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Abstract 21 
Across decades of co-circulation in humans, influenza A subtypes H1N1 and H3N2 have caused 22 

seasonal epidemics characterized by different age distributions of cases and mortality. H3N2 causes the 23 
majority of relatively severe, clinically attended cases in high-risk elderly cohorts, and the majority of 24 
overall deaths, whereas H1N1 causes fewer deaths overall, and cases shifted towards young and middle-25 
aged adults. These contrasting age profiles may result from differences in childhood exposure to H1N1 26 
and H3N2 or from differences in evolutionary rate between subtypes. Here we analyze a large 27 
epidemiological surveillance dataset to test whether childhood immune imprinting shapes seasonal 28 
influenza epidemiology, and if so, whether it acts primarily via immune memory of a particular influenza 29 
subtype or via broader immune memory that protects across subtypes. We also test the impact of 30 
evolutionary differences between influenza subtypes on age distributions of cases. Likelihood-based 31 
model comparison shows that narrow, within-subtype imprinting shapes seasonal influenza risk alongside 32 
age-specific risk factors. The data do not support a strong effect of evolutionary rate, or of broadly 33 
protective imprinting that acts across subtypes. Our findings emphasize that childhood exposures can 34 
imprint a lifelong immunological bias toward particular influenza subtypes, and that these cohort-specific 35 
biases shape epidemic age distributions. As a result, newer and less “senior” antibody responses acquired 36 
later in life do not provide the same strength of protection as responses imprinted in childhood.  Finally, 37 
we project that the relatively low mortality burden of H1N1 may increase in the coming decades, as 38 
cohorts that lack H1N1-specific imprinting eventually reach old age. 39 
  40 
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Author Summary 41 

 Influenza viruses of subtype H1N1 and H3N2 both cause seasonal epidemics in humans, but with 42 
different age-specific impacts. H3N2 causes a greater proportion of cases in older adults than H1N1, and 43 
more deaths overall. People tend to gain the strongest immune memory of influenza viruses encountered 44 
in childhood, and so differences in H1N1 and H3N2’s age-specific impacts may reflect that individuals 45 
born in different eras of influenza circulation have been imprinted with different immunological risk 46 
profiles.  Another idea is that H3N2 may be more able to infect immunologically experienced adults 47 
because it evolves slightly faster than H1N1 and can more quickly escape immune memory. We analyzed 48 
a large epidemiological data set and found the clearest signal that birth year-specific differences in 49 
childhood immune imprinting, not differences in evolutionary rate, explain differences in H1N1 and 50 
H3N2’s age-specific impacts. These results can help epidemiologists understand how epidemic risk from 51 
specific influenza subtypes is distributed across the population and predict how population risk may shift 52 
as differently imprinted birth years grow older. Further, these results provide immunological clues to 53 
which facets of immune memory become biased in childhood, and then later play a strong role in 54 
protection during seasonal influenza epidemics.  55 
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Introduction 56 

Childhood influenza exposures leave an immunological imprint, which has reverberating, lifelong 57 

impacts on immune memory. Foundational work on original antigenic sin (1) and antigenic seniority (2) 58 

showed that individuals maintain the highest antibody titers against influenza strains encountered in 59 

childhood. But how these serological patterns map to functional immune protection, and shape birth year-60 

specific risk during outbreaks, remains an active area of inquiry. One open question is the breadth of 61 

cross-protection provided by immune memory imprinted in childhood.  62 

We define immune imprinting as a lifelong bias in immune memory of, and protection against, 63 

the strains encountered in childhood. Such biases most likely become entrenched as subsequent exposures 64 

back-boost existing memory responses, rather than stimulating true de novo responses (3). By providing 65 

particularly robust protection against certain antigenic subtypes, or clades, imprinting can provide 66 

immunological benefits, but perhaps at the cost of equally strong protection against variants encountered 67 

later in life. For example, every modern influenza pandemic has spared certain birth cohorts, presumably 68 

due to cross-protective memory primed in childhood (4–10). Recently, we showed that imprinting also 69 

protects against novel, emerging avian influenza viruses of the same phylogenetic group as the first 70 

childhood exposure (9,11). Imprinting may additionally shape birth year-specific risk from seasonal 71 

influenza (12–14), but the importance of broadly protective immunity remains unclear in this context.  72 

Until recently, narrow cross-protective immunity specific to variants of a single hemagglutinin 73 

(HA) subtype has been considered the primary mode of defense against seasonal influenza. Lymphocyte 74 

memory of variable epitopes on the HA head (i.e. sites at which hemagglutinin antigens of different 75 

subtypes show limited homology) drives this narrow, within-subtype protection, which is the main 76 

mechanism of protection from the inactivated influenza vaccine. But a growing body of evidence shows 77 

protection may also be driven by memory of other influenza antigens (e.g. neuraminidase, NA) (15–17), 78 

or by immune response to conserved epitopes, many of which are found on the HA stalk (11,18–21). 79 

(Antibodies that target conserved HA epitopes can provide broad protection across multiple HA subtypes 80 
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in the same phylogenetic group (18,20,22), where HA group 1 contains hemagglutinin subtypes H1 and 81 

H2, while group 2 contains H3 (11,19,23). H1, H2 and H3 are the only HA subtypes that have circulated 82 

seasonally in humans since 1918.)  83 

Together, these insights suggest that within a single host, imprinting probably induces multiple 84 

levels of bias in immune memory, to both conserved (broadly protective) and variable (narrowly 85 

protective) sites on various influenza antigens. The functional role of any single layer of imprinted 86 

immune memory depends on both immunodominance hierarchies and epidemic context. Here, we 87 

examine which layers of imprinted memory impact risk from seasonal influenza. 88 

Within-subtype immunity to HA is known to shape seasonal influenza’s epidemiology and 89 

evolution (24). But because this type of narrow immunity decays rapidly in the face of antigenic drift, it 90 

would not be expected to shape cohort-specific imprinting protection across an entire human lifetime 91 

(25,26).  Conversely, broad, HA group-level immune memory arises when lymphocytes target conserved 92 

HA epitopes. Responses to these conserved epitopes should be stable over time,  and can play a strong 93 

role in defense against unfamiliar influenza strains (e.g. novel, avian or pandemic subtypes 94 

