 1. A): Hierarchical clustering and Heat map with the 50 PARP inhibitor response signature transcripts in 

an independent breast cancer cell line dataset separate from the GCSD dataset shows good discrimination 

between resistant (R) and sensitive (S) cell lines (Fisher’s p = 0.048). Separation was even more significant with 

smaller gene subsets. B): LARS regression response prediction for individual cell lines with an 8 gene subset of 

PARP inhibitor response genes in the same breast cancer cell line dataset. 
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Figure 2. ROC assessment of the performance of the gene expression predictor in the independent rucaparib-

treated cell line dataset. AUC = 0.927 (95% CI: 0.88 - 0.97, p < 0.001) 
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Figure 3. Hierarchical clustering and heatmap using the 50 gene PARP inhibitor response signature in the 

human TCGA ovarian cancer dataset. The two main dendrogram branches were significantly associated with 

cisplatin response. 
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Figure 4. Recurrence Free Survival analysis with PARP inhibitor response genes in TCGA ovarian cancer 

samples. A) Kaplan-Meier RFS analysis based on unsupervised hierarchical clustering with 40 genes B) 

Kaplan-Meier RFS analysis based on unsupervised hierarchical clustering with 14 genes. C) Supervised 

prediction model for RFS with 14 genes. 
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Figure 5. Recurrence Free Survival analysis with PARP inhibitor response genes in an osteosarcoma cohort.  

A) Kaplan-Meier RFS analysis based on unsupervised hierarchical clustering with 30 genes B) Kaplan-Meier 

recurrence analysis based on unsupervised hierarchical clustering with 10 genes. 
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