(11,18,20,22,27,28)). Broad, HA group-level responses are not traditionally thought to play a strong role 95 

in defense against familiar, seasonal influenza subtypes, but have recently been identified as an 96 

independent correlate of protection against seasonal influenza (21), and might play a particularly strong 97 

role against drifted seasonal strains whose variable HA epitopes have become unrecognizable. Thus, 98 

childhood immune imprinting may determine which birth cohorts are primed for effective defense against 99 

seasonal strains with conserved HA epitopes characteristic of group 1 or group 2, or with variable HA 100 

epitopes characteristic of a particular subtype (H1, H2, etc.).  A similar line of reasoning may apply to 101 

immunity against NA, although much less attention has been paid to this antigen. 102 

Since 1977, two distinct subtypes of influenza A, H1N1 and H3N2, have circulated seasonally in 103 

humans, with striking but poorly understood differences in their age-specific impact (9,12–14,29). These 104 

differences could be associated with childhood imprinting: older cohorts were almost certainly exposed to 105 

H1N1 in childhood (since it was the only subtype circulating in humans from 1918-1957), and now seem 106 
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to be preferentially protected against modern seasonal H1N1 variants (9,12–14). Likewise, younger adults 107 

have the highest probabilities of childhood imprinting to H3N2 (Fig. 1), which is consistent with 108 

relatively low numbers of clinically attended H3N2 cases in these cohorts. Alternatively, differences in 109 

the evolutionary dynamics of H1N1 and H3N2 could explain the observed age profiles. Subtype H3N2 110 

exhibits slightly faster drift in its antigenic phenotype than H1N1, and as a result, H3N2 may be better 111 

able to escape pre-existing immunity in immunologically experienced adults, whereas H1N1 may be 112 

relatively restricted to causing cases in immunologically inexperienced children (30).  113 

We analyzed a large surveillance data set of relatively severe, clinically attended influenza cases 114 

to test whether cohort effects from childhood imprinting primarily act against variable epitopes, only 115 

providing narrow cross-protection against closely related HA or NA variants of the same subtype, or 116 

against more conserved epitopes, providing broad cross-protection across HA subtypes in the same 117 

phylogenetic group (Fig. 1A-B). We fitted a suite of models to data using maximum likelihood and 118 

compared models using AIC. In a separate analysis, we considered the hypothesis that differences in 119 

evolutionary rate of H1N1 and H3N2, rather than imprinting effects, shape differences in age distribution. 120 

Our results have implications for long-term projections of seasonal influenza risk in elderly cohorts (13), 121 

who suffer the heaviest burdens of influenza-related morbidity and mortality, and whose imprinting status 122 

will shift through time as cohorts born during different inter-pandemic eras grow older. 123 

 124 

The Data 125 

The Arizona Department of Health Services (ADHS) provided a dataset containing 9,510 126 

seasonal H1N1 and H3N2 cases from their statewide surveillance system. Cases of all ages were 127 

confirmed to subtype by PCR and/or culture, primarily from virologic testing at the Arizona State Public 128 

Health Laboratory (ASPHL). The ADHS surveillance system aims to characterize circulating strains from 129 

patients across the state with medically attended influenza. Although surveillance does not target specific 130 

at-risk groups, relatively severe cases (especially those tested at hospital labs) are overrepresented in our 131 
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data, as these cases are most likely to be medically attended and confirmed to subtype, thus meeting our 132 

study inclusion criteria. This is because confirmation to subtype requires a second-line test (PCR or 133 

culture); rapid tests are more common, but do not indicate subtype. 134 

Although the exact collection setting of individual specimens was not always recorded, ADHS 135 

staff internally reviewed reporting source and provider organization of cases in our data to estimate that 136 

roughly 76% were reported and/or submitted by hospital labs or may have originated at hospital-137 

associated outpatient clinics. A previous ADHS analysis of subtyped 2016 influenza A data matched to 138 

hospital discharge data found that nearly half of cases reported from hospital labs (if extrapolated to other 139 

seasons, roughly 38% of the overall data) were severe enough to warrant hospital admission. The rest 140 

(also roughly 38% of the overall data, if extrapolated) were discharged without admission. To obtain a 141 

broader representation of clinically attended cases from across the state, ADHS collaborates with county 142 

health departments, commercial laboratories, and outpatient clinics to receive specimens. We estimate 143 

that roughly 8% of the data originated in outpatient settings. The remaining 17% of cases were either 144 

tested at commercial labs, or were tested at ASPHL, but with unknown origin. Ultimately, these data 145 

allow us to analyze drivers of relatively severe, clinically attended cases, but our results cannot be 146 

assumed to generalize to mild or asymptomatic cases.  147 

Cases were observed across 22 years of influenza surveillance, from the 1993-1994 influenza 148 

season through the 2014-2015 season, although sample sizes increased dramatically after the 2009 149 

pandemic (Table 1). Sampling changed slightly starting in 2004, when commercial labs were first 150 

mandated to report positive tests to the state (31), but the vast majority of cases analyzed (9150/9451) 151 

were observed from the 2004-2005 season onwards, after this change had been implemented. 152 

Following CDC standards, ADHS defines the influenza season as epidemiological week 40 153 

(around early October) through week 39 of the following year (32). The 2008-2009 and 2009-2010 154 

influenza seasons spanned the first and second wave, respectively, of the 2009 H1N1 pandemic. We did 155 

not analyze cases observed during this time period, because age distributions of cases and molecular  156 
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drivers of immune memory differed during the 2009 pandemic from the normal drivers of seasonal 157 

influenza’s immuno-epidemiology of interest to this study (14,18,22).  From the dataset of 9,510 seasonal 158 

cases (defined as any case observed outside the 2008-2009 or 2009-2010 season), we excluded 58 cases 159 

with birth years before 1918 (whose imprinting status could not be inferred unambiguously), and one case 160 

whose year of birth was recorded in error. Ultimately, we analyzed 9,541 cases.  161 

 162 
 163 
 164 
 165 
 166 
 167 
 168 
 169 
 170 
 171 
Table 1.  172 
Season Confirmed H1N1 Confirmed H3N2 
1993-94 0 101 
1994-95 12 38 
2002-03 71 8 
2003-04 0 71 
2004-05 0 131 
2005-06 1 321 
2006-07 212 28 
2007-08 196 244 
2010-11 472 1204 
2011-12 595 348 
2012-13 80 1578 
2013-14 1475 151 
2014-15 5 2109 
Total 3119 6332 
   

Confirmed cases in surveillance data from Arizona Department of Health Services. Data 173 
representing the first and second waves of the 2009 H1N1 pandemic (2008-2009 and 2009-174 
2010 seasons) were excluded. 175 

 176 

 177 

 178 
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The Model 179 

Reconstructed imprinting patterns 180 

We reconstructed birth year-specific probabilities of childhood imprinting to H1N1, H2N2 or 181 

H3N2 using methods described previously (11). These probabilities are based on patterns of first 182 

childhood exposure to influenza A and reflect historical circulation (Fig. 1A). Most individuals born 183 

between pandemics in 1918 and 1957 experienced a first influenza A virus (IAV) infection by H1N1, and 184 

middle-aged cohorts born between pandemics in 1957 and 1968 almost all were first infected by H2N2 185 

(note that because the first influenza exposure may occur after the first year of life, individuals born in the 186 

years leading up to a pandemic have some probability of first infection by the new pandemic subtype, 187 

Fig. 1A). Ever since its emergence in 1968, H3N2 has dominated seasonal circulation in humans, and 188 

caused the majority of first infections in younger cohorts. However, H1N1 has also caused some seasonal 189 

circulation since 1977, and has imprinted a fraction of all cohorts born since the mid-1970s (Fig. 1A).  190 

Reconstructions assumed children age 0-12 in the year of case observation might not yet have 191 

been exposed to any influenza virus. Interactions between imprinting and vaccination of naïve infants are 192 

plausible, but poorly understood (11,33). We did not consider childhood vaccination effects here; only a 193 

small percentage of individuals in the ADHS data were born at a time when healthy infants were routinely 194 

vaccinated against influenza. 195 

 196 

 197 

Expected age distributions under alternate imprinting models 198 

If HA subtype-level imprinting protection shapes seasonal influenza risk, primary exposure to 199 

HA subtype H1 or H3 in childhood should provide lifelong protection against modern variants of the 200 

same HA subtype. If imprinting protection acts primarily against specific NA subtypes, lifelong 201 

protection will be specific to N1 or to N2 (Fig. 1B). Alternatively, if broad HA group-level imprinting 202 

shapes seasonal influenza risk, then cohorts imprinted to HA subtype H1 or H2 (both group 1) should be 203 
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protected against modern, seasonal H1N1 (also group 1), while only cohorts imprinted to H3 (group 2) 204 

would be protected against modern, seasonal H3N2 (also group 2) (Fig. 1B). Collinearities between the 205 

predictions of different imprinting models (Fig. 1D-I) were inevitable, given the limited diversity of 206 

influenza antigenic subtypes circulating in humans over the past century (reflected in Fig. 1A). Note that 207 

middle-aged cohorts, which were first infected by H2N2, are crucial, because they provide the only 208 

leverage to differentiate between imprinting at the HA subtype, NA subtype or HA group-level level (Fig. 209 

1B).  210 

Our approach distinguishes between age-specific risk factors related to health and social 211 

behavior, and birth year-specific effects related to imprinting. Specifically, age-specific risk could be 212 

influenced by medical factors like age-specific vaccine coverage, age-specific risk of severe disease, age-213 

related changes in endocrinology and immunosenescence, or by behavioral factors like age-assorted 214 

social mixing, and age-specific healthcare seeking behavior. These factors should have similar impacts on 215 

any influenza subtype. In contrast, imprinting effects are subtype-specific. Thus, we fit a step function to 216 

characterize the shape of age-specific risk of any confirmed influenza case. Simultaneously, we modeled 217 

residual, subtype-specific differences in risk as a function of birth year, to focus on the possible role of 218 

childhood imprinting. Each tested model used a linear combination of age-specific risk (Fig. 1C) and 219 

birth year-specific risk (Fig. 1D-F) to generate an expected distribution of H1N1 or H3N2 cases (Fig. 220 

1G-I). Note that for a given birth cohort, age-specific risk changed across progressive years of case 221 

observation (as the cohort got older), whereas birth year-specific risk was constant over time. 222 

To test quantitatively whether observed subtype-specific differences in incidence were most 223 

consistent with imprinting at the HA subtype, NA subtype or HA group level, or with no contribution of 224 

imprinting, we fitted a suite of models to each data set using a multinomial likelihood and then performed 225 

model selection using AIC. AIC is used to compare the relative strength of statistical support for a set of 226 

candidate models, each fitted to the same data, and favors parsimonious models that fit the data well 227 

(34,35). Technical details are provided in the Methods. 228 

 229 
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Tested models 230 

We fit a set of four models to the ADHS data set. The simplest model contained only age-specific 231 

risk (abbreviated A), and more complex models added effects from imprinting at the HA subtype level 232 

(S), at the HA group level (G), or at the NA subtype level (N): abbreviated AS, AG, and AN, 233 

respectively. The age-specific risk curve took the form of a step function, in which relative risk was fixed 234 

to 1 in age bin 0-4, and one free parameter was fit to represent relative risk in each of the following 12 235 

age bins: {5-10, 11-17, 18-24, 25-31, 32-38, 39-45, 46-52, 53-59, 60-66, 67-73, 74-80, 81+}. Within 236 

models that contained imprinting effects, the fraction of individuals in each single year of birth with 237 

protective childhood imprinting was assumed proportional to reductions in risk. Two additional free 238 

parameters quantified the relative risk of a confirmed H1N1 or H3N2 case, given imprinting protection 239 

against that seasonal subtype. 240 

 241 

Effect of influenza evolutionary rate on age profiles 242 

We used publicly available data from Nextstrain (36,37), and from one previously published 243 

study (38), to calculate annual antigenic advance, which we defined as the antigenic distance between 244 

strains of a given lineage (pre-2009 H1N1, post-2009 H1N1 or H3N2) that circulated in consecutive 245 

seasons (Methods). The “antigenic distance” between two influenza strains is used as a proxy for 246 

similarity in antigenic phenotype, and potential for immune cross-protection. A variety of methods have 247 

been developed to estimate antigenic distance using serological data, genetic data, or both (37–39). 248 

To assess the impact of antigenic evolutionary rate on the epidemic age distribution, we tested 249 

whether the proportion of cases in children increased in seasons associated with large antigenic changes. 250 

If the rate of antigenic drift is a strong driver of age-specific influenza risk, then the fraction of influenza 251 

cases observed in children should be negatively related to annual antigenic advance (30). In other words, 252 

strains that have not changed much antigenically since the previous season should be unable to escape 253 

pre-existing immunity in immunologically experienced adults, and more restricted to causing cases in 254 
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immunologically inexperienced children; strains that have changed substantially will be less restricted to 255 

children.  256 

 257 

Results 258 

Subtype-specific differences in age distribution 259 

Seasonal H3N2 epidemics consistently caused more clinically attended cases in older cohorts, 260 

while H1N1 caused a greater proportion of cases in young and middle-aged adults (Figs. 2, S1-S2). These 261 

patterns were apparent whether we compared H3N2 epidemic age distributions with those caused by the 262 

pre-2009 seasonal H1N1 lineage, or with the post-2009 lineage. Observed patterns are consistent with the 263 

predicted effects of cohort-specific imprinting (Fig. 1), and with previously reported differences in age 264 

distribution of seasonal H1N1 and H3N2 incidence (12–14,29). See Fig. 2 for seasons where H1N1 and 265 

H3N2 co-circulated in substantial numbers, and Figs. S1-S2 for the entire dataset and alternate smoothing 266 

parameters.  267 

 268 

Imprinting model selection 269 

 The data showed a strong preference for NA subtype-level imprinting over HA subtype-level 270 

imprinting (DAIC=34.54), and effectively no statistical support for broad, HA group-level imprinting 271 

(DAIC=249.06), or for an absence of imprinting effects (DAIC=385.42) (Fig. 3, Table 2). Visual 272 

assessment of model fits (Fig. 3C-D) confirmed that models containing imprinting effects at the narrow, 273 

NA or HA subtype levels provided the best fits to data. The lack of support for the no-imprinting model 274 

suggests that imprinting from the first exposure shapes lifelong seasonal influenza risk, just as it does 275 

avian-origin influenza (10, 12). However, imprinting appears to act more narrowly against seasonal 276 

influenza than against avian influenza, providing cross protection only to a specific NA or HA subtype, 277 

instead of broader, HA group-level protection. This result is consistent with the idea that 278 
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immunodominance of variable HA epitopes limits the breadth of immune cross protection deployed 279 

against familiar, seasonal influenza subtypes (20,22). 280 

As expected (see Fig. 1G-I), predictions from the two best models were highly collinear, except 281 

in their risk predictions among middle-aged, H2N2-imprinted cohorts (birth years 1957-1968), and some 282 

other minor differences arising from normalization across birth-years.  283 

 284 

 285 

 286 

Table 2.  287 
Model AN AS AG A 
DAIC 0.00 34.54 249.06 385.42 
H1N1 impr. protection 0.36 (0.30-0.44) 0.29 (0.24-0.35) 0.65 (0.56-0.76)   
H3N2 impr. protection 0.66 (0.58-0.76) 0.90 (0.78-1.04) 0.70 (0.62-0.82)   
Ages 0-4 Reference group: Value fixed to 1 
Ages 5-10 0.67 (0.62-0.73) 0.65 (0.60-0.70) 0.65 (0.60-0.71) 0.61 (0.56-0.66) 
Ages 11-17 0.33 (0.30-0.37) 0.30 (0.28-0.34) 0.32 (0.30-0.36) 0.29 (0.27-0.33) 
Ages 18-24 0.37 (0.34-0.42) 0.34 (0.32-0.38) 0.37 (0.34-0.42) 0.34 (0.31-0.38) 
Ages 25-31 0.35 (0.32-0.40) 0.33 (0.30-0.38) 0.34 (0.32-0.38) 0.32 (0.29-0.36) 
Ages 32-38 0.3 (0.28-0.35) 0.28 (0.26-0.32) 0.3 (0.27-0.34) 0.27 (0.25-0.31) 
Ages 39-45 0.25 (0.22-0.30) 0.22 (0.20-0.26) 0.25 (0.22-0.29) 0.23 (0.21-0.26) 
Ages 46-52 0.27 (0.24-0.30) 0.22 (0.20-0.26) 0.26 (0.23-0.29) 0.24 (0.22-0.28) 
Ages 53-59 0.25 (0.23-0.30) 0.22 (0.20-0.26) 0.23 (0.21-0.27) 0.23 (0.20-0.26) 
Ages 60-66 0.27 (0.24-0.30) 0.29 (0.26-0.33) 0.24 (0.22-0.28) 0.23 (0.21-0.27) 
Ages 67-73 0.37 (0.33-0.43) 0.42 (0.37-0.48) 0.34 (0.30-0.38) 0.33 (0.30-0.38) 
Ages 74-80 0.57 (0.50-0.64) 0.64 (0.57-0.74) 0.52 (0.46-0.59) 0.5 (0.46-0.57) 
Ages 81+ 0.99 (0.88-1.11) 1.12 (1.00-1.26) 0.9 (0.81-1.01) 0.87 (0.80-0.96) 

 288 
Maximum likelihood parameter estimates and 95% profile confidence intervals from each 289 
model fit. All estimated parameters represent the relative risk of a confirmed case, given the 290 
factors listed in the left-hand column. Age-specific risk parameters could take any value, but we 291 
only considered imprinting protection values between 0 and 1, as it would be illogical for 292 
protective imprinting to cause an increase in relative risk. Model name abbreviations specific 293 
which factors were included. A = age-specific risk after normalizing to demographic age 294 
distribution, N = NA subtype-level imprinting, S = HA subtype-level imprinting, G = HA group-295 
level imprinting. 296 

 297 

 298 
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Fitted risk patterns 299 

Fitted age-specific risk curves took similar forms in all tested models. After controlling for 300 

demographic age distribution, estimated age-specific risk was highest in children and the elderly, 301 

consistent with the buildup of immune memory across childhood, and waning immune function in the 302 

aged (Fig. 3A shows the fitted curve from the best model). Estimates of imprinting parameters were less 303 

than one, indicating some reduction in relative risk (Table 2). Within the best model, estimated reductions 304 

in relative risk from childhood imprinting were stronger for H1N1 (0.34, 95% CI 0.29-0.42) than for 305 

H3N2 (0.71, 95% CI 0.62-0.82). In the second-best model, AS (subtype-specific imprinting), estimated 306 

reductions in H3N2 risk were particularly weak, and the confidence interval overlapped the null value of 307 

1. Table 2 shows parameter estimates and 95% profile confidence intervals from all models fitted.  308 

 309 

 310 

 Effect of evolutionary rate 311 

To test for effects of evolutionary rate on epidemic age distribution, we searched for decreases in 312 

the proportion of cases among children in seasons associated with antigenic novelty, when highly drifted 313 

strains might be more able to infect immunologically experienced adults. (We defined children as ages 0-314 

10, and verified internally that our analysis of evolutionary rate was insensitive to our exact choice of age 315 

range for children). Consistent with this expectation, the data showed a slight negative but not significant 316 

association between annual antigenic advance and the fraction of H3N2 cases observed in children (Fig. 317 

4A). However, note that no clear relationship emerged between antigenic novelty and the fraction of cases 318 

observed in any age group including older children (>10) and adults (Fig. 4A). These are the cohorts in 319 

which epidemiological data show the clearest differences between H1N1 and H3N2’s age-specific 320 

impacts (Fig. 2); if rate of antigenic evolution is a dominant driver of age-specific differences in 321 

incidence, we would have expected to see clearer evidence of evolutionary rate effects within adults 322 

cohorts, not just between adults and the youngest children. The data contained too few influenza seasons 323 
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with sufficient numbers of confirmed H1N1 cases to support meaningful Spearman correlation 324 

coefficients for either pre-2009 or post-2009 seasonal H1N1 lineages. 325 

Furthermore, if evolutionary rate is the dominant driver of subtype-specific differences in 326 

epidemic age distribution, then when subtypes H1N1 and H3N2 show similar degrees of annual antigenic 327 

advance, their age distributions of cases should appear more similar. However, the data showed that 328 

differences in H1N1 and H3N2’s age-specific impacts did not converge when lineages showed similar 329 

annual advance. When comparing the fraction of cases observed in specific age classes, H1N1 data 330 

consistently clustered separately from H3N2, with H1N1 consistently causing fewer cases at the extremes 331 

of age (children 0-10 and elderly adults 71-85), but more cases in middle-aged adults, regardless of 332 

antigenic novelty (Fig. 4A). Smoothed density plots showed no clear relationship between annual 333 

antigenic advance and age distribution (Fig. 4B). Overall, the data showed a weak, but not significant 334 

signal that relatively severe, clinically attended cases may be more restricted to young children when 335 

antigenic novelty is low, but the data did not show strong evidence that the magnitude of annual antigenic 336 

drift is a systematic driver of epidemic age distribution across the entire population. 337 

 338 

  339 
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Discussion 340 

We analyzed a large epidemiological surveillance dataset and found that seasonal influenza 341 

subtypes H1N1 and H3N2 cause different age distributions of relatively severe, clinically attended cases, 342 

confirming previously reported patterns (12–14). We analyzed several possible drivers of these 343 

differences side-by-side, and found the greatest support for imprinting protection against seasonal 344 

influenza viruses of the same NA or HA subtype as the first influenza strain encountered in childhood 345 

(12,13). The data did not support strong effects from broader HA group-level imprinting, as recently 346 

detected for novel zoonotic or pandemic viruses (9,11), or from differences in rates of antigenic evolution 347 

(30). Our results suggest individuals retain a lifelong bias in immune memory, and that this imprint is not 348 

erased even after decades of exposure to or vaccination against dissimilar influenza subtypes. 349 

External evidence corroborates the idea that birth year, rather than age, drives subtype-specific 350 

differences in seasonal influenza risk. When H3N2 first emerged in 1968, it caused little or no excess 351 

mortality in the elderly, who had putatively been exposed, as children or young adults, to an H3 virus that 352 

had circulated in the late 1800s (7,9). Meanwhile, H1N1-imprinted cohorts (those ~10-50 years old at the 353 

time) experienced considerable excess mortality in the 1968 pandemic (7). Now, fifty years later, the 354 

same H1N1-imprinted cohorts continue to experience excess H3N2 morbidity and mortality as older 355 

adults (12–14,29) (Fig. 2).  356 

In model comparison, the data supported childhood imprinting to NA. Although NA is not as 357 

intensively studied as HA, these results emphasize the increasingly recognized importance of both 358 

antigens as drivers of protection against seasonal influenza (15–17). Realistically, some combination of 359 

effects from both HA and NA subtype-level imprinting probably shapes seasonal influenza risk; both 360 

models of imprinting produced similar fits to data, and far outperformed other models in terms of AIC 361 

(Fig. 3). Unfortunately, due to the limited diversity of seasonal influenza strains that have circulated in 362 

humans over the past century, collinearities between even the relatively simple models tested here 363 

prevented us from testing more complicated models of combined effects from imprinting to multiple 364 
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antigens. Deeper insights into the respective roles of HA and NA will most likely need to come from 365 

focused immunological cohort studies, in which individual histories of influenza infection are recorded 366 

and can be studied alongside changes in serology, PBMCs, and/or the B cell repertoire (33). 367 

Alternatively, the development of immunological biomarkers for diagnosis of imprinting status in 368 

individual patients could substantially increase the power of epidemiological inference. 369 

We did not detect a clear relationship between annual antigenic advance and epidemic age 370 

distribution, although small sample sizes may have limited our statistical power. We did detect a weak 371 

trend, consistent with the idea that influenza cases are more restricted to immunologically inexperienced 372 

children in seasons of low antigenic advance, as previously proposed (30). But the data did not reveal a 373 

clear relationship between antigenic advance and the fraction of cases occurring in adult age groups, 374 

where epidemiological data reveal distinct subtype-specific differences in impact. Perhaps antigenic 375 

advance shapes how cases are distributed between children and adults, but has small or inconsistent 376 

impacts within the adult population. We speculate that clearer relationships between antigenic advance 377 

and epidemic age distribution might emerge if methods to estimate antigenic distance were able to 378 

incorporate effects such as immune history (40), glycosylation (40,41), and immunity to antigens other 379 

than HA (16,17,42).  380 

The exact immunological drivers of imprinting protection against seasonal influenza remain 381 

unclear, but these results provide some new clues. Traditionally, within-subtype cross-protection is 382 

thought to decay quickly with antigenic drift. Strains that circulated more than 14 years apart rarely show 383 

measurable cross-protective titers by the hemagglutination inhibition (HI) assay (38). The short timescale 384 

of immune memory to variable HA head epitopes stands in contrast to patterns observed in our study and 385 

others (12–14), where within-subtype immune memory imprinted in childhood appears to persist for an 386 

entire human lifetime, remaining evident even in the oldest cohorts. We speculate that within-subtype 387 

imprinting protection may involve epitopes that are more conserved, and stable over time, than those 388 

typically measured in HI assays (which inform most existing estimates of antigenic distance, but may 389 

disproportionately measure antibodies to variable, immunodominant epitopes on the HA head (21,22)). 390 
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Across a lifetime of exposures to diverse H1N1 and H3N2 variants, repeated back-boosting of antibodies 391 

to intermediately conserved sites on HA or NA (i.e. sites conserved within but not across HA and NA 392 

subtypes), could explain the longevity of subtype-level imprinting protection. This is consistent with 393 

recent evidence that the immune repertoire shifts to focus on more conserved influenza epitopes as we age 394 

(25,26).  395 

Another possibility is that, memory B cell clones developed during the first childhood influenza 396 

exposure may later adapt via somatic hypermutation to “follow” antigenic targets as they drift over time 397 

(25,28). However, this would be inconsistent with new evidence suggesting memory B cells are relatively 398 

fixed in phenotype, and have little potential for ongoing affinity maturation (43,44). Thus, the first 399 

influenza exposure in life may fill a child's memory B cell repertoire with clones that serve in the future 400 

as prototypes that can be rapidly and effectively tailored to recognize drifted influenza strains of the same 401 

subtype. Finally, the role of CD4+ T cells in imprinting is unclear, but T cell memory and T cell help to B 402 

cells within germinal centers both play at least some role in the development of the immune repertoire 403 

(45). 404 

Signals of imprinting protection are anomalously strong in the current cohort of elderly adults, as 405 

reflected by higher estimates of imprinting protection to H1N1 than H3N2. The oldest subjects in our 406 

data, born slightly after 1918, and would not have encountered an influenza virus of any subtype other 407 

than H1N1 until roughly age 30. Repeated early-life exposures to diverse H1N1 variants may have 408 

reinforced and expanded the breadth of H1N1-specific immune memory (5,46). But this strong H1N1 409 

protection seems to come at a cost; even after decades of seasonal H3N2 exposure, and vaccination, older 410 

cohorts have evidently failed to develop equally strong protection against H3N2. HA group 1 antigens 411 

(e.g. H1) appear to induce narrower immune responses, and less cross-group protection than structurally 412 

distinct HA group 2 antigens (e.g. H3) (23). Perhaps elderly cohorts imprinted to group 1 antigens have 413 

been trapped in narrower responses that offer exceptional protection against strains similar to that of first 414 

exposure but relatively poor adaptability to other subtypes.  415 
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We speculate that imprinting protection, which currently limits the number of severe, clinically-416 

attended H1N1 cases in the elderly, also limits the mortality impact of H1N1 viruses. Although pre- and 417 

post- 2009 H1N1 lineages have caused slightly different profiles of age-specific mortality (13), neither 418 

H1N1 lineage causes nearly as many deaths as H3N2 in high-risk elderly cohorts (13,29,47). On the one 419 

hand, if strong subtype-specific biases from imprinting remain in future cohorts of elderly adults, our 420 

results would corroborate the idea that mortality from H1N1 may increase as protection in the elderly 421 

shifts from H1N1 toward other subtypes (9,13). On the other hand, given that cohorts born after 1968 422 

have had much more varied early life exposures to both H1N1 and H3N2, these cohorts may show a 423 

greater ability to act as immunological generalists as they become elderly, capable of effective defense 424 

against multiple subtypes. 425 

 Our study has several limitations.  Relatively severe, clinically attended cases are much more 426 

likely to be detected, confirmed to subtype, and included in our data than mild cases. Thus, while our 427 

results show a clear relationship between subtype-level imprinting and risk of relatively severe, clinically 428 

attended influenza, the relationship between imprinting and mild or asymptomatic cases could not be 429 

determined from available data.  430 

Given the limited number of variables recorded in the data, we could not model explicitly the 431 

impact of individual risk factors such as the presence of comorbidities, patient sex, or vaccination status. 432 

All these factors are known to shape immunity and influenza risk (48), and all may cause individual 433 

imprinting outcomes to vary from the average, population trends measured by our study. Understanding 434 

how these patient-level covariates modulate imprinting and other aspects of immunity is the next frontier 435 

in this line of research. For now, working within the constraints of the available data, we designed the 436 

age-specific risk component of the model to capture empirically the combined effects of several risk 437 

factors that could not be modeled individually. Additionally, we analyzed the relative count of H1N1 to 438 

H3N2 cases within each single year of birth, not absolute incidence, to control for minor age-specific 439 

biases in sampling, which are almost inevitably present in any large data set. 440 
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Another limitation was the low number of confirmed cases available in the pre-2009 era.  Large, 441 

detailed data sets collected continuously over decades provide the greatest power to separate the effects of 442 

age from birth year. We emphatically echo earlier calls (49) for more systematic sharing of single year-of-443 

age influenza surveillance data, standardization of sampling effort, and reporting of age-specific 444 

denominators, which could substantially boost the scientific community’s ability to link influenza's 445 

genetic and antigenic properties with epidemiological outcomes. Additionally, collection and reporting of 446 

covariates such as sex, vaccination status and the presence of comorbidities in surveillance data would 447 

help us understand how patient-level variables modulate imprinting, and immunity in general (50,51).  448 

Altogether, this analysis confirms that the epidemiological burden of H1N1 and H3N2 is shaped 449 

by cohort-specific differences in childhood imprinting (9,12,13,52), and that this imprinting acts at the 450 

HA or NA subtype level against seasonal influenza. The lack of support for broader, HA group-level 451 

imprinting effects emphasizes the consequences of immunodominance of influenza’s most variable 452 

epitopes, and the difficulty of deploying broadly protective memory B cell responses against familiar, 453 

seasonal strains. Overall, these findings advance our understanding of how antigenic seniority shapes 454 

cohort-specific risk during epidemics. The fact that elderly cohorts show relatively weak immune 455 

protection against H3N2, even after living through decades of seasonal exposure to or vaccination against 456 

H3N2, suggests that antibody responses acquired in adulthood do not provide the same strength or 457 

durability of immune protection as responses primed in childhood. Immunological experiments that 458 

consider multiple viral exposures, and cohort studies in which individual histories of influenza infection 459 

are tracked from birth, promise to illuminate how B cell and T cell memory develop across a series of 460 

early life exposures. In particular, these studies may provide clearer insights than epidemiological data 461 

into which influenza antigens, epitopes and immune effectors play the greatest role in immune imprinting, 462 

and how quickly subtype-specific biases become entrenched across the first or the first few exposures.  463 

 464 

 465 
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Materials and Methods 466 

Estimation of age from birth year in ADHS data 467 

The data contained three variables, influenza season, birth year and confirmed subtype. For most 468 

cases, birth year was extracted directly from the reported date of birth in patient medical records, but age 469 

was not known. We estimated patient age at the time case observation using the formula [year of 470 

observation]-[birth year]. To ensure that the minimum estimated age was 0, the second year in the 471 

influenza season of case observation was considered the calendar year of observation (e.g. 2013 for the 472 

2012-2013 season).  473 

 474 

Splines 475 

In Figure 2, smoothing splines were fit to aid visual interpretation of noisy data. We fit splines 476 

using the command smooth.spline(x = AGE, y = FRACTIONS, spar = 0.8) in R version 3.5.0. Variables 477 

AGE and FRACTIONS were vectors whose entries represented single years of age, and the fraction of 478 

cases observed in the corresponding age group. The smoothing parameter 0.8 was chosen to provide a 479 

visually smooth fit. Alternative smoothing parameter choices (0.6 & 1.0) are shown in Figs. S1-S2. 480 

Although the choice of smoothing parameter changed the shape of each fitted spline, qualitative 481 

differences between splines fitted to H1N1 or H3N2 were insensitive. 482 

 483 

Model formulation 484 

For each unique season in which cases were observed, define p as a vector whose entries 485 

represent the expected probability that a randomly drawn H1N1 or a randomly drawn H3N2 case was 486 

observed in an individual born in year b. Each model defined, p as a linear combination of age-specific 487 

risk, birth year-specific risk (i.e. imprinting effects). All tested models were nested within the equation: 488 

 489 

𝑝 = 𝐷𝐴 ∗ 𝟏'()((𝐼'()() ∗ 𝟏'-).(𝐼'-).)      1 490 
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 491 

To include risk factors that only modulated risk from one subtype, we included indicator 492 

functions 1H1N1 and 1H3N2, which took value 1 if p described the expected age distribution of H1N1 or 493 

H3N2 cases, respectively, and 0 otherwise.  494 

 495 

 496 

Demographic age distribution (D) 497 

The population of Arizona aged slightly across the study period, so we controlled for shifting 498 

demography in all tested models. Demographic age distribution was obtained from intercensal estimates 499 

of total population (both sexes) for the state of Arizona, based on the 2000 and 2010 census (53). The US 500 

Census Bureau reports population estimates for ages 0-84, but only provides an aggregate estimate for 501 

ages 85+. We impute the number of individuals in each single year of age over 85 using a linear model fit 502 

to data on age 75-84, with a minimum threshold of 1000 individuals per single year of age. State-specific 503 

population estimates were not available prior to the 2000 census, so we substituted estimates from the 504 

year 2000 for cases observed in the 1993-94, and the 1994-95 seasons. Vector D represented the fraction 505 

of the total population at the time of case observation that fell in a given birth year. 506 

 507 

Age-specific risk (A) 508 

Age-specific risk was defined as a step function, in which relative risk was fixed to value 1 in an 509 

arbitrarily chosen age bin, and then z-1 free parameters, denoted r2 to rz, were fit to describe relative risk 510 

in all other age bins. Below, 1i  are indicator functions specifying whether each vector entry is a member 511 

of age bin i.  512 

𝐴 = 𝟏( + 𝟏.𝑟. + ⋯𝟏2𝑟2      2 513 

 514 

To obtain the predicted fraction of cases observed in each single year of birth, we normalized so 515 

that the product of vectors representing demographic age distribution, and age-specific risk, (DA in 516 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted September 26, 2019. ; https://doi.org/10.1101/19001834doi: medRxiv preprint 

https://doi.org/10.1101/19001834
http://creativecommons.org/licenses/by/4.0/


 22 

equation 1) summed to 1. Thus, vector DA can be interpreted as the expected distribution of cases of any 517 

influenza case (either subtype), in the absence of birth year-specific biases from imprinting. 518 

 519 

Imprinting (I)  520 

An indicator function defined whether a given prediction vector described risk of confirmed 521 

H1N1 or H3N2. Let fIHxNy be vectors describing the fraction of cases of each birth year that were protected 522 

against strain HxNy by their childhood imprinting. We defined rIHxNy as free parameters describing the risk 523 

of confirmed HxNy, given imprinting protection. Finally, the factor describing the effect of imprinting (I) 524 

was defined as: 525 

 526 

𝐼'3)4 = 𝟏'3)4 ∗ [𝑓7'3)4𝑟7'3)4 + (1 − 𝑓7'3)4)]      3 527 

 528 

  529 

Likelihood 530 

We used equations 1-3 to generate predicted case age distributions (p) for each influenza season 531 

(s) in which cases were observed in the data. Then, the likelihood was obtained as a product of 532 

multinomial densities across all seasons. If ns represents the total number of cases observed in a given 533 

season, x0cs,…xmcs each represent the number of cases observed in each single year of birth, and if 534 

p0cs…pmcs each represent entries in the model’s predicted birth year-distribution of cases, then the 535 

likelihood is given by:  536 

 537 

ℒ = ∏ =>!
3@>!…3B>!

𝑝CD
3@> …𝑝ED

3B>
D         4 538 

 539 

 540 

 541 
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Model fitting and model comparison 542 

We fit models containing all possible combinations of the above factors to influenza data from 543 

each season in the data. We simultaneously estimated all free parameter values using the optim() function 544 

in R, with method L-BFGS-B. Imprinting parameters could take values in [0,1], representing the 545 

possibility of a reduction in risk. Age-specific risk parameters could take any value greater than 0. We 546 

calculated likelihood profiles and 95% profile confidence intervals for each free parameter. Confidence 547 

intervals were defined using the method of likelihood ratios (34). 548 

 549 

Antigenic advance 550 

We obtained antigenic distance estimates from Nextstrain (nextstrain.org) (36,54), and from 551 

source data from Figure 3 in Bedford et al. (38). Nextstrain calculates antigenic distance using genetic 552 

data from GISAID (55), and using methods described by Neher et al. (37). We analyzed “CTiter” 553 

estimates from Nextstrain, which correspond to Neher et al.’s “tree model” method, and are most directly 554 

comparable to pre-2009 H1N1 estimates from (38). We repeated analyses using estimates from the 555 

similar “substitution model” method and verified that our choice of antigenic distance metric did not 556 

meaningfully impact our results. The negative Spearman correlation between antigenic advance and 557 

proportion of cases in children was lower, but still non-significant when using the substitution model 558 

(p=0.06); all other differences were unremarkable. Datasets from Nextstrain and Bedford et al. both 559 

contained redundant antigenic distance estimates for the H3N2 lineage, but only Bedford et al. analyzed 560 

the pre-2009 H1N1 lineage, and only Nextstrain data analyzed the post-2009 H1N1 lineage. The antigenic 561 

distance estimates reported by Bedford et al. were roughly proportional to those reported on Nextstrain, 562 

but greater in absolute magnitude (37). To enable visualization of all three lineages on the same plot axes, 563 

we rescaled pre-2009 H1N1 estimates from Bedford et al. using the formula dNextstrain = 0.47dBedford. The 564 

scaling factor was chosen so that directly-comparable H3N2 distance estimates obtained using each 565 

method spanned the same range (Fig. S3). The Nextstrain data files used in this analysis are archived 566 

within our analysis code.  567 
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Figure captions 740 

Figure 1.  Model and expectations under different imprinting hypotheses. (A) Reconstructed, birth 741 
year-specific probabilities of imprinting (representative example specific to cases observed in 2015). 742 
Throughout the manuscript, group 1 HA subtypes are represented in blue and group 2 subtypes in red. (B) 743 
Expected imprinting protection against H1N1 or H3N2 under the three tested models. (C) Cartoon of 744 
expected age distribution of any influenza case, before controlling for subtype-specific imprinting. The 745 
shape of this curve is purely hypothetical, but each of our tested models combined demographic age 746 
distribution with a fitted, age-specific risk step function to generate similar, data-driven curves. (D-F) 747 
Fraction of each birth year unprotected by their childhood imprinting (from A) determines the shape of 748 
birth year-specific risk. (G-I) A linear combination of age-specific risk (C), and birth year-specific risk 749 
(D-F) give the expected age distribution of H1N1 or H3N2 cases under each model. 750 
 751 
Figure 2. Observed age distributions, Arizona. Points show fraction of confirmed H1N1 or H3N2 cases 752 
observed in each single year of age. Lines show a smoothing spline fit to observed distributions. (A) All 753 
confirmed cases in the data (aggregate across all seasons). (B-G) Age distributions from individual 754 
seasons in which both H1N1 and H3N2 circulated (seasons with ≥ 50 confirmed cases of each subtype are 755 
shown here. See Fig. S1 for all seasons). 756 
 757 
Figure 3. Model fits and model selection. (A) Fitted effects of age, after normalization to demographic 758 
age distribution and (B) imprinting effects from model AN, which provided the best fit to data. (C-D) 759 
Model fits to observed age distributions of H1N1 (C) and H3N2 (D) cases. Model name abbreviations 760 
indicate which factors were included: A = age-specific risk, N = NA subtype-level imprinting, S = HA 761 
subtype-level imprinting, G = HA group-level imprinting. All models included demographic age 762 
distribution. 763 
 764 
Figure 4. Effect of antigenic advance on age distribution. (A) Relationship between annual antigenic 765 
advance and the fraction of cases observed in children (0-10), or in adult age groups. Each data point 766 
represents a single influenza season in which at least 100 confirmed cases of a given subtype were 767 
observed. Blue label shows Spearman correlation between the fraction of H3N2 cases observed in each 768 
age group and annual antigenic advance. Blue dashes show linear trend fitted using lm() in R. (B) Season-769 
specific age distributions of casses, colored by antigenic advance since the previous season. 770 
 771 
 772 
 773 

Table legends 774 

Table 1. Confirmed cases in surveillance data from Arizona Department of Health Services. Data 775 
representing the first and second waves of the 2009 H1N1 pandemic (2008-2009 and 2009-2010 seasons) 776 
were excluded.  777 
 778 
Table 2. Maximum likelihood parameter estimates and 95% profile confidence intervals from each 779 
model fit to ADHS data. All estimated parameters represent the relative risk of a confirmed case, given 780 
the factors listed in the left-hand column. Model name abbreviations specific which factors were included. 781 
A = age-specific risk, N = NA subtype-level imprinting, S = HA subtype-level imprinting, G = HA group-782 
level imprinting.  783 
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Figures 784 

 785 

Figure 1.  Model and expectations under different imprinting hypotheses. (A) Reconstructed, birth 786 
year-specific probabilities of imprinting (representative example specific to cases observed in 2015). 787 
Throughout the manuscript, group 1 HA subtypes are represented in blue and group 2 subtypes in red. (B) 788 
Expected imprinting protection against H1N1 or H3N2 under the three tested models. (C) Cartoon of 789 
expected age distribution of any influenza case, before controlling for subtype-specific imprinting. The 790 
shape of this curve is purely hypothetical, but each of our tested models combined demographic age 791 
distribution with a fitted, age-specific risk step function to generate similar, data-driven curves. (D-F) 792 
Fraction of each birth year unprotected by their childhood imprinting (from A) determines the shape of 793 
birth year-specific risk. (G-I) A linear combination of age-specific risk (C), and birth year-specific risk 794 
(D-F) give the expected age distribution of H1N1 or H3N2 cases under each model. 795 
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796 
Figure 2. Observed age distributions, Arizona. Points show fraction of confirmed H1N1 or H3N2 cases 797 
observed in each single year of age. Lines show a smoothing spline fit to observed distributions. (A) All 798 
confirmed cases in the data (aggregate across all seasons). (B-G) Age distributions from individual 799 
seasons in which both H1N1 and H3N2 circulated (seasons with ≥ 50 confirmed cases of each subtype are 800 
shown here. See Fig. S1 for all seasons). 801 
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 802 
Figure 3. Model fits and model selection. (A) Fitted effects of age, after normalization to demographic 803 
age distribution and (B) imprinting effects from model AN, which provided the best fit to data. (C-D) 804 
Model fits to observed age distributions of H1N1 (C) and H3N2 (D) cases. Model name abbreviations 805 
indicate which factors were included: A = age-specific risk, N = NA subtype-level imprinting, S = HA 806 
subtype-level imprinting, G = HA group-level imprinting. All models included demographic age 807 
distribution. 808 
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 809 

Figure 4. Effect of antigenic advance on age distribution. (A) Relationship between annual antigenic 810 
advance and the fraction of cases observed in children (0-10), or in adult age groups. Each data point 811 
represents a single influenza season in which at least 100 confirmed cases of a given subtype were 812 
observed. Blue label shows Spearman correlation between the fraction of H3N2 cases observed in each 813 
age group and annual antigenic advance. Blue dashes show linear trend fitted using lm() in R. (B) Season-814 
specific age distributions of cases, colored by antigenic advance since the previous season. 815 
 816 
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